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ABSTRACT: Spectroscopic methods are advantageous for gas
detection with applications ranging from safety to operational
efficiency. Despite the potential of laser-based sensors, real-world
challenges, such as noise, interference and unseen conditions,
hinder the accurate identification of species. The use of
conventional machine learning (ML) models is constrained by
extensive data requirements and their limited adaptability to new
conditions. Although augmentation-based strategies have proven to
improve the robustness of machine learning models, they still do
not offer a complete defense. To address these challenges, this
study focuses on three primary goals: first, to detect pressure-
induced spectral broadening using simple yet effective augmenta-
tions; second, to bypass the need for extensive data sets by
deploying a one-shot learning approach that can identify up to 12 volatile organic compounds (VOCs); and third, to provide a
provable certification for the one-shot learning model predictions via randomized smoothing. To assess the effectiveness of our
proposed augmentations and randomized smoothing, we perform a comparative study with four distinct models: VOC-net, VOC-
lite, VOC-plus, and VOC-certifire. Remarkably, the one-shot learning model proposed herein, VOC-certifire, delivers predictions
that match the baseline model VOC-net. The VOC-certifire predictions not only exhibit robustness and reliability but are also
certified within a predefined 2 norm radius. Such a certification is particularly useful for gas detection, where the robustness,
precision and consistency are key to well-informed decision-making.

■ INTRODUCTION
Gas sensing is crucial in various sectors such as environment,1,2

energy,3,4 and healthcare,5 significantly enhancing safety and
operational efficiency.6 Accurate and selective gas sensors are
vital for the detection of hazardous substances, enabling effective
decision-making and risk management. Researchers have
explored various gas sensing techniques like photoacoustics,7

electro-chemical methods,8 and gas chromatography.9 However,
laser-based spectroscopy stands out because it can identify gases
by their unique spectral ”fingerprints”.10 This method is
nonintrusive, cost-effective, and efficient for measuring the
composition, pressure, velocity, and temperature of gas
mixtures. However, identifying these spectral fingerprints can
be tricky, especially when different gases have overlapping
features in complex mixtures, and this issue gets more
pronounced with the effect of pressure and/or Doppler
broadening in real-world settings.
Recent advancements in gas sensing have incorporated

machine learning (ML) models for both classification and
regression.6,11−20 These models aim to automate spectral
identification by learning unique absorption features that serve
as fingerprints for each molecule. However, existing MLmodels,
typically trained on i.i.d. (independent and identically

distributed) data sets with known conditions, can encounter
substantial accuracy when subjected to small perturbations or
when tested on unseen conditions.21 The limitation of
generalizing to unknown conditions poses a significant
challenge. Data augmentation techniques emerge as compelling
solutions to enhance the robustness of ML models against
potential perturbations.22 Widely employed in image classi-
fication,23 augmentation strategies involve mirroring, flipping,
rotating, and zooming the original images to augment the data
set.23,24

In spectroscopy, augmentations typically involve introduction
of noise16,25−27 and/or baseline shifts28 to the spectra. Other
methods involve the application of extended multiplicative
signal augmentation, addressing physical distortions arising
from scattering and instrumental effects.29 A notable example of
the effectiveness of data augmentation in gas sensing is shown by
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Al Ibrahim et al.30 Their study introduces perturbations to
composite spectra by adding fictitious spectra to the composite
spectra through flipping, dilating, and mirroring the reference
spectra, enhancing the model’s generalization to unknown
interferences. Despite their benefits, these augmentation
techniques still require significant amounts of data to effectively
train the ML models. This reliance on extensive data sets can be
a limiting factor when such resources are not readily available.31

In situations where a substantial amount of data is lacking, few-
shot learning techniques can be employed.
In few-shot learning, the ML model is exposed to and trained

on a limited data set (few examples), with the expectation that it
can accurately predict unseen instances.32 To put it simply, in
the context of gas sensing, this entails training the machine
learning model under a limited set of conditions of pressure and
temperature (P, T), after which it is challenged to predict
outcomes under different conditions (P, T). However, employ-
ing this approach poses challenges and may result in inaccurate
predictions,32,33 primarily due to the substantial variations in
species spectra in response to the varying pressure and
temperature conditions.10,34 Factors such as Doppler-, self-,
and collisional-broadening, along with line mixing, contribute
significantly to these spectral variations.10,34,35 Therefore, an
augmentation technique that addresses these spectral variations

is essential when adopting few-shot learning for precise
predictions.36 Existing spectroscopic augmentation methods
fall short of capturing the dynamic changes in spectra caused by
changes in pressure and temperature. To tackle these challenges,
our study presents a new and straightforward augmentation
method that effectively tackles spectral changes caused by
variations in pressure and temperature.
While augmentations contribute to improving the robustness

of machine learning models, they do not provide complete
defense against unseen perturbations/attacks.37−39 In response
to this limitation, various approaches have been developed to
enhance a model’s ability to defend itself against adversarial
attacks. Many heuristic defenses have been proposed to create
models resistant to adversarial perturbations; however, some of
these defenses have proven vulnerable to more sophisticated
adversaries.37,40 Consequently, researchers have focused on
strengthening empirical defenses41 and developing certified
defenses that offer robustness guarantees. Certified defenses
ensure that classifiers deliver consistent predictions within a
specified neighborhood of their inputs.42−46

In critical domains such as gas sensing, the importance of
model robustness, repeatability, and accuracy cannot be
overstated. Consequently, effective and trustworthy approaches
become crucial for the precise detection of species, particularly

Figure 1. Normalized spectra of twelve VOCs at P = 0.5 Torr and P = 16 Torr.
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toxic ones. Thus employing provably certifiable and robust
classifiers such as those seen in44,46 are necessary. The
certification ensures that ML models can deliver reliable
predictions within a predefined confidence radius, a crucial
aspect in scenarios where precise and confident predictions are
essential for decision-making and risk mitigation.

In this study, we focus on three key aspects: (1) introducing a
novel augmentation technique which utilizes Voigt47 con-
volutions with varying fwhm (full-width at half-maximum) to
capture spectral changes due to pressure and temperature
variations, in addition to noise and baseline shifts; (2) mitigating
the need for extensive data by employing these augmentations to

Figure 2. Effect of augmentations across varied fwhm’s. Common to all figures: (a) illustrates the normalized spectrum at P = 1 Torr, (b) showcases the
augmented spectrum with Voigt convolutions, and (c) presents the same spectrum augmented with Voigt convolutions, noise, and baseline shifts.
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create a one-shot learning model for species classifications; and
(3) providing a provable certification for predictions made by
the newly developed one-shot classification model through
randomized smoothing.44 We conduct a comprehensive
comparison by classifying 12 volatile organic compounds
(VOCs), replicating the VOC-net architecture from Chowd-
hury et al.;20 our model is trained under a single condition and,
through augmentations, demonstrates comparable accuracy. To
further understand the impact of augmentations and random-
ized smoothing, we compare four models: VOC-net, VOC-lite,
VOC-plus, and VOC-certifire. VOC-net, requiring a substantial
amount of high-quality data, is trained with a stratified split
under all pressure conditions, rendering it susceptible to
unknown conditions. In contrast, VOC-lite, which shares the
architecture with VOC-net, is trained solely on one pressure
condition and is thus vulnerable to unknown conditions. VOC-
plus undergoes training under a single pressure condition,
leveraging Voigt augmentations for improved performance.
Subsequently, VOC-certifire employs VOC-plus as its pre-
trained classifier. During the testing phase, randomized
smoothing is implemented. This process entails subjecting
each test spectrum to multiple perturbations through
augmentations. The final prediction for VOC-certifire is
determined by aggregating the majority vote from VOC-plus
predictions applied to the perturbed spectra. A detailed analysis
of the certification process is conducted, exploring how the
relation between radius and certified accuracy varies based on
the number of perturbations, noise level, and confidence level.
VOC-certifire ensures robust and reliable predictions within
predefined confidence bounds, thus providing a useful tool for
decision-making in gas sensing applications.

■ METHODOLOGY
Data Set.

• Simulated data: To benchmark our one-shot learning
models, a fair comparison with existing classification
models is essential. Chowdhury et al.20 introduced VOC-
net, a convolutional neural network (CNN) model
capable of classifying 12 VOCs, and evaluated its
performance on both simulated and experimental data
sets. In alignment with their approach, we chose to utilize
a similar data set to facilitate a meaningful comparison and
used their experimental data set for testing and validation.
A concise overview of the VOC-net data set generation is
provided here, with additional details on the experimental
setup available in.20

The training data for VOC-net was generated using
spectral simulations of twelve VOCs. These simulations
were carried out based on spectroscopic parameters
extracted from the HITRAN48 and JPL49 databases,
utilizing the HAPI tool50 for spectral synthesis. Figure 1
illustrates representative normalized simulated spectra for
each molecule at 0.5 and 16 Torr. The frequency range
considered spans from 220 to 330 GHz (7.33−11 cm−1).
The data set encompasses spectra for the twelve VOC
molecules, spanning a pressure range from 0.1 to 16.5
Torr (13.3−2200 Pa). Each spectrum corresponds to a
single molecule and comprises 229 absorbance values,
with a frequency resolution of 0.016 cm−1.

• Experimental Data: Six VOCs were selected for
experimental demonstration. Their spectra were obtained
using an experimental setup, involving a THz micro-

electronics spectrometer operating in the 220−330 GHz
range with a resolution of 0.5−15 MHz. Measurements
were conducted in a gas cell with a 21.6 cm absorption
path at room temperature. Absorbance was calculated
with incident and transmitted intensities and applying the
Beer−Lambert relation. The resulting experimental data
set comprises 36 observations, with six measurements
conducted for each of the six VOCs. Detailed information
on the experimental setup can be found here.20

• Augmentations: In one-shot learning models, where
training exclusively occurs under a singular pressure
condition, the incorporation of augmentations becomes
paramount. This necessity arises from the intrinsic data
hunger of machine learning models and the need to
address pressure-induced spectral variations, as depicted
in Figure 1. Our augmentations extend beyond addressing
noise and baseline shifts. Notably, they involve the
convolution of Voigt profiles with varying full-width at
half-maximum (fwhm). Voigt profiles, fundamental in
spectroscopic modeling,51 result from the convolution of
Lorentzian and Gaussian profiles. Gaussian width reflects
Doppler broadening due to temperature-induced particle
motion, while Lorentzian width indicates broadening
resulting from collisions or nonthermal effects.34,35,51 The
fwhm values, influenced by both Lorentzian (θ) and
Gaussian (γ) widths, serve as indicators of pressure and
temperature effects. Higher fwhm values signify elevated
pressures and temperatures, leading to increased spectral
line broadening. Conversely, lower values denote tighter
lines, indicative of conditions at lower pressures and
temperatures.34,35 The dynamic interplay of both θ and γ,
spanning from 0.001 to 0.05, facilitates the representation
of spectral variations induced by changes in pressure and
temperature. This comprehensive approach ensures that
the augmentations effectively encapsulate the diverse
spectral variations arising from varying conditions. Figure
2 illustrates augmentations for ethnol spectra at P = 1
Torr, in three cases, where θ and γ are small (0.001),
moderate (0.01) and high (0.05). For higher pressures,
the Voigt augmentation parameters can be adjusted to
account for increased broadening, thereby capturing the
spectral changes induced by elevated pressures, as
detailed in the Supporting Information.

Machine Learning Models. In the upcoming sections, we
will explore eachmodel, offering insights into their architectures,
training methodologies, and test data sets. For enhanced clarity
and convenient reference, unique names have been assigned to
each model. Table 1 succinctly summarizes the developed
models along with their respective characteristics.

VOC-net and VOC-lite. An identical one-dimensional (1-D)
CNN VOC classifier developed in20 was replicated for both
VOC-net and VOC-lite. Only a brief description of the model
architecture is given below. Further details on hyperparameter
tuning and model optimizations can be found here.20 VOC-net

Table 1. VOC Models and Their Characteristics

models training data augmentations certified

VOC-net all pressures no no
VOC-lite one pressure no no
VOC-plus one pressure yes no
VOC-certifire one pressure yes yes
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relies on a 1-D CNN, comprising two convolutional layers, each
with three filters of kernel size three. A subsampling (pooling)
layer is strategically positioned between the convolutional layers.
This is followed by a flattened dense layer, a hidden layer
housing 48 neurons, and an output layer featuring 12 neurons,
each corresponding to a distinct VOC species.
VOC-net serves as the baseline model, and it undergoes

training across all pressure conditions (0.1−16.5 Torr) using a
(70:30) stratified splitting approach to ensure a balanced
distribution between training and test data. The training data set
consists of 1377 simulated spectra of 12 VOCs at different
pressure conditions, while the test data set comprises 591
simulated spectra of the same VOCs across various pressures.
Additionally, 36 experimental spectra of six VOCs are included
in the test data set; details of the experimental setup can be
found in.20 Conversely, VOC-lite shares the same architecture as
VOC-net but is trained under a singular pressure condition,
specifically at P = 1 Torr. Accordingly, the training data for
VOC-lite consists of 12 observations, aiming for one-shot

learning without augmentations. Schematic of the training and
testing procedures for both VOC-net and VOC-lite is shown in
Figure 3. To ensure a fair comparison, the test data are kept
consistent across all models.

VOC-plus and VOC-certifire. The VOC-plus 1-D CNN
architecture shares a similar structure with VOC-net, featuring a
series of convolutional layers with ReLU activation and max-
pooling to extract hierarchical features from one-dimensional
molecular data. VOC-plus and VOC-net differ primarily in their
training data sets. The training data set for VOC-plus comprises
of each VOC at a single pressure, followed by augmentations.
Augmentations involve various transformations on each VOC
spectrum, including convolutions with Voigt profiles featuring
varyingGaussian and Lorentzian widths (ranging from 0.0001 to
0.05), baseline shifts, and different noise levels. Each spectrum is
augmented 1000 times, resulting in a total of 12,000 augmented
components for model training. The test data are the same as
used for VOC-net and VOC-lite. Details of the training costs for
all the VOCmodels are provided in the Supporting Information.

Figure 3. Schematic of VOC-net and VOC-lite training and testing procedures.

Figure 4. Schematics of training and testing procedure of VOC-plus and VOC-certifire.
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As illustrated in Figure 4, VOC-certifire employs the
pretrained VOC-plus model as its base classifier during training
but takes a different path during testing. Notably, VOC-certifire
incorporates randomized smoothing during its testing. This
process involves perturbing each observation in the test data
multiple times using the aforementioned augmentations before
feeding it to the pretrained VOC-plus model. The final
prediction of VOC-certifire is determined by the majority vote
of the pretained classifier predictions for these perturbed
instances. In simpler terms, if 100 perturbations are applied
through augmentations to a test spectrum, and the model
predicts 80 instances as ethanol and 20 instances as another
substance, the majority vote rule designates the underlying test
spectrum to be ethanol.
Randomized Smoothing. Let a classifier ( f) map inputs

from (Rd) to classes in (Y). The randomized smoothing
procedure transforms the base classifier ( f) into a smoothed
classifier (g). Specifically, for a given input (x), (g) identifies the
class most likely to be predicted by ( f) under isotropic Gaussian
noise perturbations of (x). Mathematically, this is expressed as

g x f x c( ) arg max ( ) , where (0, I)
c Y

2= [ + = ]

(1)

Here, the noise/perturbation level σ governs the tradeoff
between robustness and accuracy. An increase in σ enhances the
robustness of the smoothed classifier but reduces its standard
accuracy.
A detailed robustness guarantee for the smoothed classifier g

was initially introduced by.44 They proposed an efficient
algorithm rooted in Monte Carlo sampling to facilitate both
prediction and certification. The robustness guarantee relies on
the Neyman−Pearson lemma.52 The procedure involves
classifying x I( , )2 with the base classifier f, where class cA is
returned with probability p f x c( ( ) )A A= + = , and the
runner-up class cB is returned with probabi l i ty
p f x cmax ( ( ) )c cB A

= + = . The smoothed classifier g is
deemed robust around x within a radius R, defined as

R p p( ( ) ( ))2 1
A

1
B= (2)

where Φ−1 is the inverse of the standard Gaussian cumulative
distribution function. In Figure 5, a binary classifier certification
is depicted. The red/blue half-spaces represent the decision
regions in the smoothed classifier g obtained by majority voting
of the base classifier f. The smoothed classifier g ensures
consistent predictions within an l2 circle with radius R, as
indicated by the black circle, showing the certified robustness

radius R of eq 2, as guaranteed by eq 1. On the right, it illustrates
that for any r > R, there exists a perturbation δwith ∥δ∥2 = r such
that g(x + δ) ≠ g(x). This implies that robustness is only
guaranteed within the circle of radius R.

■ RESULTS AND DISCUSSION
To evaluate the performance of our models, we employed three
key metrics: accuracy, F1-score, and precision. Detailed
equations for these metrics are provided in the Supporting
Information accompanying this paper. A concise overview of our
findings is provided in Table 2 which presents a comparison of
the aforementioned metrics for various models evaluated on
both simulated and experimental data sets.

VOC-net and VOC-lite Results. Figures 6 and 7 showcase
the outcomes of the baseline model, VOC-net, and its
counterpart, VOC-lite.While bothmodels share the architecture
of VOC-net, VOC-lite is trained under a single pressure
condition (P = 1 Torr). The accuracy experiences a significant
drop for both experimental and simulated data for VOC-lite.
This decline highlights the limited ability of the VOC-lite model
to generalize to unseen pressure conditions.
The critical factor contributing to VOC-net’s successful

generalization and high accuracy is its comprehensive training
across all pressure conditions (0−16.5 Torr). In the
experimental data, VOC-net exhibits only three misclassifica-
tions among 36 observations, whereas VOC-lite exhibits 30
misclassifications. This stark contrast emphasizes VOC-lite’s
inability to generalize across different pressure and temperature
conditions, indicating a failure to capture the spectral variations
induced by changes in operating conditions.
VOC-plus and VOC-certifire Results. Figures 8 and 9

depict confusion matrices for VOC-plus and VOC-certifire
models, evaluated on simulated and experimental data. VOC-
plus is trained under a single pressure condition (P = 1 Torr)
with augmentations (Voigt convolutions, noise, and baseline
shifts). Noticeable improvements are observed, with VOC-plus
achieving a significant increase in accuracy compared to VOC-
lite, rising from 47.5 to 81.7% in simulated data. Additionally,
VOC-plus exhibits 18 misclassifications compared to VOC-lite’s
30 in experimental data. This underscores the efficacy of
augmentations. VOC-certifire showcases remarkable accuracy,
surpassing VOC-plus and achieving accuracy level comparable
to the baseline model, VOC-net. In experimental data, VOC-
certifire incurs one misclassification out of 36 observations.
Despite utilizing VOC-plus as its pretrained classifier, VOC-
certifire distinguishes itself by incorporating randomized
smoothing during testing. This involves subjecting each
observation in the test data set to multiple perturbations via
augmentations, including Voigt convolutions, noise, and
baseline shifts. The final prediction for VOC-certifire is
determined by the majority vote of the pretrained classifier
predictions on the perturbed instances. A notable strength of

Figure 5. (a) The red and blue half-spaces represent the decision
regions in the smoothed classifier g. The black circle is the robustness
radius R. (b) For any r > R, there exists a perturbation δ with ∥δ∥2 = r
such that g(x + δ) ≠ g(x).

Table 2. Comparison of Different VOCClassificationModels

accuracy F1-score precision

models
simul
(%)

exp
(%)

simul
(%)

exp
(%)

simul
(%)

exp
(%)

VOC-net 97.4 88.8 96.6 89.2 97.3 91.2
VOC-lite 47.5 50.2 35.6 40.5 31.7 38.8
VOC-plus 81.7 65 83 61 93.7 63
VOC-certifire 99 94 99 96 100 100
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VOC-certifire lies in its certifiability, assuring robustness under
perturbations and ensuring consistent predictions even in the
face of uncertainties.
Model Certification. The smoothed classifier g is

guaranteed to produce consistent predictions within an 2 circle
of radius R, centered at observation (x), as illustrated by eq 2.

We assessed certified accuracy across different 2 radii by varying
parameters (α, σ and N). Figure 10a demonstrates the certified
accuracy achieved through smoothing with varying σ for a fixed
α (99.9%) and fixed N (1000), showcasing how σ plays a role in
a robustness/accuracy tradeoff. Lower perturbation level σ
values enable the certification of small radii with high accuracy,

Figure 6. VOC-net confusion matrix. (a) Simulated data; (b) Experimental data.

Figure 7. VOC-lite confusion matrix. (a) Simulated data; (b) Experimental data.

Figure 8. VOC-plus confusion matrix. (a) Simulated data; (b) Experimental data.
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while larger radii exhibit lower certification accuracy. Con-
versely, higher σ values facilitate the certification of larger radii
but result in reduced accuracy for smaller radii, aligning with the
findings in44 regarding the tradeoff between adversarial attacks

and standard accuracy. Figure 10b provides insights into how
certified accuracy would change with varying randomized
sample sizes N while σ and α are fixed. Higher samples size
results in higher certification radius. Figure 10c illustrates the

Figure 9. VOC-certifire confusion matrix. (a) Simulated data; (b) Experimental data.

Figure 10. Certified accuracy analysis.
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impact of varying the confidence level parameter α on certified
accuracy while the sample sizeN and σ are fixed, highlighting its
relatively low sensitivity to changes in α. Finally, Figure 10d
assesses certified radius across different noise types, showing
that the model, despite being trained only on Gaussian noise,
maintains similar accuracy for unseen noise types.

■ CONCLUSIONS AND KEY HIGHLIGHTS
In this study, we explored VOC classification models, starting
with VOC-net and VOC-lite, highlighting the significance of
comprehensive training data for accurate generalization. To
overcome the challenge of extensive data requirements, we
introduced one-shot learning models coupled with straightfor-
ward yet impactful augmentations. These augmentations were
designed to effectively capture pressure-induced spectral
variations for both low and high pressures, faithfully
representing real-world applications. We introduced VOC-
plus, a one-shot learning model utilizing these augmentations
during training, which yielded a significant improvement in
accuracy compared to VOC-lite. Furthermore, we introduced
VOC-certifire, a certifiable model that leverages VOC-plus as its
base classifier through randomized smoothing. VOC-certifire
demonstrated high accuracy in comparison to the baseline
model, highlighting its robust and certified nature, ensuring
consistent predictions even under unforeseen adversarial
attacks.
The randomized smoothing procedure played a crucial role in

certifying the robustness of VOC-certifire model. We conducted
a thorough evaluation of parameters such as perturbation level σ,
sample size (N), and confidence level (α), offering insights into
the tradeoff between robustness and accuracy. Summarized in
Table 2, our results underscore the significance of augmenta-
tions in enhancing one shot-learning model performance, and
model’s robustness against unforeseen perturbations. This study
not only offers a comparative analysis of VOC classification
models but also provides valuable insights into the balance
between the robustness and accuracy of machine learning
models. These findings contribute to the advancement of
developing trustworthy machine learning models, particularly
crucial in gas sensing applications where reliability and accuracy
are crucial for well informed decision-making and effective risk
mitigation strategies. Future work will involve exploring mixture
classifications using one-shot learning and investigating the
impact of augmentations on handling unknown interference and
pressure-induced spectral changes within mixtures.
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