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A molecular similarity measure has been developed using molecular topological graphs and atomic partial charges. Two kinds of
topological graphs were used. One is the ordinary adjacency matrix and the other is a matrix which represents the minimum path
length between two atoms of the molecule. The ordinary adjacency matrix is suitable to compare the local structures of molecules
such as functional groups, and the other matrix is suitable to compare the global structures of molecules. The combination of
these two matrices gave a similarity measure. This method was applied to in silico drug screening, and the results showed that it
was effective as a similarity measure.
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1. Introduction

The molecular similarity measure is an important tool in
chemometrics and chemoinformatics. The main applica-
tions include ligand-based in silico (virtual) drug screening,
ADME-Tox (adsorption, distribution, metabolism, excre-
tion, and toxicity) property prediction, physical molecular
property prediction (1-octanol-water partition coefficient,
solubility), and measurement of the diversity of chemical
compounds in a library.

The molecular similarity measure generally assigns
a one-dimensional (1D) and/or two-dimensional (2D)
descriptor—that is, molecular fingerprints based on sub-
structure, molecular mass, number of rotatable bonds,
number of hydrogen donors/acceptors of the compound,
and so forth—to compounds so that the similarities of the
compounds can be evaluated [1–5]. Many methods have
been proposed for the similarity search of chemical com-
pounds, such as the comparison of overlapping substructures
in the form of Daylight fingerprints (Daylight Chemical
Information Systems Inc., Aliso Viejo, CA, USA), the chem-
ically advanced template search (CATS) descriptor method
developed by Pickett [6], and the Burden-CAS-University
of Texas (BCUT) descriptor method [7]. One of the most
widely used methods is to compare the existence of fragment

structures; this is the technique employed by the MACSS key,
which was developed by Molecular Design Limited (MDL,
Santa Clara, CA, USA). Each element of the feature vector of
the molecule represents the existence of a particular fragment
structure in the molecule (dictionary based fingerprinting).
A rather large example of a dictionary used for this
fingerprinting technique is the software program DRAGON
developed by Talete SRL (geographical information), which
consists of more than 3200 molecular descriptors. The
affinity fingerprint approach is a new type of similarity
search method based on a multiprotein/multicompound
affinity matrix [8–21]. In this method, each element of
the feature vector of the molecule represents the binding
affinity of the molecule with a particular protein. Usually, the
binding affinity is measured by calculation using a protein-
compound docking program.

There are various applications for molecular similarity,
and thus many types of similarity measures are needed.
Most of the conventional molecular descriptors aim scaffold
hopping (lead hopping) to find a compound with a different
scaffold from the known active compound. However, in
some cases, we want to find similar compounds with similar
scaffolds. For example, in lead generation, we want to find a
series of similar compounds with the same or similar scaffold
instead of performing an actual synthesis. Substructure
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searches have been used for this purpose [22, 23]. However,
a comparison of the indices of molecular topologies is
much faster than a substructure search. A topological
index, which is any of several numerical parameters of a
molecular graph, is also widely used [5]. The Wiener index,
Hosoya index, and Randic’s molecular connectivity index,
are graph invariants and conventional topological indices.
These topological indices show correlation to the physical or
chemical properties of molecules, although these indices do
not recognize atom types and they can be quite difficult to
calculate.

In the current study, we proposed a new similarity
measure for identifying topologically similar compounds
based on their molecular topologies and evaluated this
method by applying it to a ligand-based drug screening test.

2. Methods

2.1. Similarity and Distance between Compounds. First, the
all-atom model compound structures are converted to united
atom models, in which all hydrogen atoms are omitted and
the atomic charge of the hydrogen atom is added to the
atomic charge of the connected heavy atom.

In this method, the adjacency matrix E and the distance
matrix D are used, and Figure 1 shows an example of
these two matrices for a simple graph. The topology of the
compound can be represented by an edge-adjacency matrix
E [4, 5]:

eab = 1, when the ath and the bth atoms are connected

eab = 0, otherwise,
(1)

where eab is the a-b element of matrix E. The value of eab
could be the bond order between the ath and the bth atoms
(the value of eab could be 1.5 for an aromatic bond). Just as
in the BCUT method, the diagonal part (eaa) is replaced by
the converted atomic charge qc:

qc = 1
1 + exp

(−c · qA
) , (2)

where qA is an atomic partial charge and c is a coefficient. In
this study, cwas set to 1.0. The qc value is > 0 for any qA value.

The a-b matrix element of the pseudodistance matrix D
represents the minimum path length between the ath and bth
atoms:

Dab = ln(1 + dab), (3)

where dab is a shortest path length between the ath and the
bth atoms. We also triedDab = dab (shortest-path topological
distance matrix [4, 5]) and Dab = dab

1/2 and found that
Dab = ln(1+dab) gave the best result among these definitions.

Let εi and N be the ith eigenvalue of the matrix E or
D and the number of atoms of the united-atom model of
the compound. We define the eigenvalue histogram g(ε) as
follows:

g(ε) =
N∑

i=1

exp
(
−c(εi − ε)2

)
. (4)

Here ε and c are the energy and the arbitral coefficient.
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Figure 1: Example of the matrices E and D.

The distance S(A,B) between molecules A and B is
defined based on the eigenvalue histogram of molecule
A(gA(ε)) and that of molecule B(gB(ε)) as follows:

S(A,B) =
∫∞

−∞

∣
∣gA(ε)− gB(ε)

∣
∣dε. (5)

In the current in silico drug screening, candidate hit
compounds are selected using the following method. Let
SE(A,B) and SD(A,B) be the distance between A and B based
on the adjacency matrix E and that based on the distance
matrix D. These two distances give the consensus distance
S′(A,B) with the weight parameter λ:

S′(A,B) = λSE(A,B) + (1− λ)SD(A,B). (6)

Compounds that are close to the known active com-
pounds are selected as the candidate hit compounds. For
this purpose, the distance to the known active compounds
is introduced. The distance from the kth compound to the
average position of the active compounds (Distk) is defined
as

Distk =

√
√
√√
√

M∑

i=1

S′(Ak,Ci)
2/M, (7)

where Ak, Ci, and M are the kth compound, ith active
compounds, and the total number of the active compounds.
When the number of active compounds is one, Distk = S′.
We call Distk the molecular-graph (MG) distance and we
call this screening procedure the molecular-graph distance
(MGD) method. The eigenvalues (εi) of SE and SD of each
compound of the compound library are stored in a database
file a priori. For a query compound, the eigenvalues of SE and
SD must be calculated, which costs less than 1 second. The
database search is conducted only to perform the calculations
in (4)–(7) and thus is quite fast.

3. Preparation of Materials

For the drug screening test, our target proteins were
the macrophage migration inhibitory factor (MIF), cy-
clooxygenase-2 (COX-2), human immunodeficiency virus
protease-1 (HIV), thermolysin (THR), glutathione S-
transferase (GST), the histamine H1 receptor, the adrenaline
beta receptor, the serotonin receptor, and the dopamine D2
receptor. For validation of the present method, we used
the same set of compounds as used in our previous study
[20]. Namely, the compound set consisted of 12 inhibitors
of MIF, 28 inhibitors of THR, 15 inhibitors of COX-2,
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Figure 2: Distribution of the values of Distk . The template is
diphenhydramine. The Distk values are multiplied by 10000 times
and the frequency is normalized.

20 inhibitors of HIV, 12 inhibitors of GST, 10 antagonists
of the histamine H1 receptor [24], 12 agonists and 13
antagonists of the adrenaline beta receptor [25], 8 agonists
and 9 antagonists of the serotonin receptor [26], and 6
agonists and 15 antagonists of the dopamine D2 receptor
[27] as the active compounds, along with 11050 potentially
negative compounds from the random compound library of
the Coelacanth Chemical Corporation (East Windsor, NJ,
USA). Typically, only one hit compound could be found
out of 104 randomly selected compounds; we therefore
expected that there would be no more than a few, if any,
hit compounds among these 11212 compounds. The 160
active compounds are listed in the Supplemental Materials
available online at doi:10.1155/2009/231780.

The size distribution of compounds was as follows:
percentage of compounds with 0 ∼ 19 atoms, 0.1%; with 20
∼ 29 atoms, 1.2%; with 30 ∼ 39 atoms, 1.6%; with 40 ∼ 49
atoms, 9.3%; with 50∼ 59 atoms, 22.5%; with 60∼ 69 atoms,
37.9%; with 70 ∼ 79 atoms, 20.5%; and with more than 80
atoms, 7.0%. The average number of heavy atoms was 30.9.

The atomic charge of each ligand was determined by the
Gasteiger method [28, 29]. To calculate the Gasteiger charge,
an all-atom model is necessary for each compound. The
three-dimensional (3D) coordinates of the 11050 random
compounds above were generated to add the hydrogen atoms
by the Concord program (Tripos, St. Louis, MO, USA) from
2D Sybyl SD files provided by the Coelacanth Chemical
Corporation. The 3D coordinates of the active compounds
(inhibitors, substrates, agonists, and antagonists) were gen-
erated by Chem3D (Cambridge Software, Cambridge, MA,
USA).

4. Results

To evaluate the efficiency of this method, the leave-one-
out cross-validation test was applied; namely, the active
compounds of each target protein were selected one by one as
the known active compounds for this software and the other
unknown active compounds were discovered by the software.
The test dataset consists of these active compounds and
the other approximately 104 potential inactive compounds
(decoy set). The total number of compounds was 11212.
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Figure 3: Average database enrichment curves of 160 active
compounds with the current similarity measure. Open circles
represent the average database enrichments with the distance
measure defined by (6) (MGD) with λ = 0.25. The dashed line
represents the random screening result.

A total of 160 (= total 160 active compounds) database
enrichment curves were calculated for these 9 target proteins
and 11212 compounds and the results were averaged.

The surface area (q or “area under curve”: AUC) under
the total database enrichment curve ( f ) is a measure of the
database enrichment:

q =
∫ 100

0
f (x)dx, (8)

where x and f (x) are the percentages of compounds that
are selected from the total compound library and the
database enrichment curve, respectively. A higher q value
corresponds to better database enrichment, and the q value
is always greater than zero and less than 100. For the random
screening, q = 50.

First, the λ dependence of the hit ratio was examined
in the MGD method. The average q values and the hit
ratio of the 160 trials with various λ values are summarized
in Table 1. The coefficients c for matrices E and D were
optimized for every λ to maximize the hit ratio. When
λ = 0 or λ = 1, the hit ratio and the q values were
lower than those in the other cases. This result showed
that the combination of matrices D and E is more effective
than the single usage of either D or E. The optimized
coefficients were used in the following study. The average
eigenvalues of D and E were −3.21 ∗ 10−6 and 0.505
for the decoy set, respectively. The histograms g(ε) of (4)
were close to single Gaussian distributions. We show the
distributions of g(ε) of H1 antagonist diphenhydramine and
COX-2 inhibitor indomethacin in the supplementary data.
For diphenhydramine, the average g(ε) values of SE and SD

were 1.46∗10−3 and 1.009∗10−3, respectively. The deviations
of g(ε) values of SE and SD were 75.75 and 9.712, respectively.
For indomethacin, the average g(ε) values of SE and SD were
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Figure 4: Histamine H1 receptor antagonists.

1.46∗10−3 and 1.009∗10−3, respectively. The deviations of
g(ε) values of SE and SD were 75.88 and 9.739, respectively.

Second, the score distribution was examined by the MGD
method. The average values and the standard deviations for
the λ values are summarized in Table 1. Figure 2 shows a

score distribution with λ = 0.25 using diphenhydramine
as the template (see Figure 4). The template corresponds to
Distk = 0. The frequency was normalized; the surface area
under the curve was set to 1. The distribution is similar to
Gaussian distribution.
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Figure 5: The three top-ranked compounds by the MGD method for the template: diphenhydramine. (a) The result with λ = 0.25. (b) The
result with λ = 0. (c) The result with λ = 1.

Figure 3 shows the average database enrichment results
of the 160 trial screening tests by the leave-one-out cross-
validation test. The MGD method worked well and showed
good enrichment. In this calculation, λ was set to 0.25.
Within the first 1%, 5%, and 10% of the database, 36.5%,
52.8%, and 60.0% of the active compounds were found
by the similarity measure defined by (7), respectively. The
average q value by the MGD method using (7) was 82.53.
This result is worse than the result by the machine-learning
docking score index method reported previously. Namely,
about 70% of the active compounds were found within the
first 1% of the database and the average q value was 98.5.

Ten histamine H1 receptor antagonists were included
in the compound library (see Figure 4). Figure 5 shows the
known active compound (template) and the best ranked
molecules, when λ = 0, 0.25 and 1. The Distk values
and z-scores (= (score – average score)/standard deviation)

of the three top-ranked compounds are summarized in
Table 1. These z-scores show that the score distribution
is slightly different from the Gaussian distribution. In the
Gaussian distribution, the number of compounds with a
z-score > 3 is 0.1% of the database (10 compounds in
this case). The z-scores of the top-ranked compounds were
only 2, in this case. The selected molecules look similar
to the template compound, diphenhydramine. For λ =
0.25, the other H1 receptor antagonist, chlorpheniramine,
was found as the third compound. Both diphenhydramine
and chlorpheniramine have a diphenyl group. The other
compounds (a1 and a2) are not very similar to the template.
For λ = 0, compound b2, which is not an H1 antagonist,
is similar to the template. Compound b3 is identical to
compound a1. For λ = 1, the three best-ranked compounds
are not particularly similar to the query. Compounds a1, a2,
b3, and c3 are similar to each other.
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Table 1: The average q values and the hit ratio with optimized coefficients for various λ values. The coefficient1 is the c parameter in (4) for
the E matrix and the coefficient2 is the c parameter in (4) for the D matrix. The hit ratio is the % of the active compounds found within
the first 1% of selected compounds of the database. The average and σ are the average value and the standard deviation of the scores. ∗: the
top-ranked compounds when diphenhydramine is the template.

λ 0 0.25 0.5 0.75 1

Hit ratio 28.86% 36.48% 35.76% 35.69% 26.93%

q value 80.14 82.53 80.37 82.09 72.72

Coefficient1 0.002 0.01 0.02 0.01 0

Coeffcient2 0 0.00005 0.00005 0.00001 0.0001

Average 0.100∗10−4 3.61∗10−4 7.13∗10−4 10.64∗10−4 14.163∗10−4

σ 7.50∗10−6 1.62∗10−4 3.24∗10−4 4.87∗10−4 6.50∗10−4

1st compound∗

z-score 1.321 2.218 2.189 2.179 2.174

Score 0.00008295 0.001723 0.001944 0.002164 0.002383

2nd compound∗

z-score 1.315 2.202 2.179 2.171 2.167

Score 0.0001266 0.004425 0.005333 0.006242 0.00715

3rd compound∗

z-score 1.314 2.192 2.169 2.161 2.157

Score 0.0001338 0.005944 0.008402 0.01085 0.01331

5. Discussion

Figure 3 shows that 36.5% of the active compounds were
found within the first 1% of the compounds of the whole
library. Our previous study showed that 12.4%, 43.4%,
and 67.5% of the active compounds were found within
the first 1% of the database by the docking score index
(DSI), factor-selection DSI (FS-DSI), and machine-learning
DSI (ML-DSI) methods, respectively, when 180 proteins
were used to calculate the affinity fingerprint [19]. The
three-dimensional (3D) shape and charge distribution of a
compound govern the protein-compound binding energy.
The DSI, FS-DSI, and ML-DSI methods utilize the 3D
shape and charge distribution of the compound through the
affinity fingerprint. On the other hand, the 2D structure
of the compound does not govern the protein-compound
binding energy. Thus, the current similarity measure was not
better than the previously developed screening methods for
in silico drug screening, when it was used as a single measure
to describe the molecular similarity. However, the MGD
method did have an advantage in terms of its computational
speed. The MGD method can search 10 000 000 compounds
within 1 hour on a Xeon 3 GHz computer, which is 1000
times faster than the MSM-DSI method.

However, the current similarity measure was still effective
for in silico drug screening. Our active compounds were
chosen based on literature. As shown in Figure 4, some
compounds were very similar to each other by human-eye
inspection. The main reason for this similarity was likely
that these compounds were generated from a progenitor
compound by lead optimization. Diphenhydramine, chlor-
pheniramine, homochlorcyclizine, cetirizine, and clemastine
have a diphenyl-like group. In promethazine, olopatadine,
mequitazine, and cyprohrptadine, the conformations of two
phenyl groups are fixed. Most of these antagonists are

structurally similar, which should be the reason why the
current similarity measure was effective for the in silico drug
screening. In other words, this method is not suitable for
scaffold hopping (lead hopping) [30]. For scaffold hopping,
other methods have been developed [30, 31].

If all matrix elements of the off-diagonal part are zero, the
eigenvalues are equal to the values of the diagonal part. The
off-diagonal part shifts the eigenvalues from the values of the
diagonal part. In (1), the bond information close to the ith
atom can give major perturbation on the ith diagonal value
(atomic charge of the ith atom). Thus the matrix E represents
the short-range information of the molecular topology. On
the other hand, in (3), the i- j matrix element of the matrix
D becomes large when the ith atom is far from the jth atom
on the molecular topology. Thus the matrix D can represent
the long-range information of the molecular topology.

The information of the matrix E and that of D are
independent of each other. For each compound in the test
database of 104 compounds, the values of SE and SD in
(6) were calculated. The correlation coefficient of the values
of SE and SD was only 0.08, indicating that there was no
correlation between these values. Thus, the compounds in
the compound library are widely distributed in the (SE,
SD) two-dimensional (2D) space, and the MGD method
selects the compounds around the query compound from the
compound library in the 2D space.

6. Conclusion

We developed a similarity measure for chemical compounds
that is based on the molecular topology, the atomic charge,
and the minimum path length between atoms. The his-
tograms of eigenvalues of these matrices were smoothed
to generate a continuous curve. The difference and overlap
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between these two histograms define the distance between
the two compounds.

This similarity measure was applied to ligand-based
in silico drug screening. In this calculation, compounds
whose molecular topology structures are similar to the given
active compounds were selected by using this similarity
measure. This measure actually worked to find unknown
active compounds from a random compound library.
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