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Coherently controlled 
quantum features in a coupled 
interferometric scheme
Byoung S. Ham

Over the last several decades, entangled photon pairs generated by spontaneous parametric down 
conversion processes in both second-order and third-order nonlinear optical materials have been 
intensively studied for various quantum features such as Bell inequality violation and anticorrelation. 
In an interferometric scheme, anticorrelation results from photon bunching based on randomness 
when entangled photon pairs coincidently impinge on a beam splitter. Compared with post-
measurement-based probabilistic confirmation, a coherence version has been recently proposed using 
the wave nature of photons. Here, the origin of quantum features in a coupled interferometric scheme 
is investigated using pure coherence optics. In addition, a deterministic method of entangled photon-
pair generation is proposed for on-demand coherence control of quantum processing.

Quantum entanglement1 is the heart of quantum technologies such as quantum computing2, quantum 
communications3–5, and quantum sensing6,7. Although intensive research has been performed in both interfero-
metric and noninterferometric schemes for quantum features such as the Hong–Ou–Mandel (HOM) dip8–10, pho-
tonic de Broglie wavelength (PBW)11–13, Bell inequality violation14–16, and Franson-type nonlocal correlation17–19, 
the fundamental physics of entangled photon-pair generation itself has still been vailed in terms of probabilistic 
measurements via coincidence detection of coupled photon pairs. Thus, nondeterministic measurement-based 
quantum technologies have prevailed, resulting in extreme inefficiency compared with their classical counterparts 
that are deterministic and macroscopic.

Recently, a novel method of deterministic quantum correlation has been proposed and demonstrated to 
unveil secretes of quantum entanglement for both HOM dip and PBW using the wave nature of photons20–23. 
The HOM-type correlation is due to photon bunching on a BS via destructive quantum interference between 
paired entangled photons, while PBW is due to higher order entangled photons such as a N00N state in a 
Mach–Zehnder interferometer. As a result, the fundamental physics of quantum features has been found in the 
phase property of a coupled system, where the coupled system does not have to be confined by the Heisenberg’s 
uncertainty principle. Based on this wave nature of photons, collective control of coherent photons is a great 
benefit for macroscopic quantum technologies compatible with the classical counterparts. Here, the fundamental 
physics of quantum correlation is investigated using the wave nature of photons to identify the origin of quantum 
features demonstrated in an interferometric scheme24. For typical χ(2)-generated entangled photon pairs, some 
misunderstandings regarding quantum correlation are pointed out not to criticize but to support the novelty of 
the wave nature of photons. Without violating quantum mechanics, a proper choice of photon property should 
depend on photon resources according to the wave-particle duality25. Finally, a coherence version of quantum 
feature generation is proposed for potential applications of deterministic and macroscopic quantum informa-
tion processing.

Figure 1 shows a particular scheme of HOM-type quantum correlation in a coupled interferometric scheme, 
where entangled photon pairs are generated from spontaneous parametric down conversion (SPDC) processes in 
a χ(2) nonlinear material24. Due to the spontaneous emission decay process, an initial phase is randomly assigned 
to each photon pair, where each photon pair has also a random frequency detuning from the fixed half-frequency 
of the pump photon used for χ(2) . To satisfy the energy conservation law in the χ(2) process, the random detun-
ing of the photon pairs must be symmetric as shown in Fig. 1a. In related HOM-type experiments, a typical line 
shape observed by coincidence measurements shows a broad dip, whose decay is the inverse of the photon pairs’ 
bandwidth �f  . Unlike the theory in Ref.20 based on the wave nature of photons, however, the λ-dependent g (1) 
correlation has never been observed, where the g (1) correlation is a typical double-slit interference fringe. In the 
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present paper, both reasons for the missing g (1) correlation in a single MZI and the revival of the g (1) correlation 
in a doubly-coupled MZI are investigated to unveil the physical origin of quantum features.

Results
For an analytic discussion as to why there is no g (1) correlation in a HOM dip, a typical SPDC-generated entan-
gled-photon system is used as shown in Fig. 1, where ES and EI represent the SPDC-generated signal and idler 
photon pair, respectively. Assuming there is a specific phase relation between the paired photons, signal (ES) and 
idler (EI )20, the basic equations for coincidence detection measurements can be derived using general matrix 

representat ions of  pure coherence optics  for Fig.   1b,  where 
[

Eα
Eβ

]

= [BS1][ζ]

[

EI
ES

]

 and 
[

EA
EB

]

= [BS2][ϕ][BS1][ζ]

[

EI
ES

]

 , [BS2] = [BS1] = 1√
2

[

1 i
i 1

]

 , [ζ] =
[

eiζ 0

0 1

]

 , and [ϕ] =
[

1 0

0 eiϕ

]

21. Here, intro-

duction of coherence optics is a choice matter without violation of quantum mechanics25. The jth input photon 

pair ESj and EIj can be described with the wave nature property, where ESj = E0e
i
(

kSj r−2π fSj t+θSj

)

 and 

EIj = E0e
i
(

kIj r−2π fIj t+θIj

)

 . The photon pair generation rate and bandwidth in SPDC can be controlled by adjusting 
the pump power and spectral filter. In general, the photon detection rate by a single photon detector module is 
far less than MHz. Considering a detection module speed faster than GHz, consecutive photon pairs are treated 
independently throughout the coincidence measurement process. The coherent property of each generated 
photon pair is determined by Heisenberg’s uncertainty principle in terms of the energy-time relation: �f�t ≥ 1 . 
For a typical THz bandwidth �f  , the coherence time �t is on the order of ps. Compared with the corresponding 
coherence length lC ∼ 100 µm , the original wavelength �0 (∼ 0.5 µm) of the pump is several orders of magnitude 
shorter than lC . In other words, the g (1) correlation is much more sensitive than the g (2) correlation, where g (2) 
stands for a HOM dip.

According to the energy conservation law, the signal and idler photons in each pair are symmetrically detuned 
by ±δfj from the half-frequency 

(

f0/2
)

 of the pump laser as shown in Fig. 1a. Due to spontaneous emission 
processes, however, the frequencies fSj and fIj of the jth photon pair are random within the bandwidth �f  . Simi-
larly, the initial phases θSj and θIj are not determined, either. As analyzed, however, the difference phase δθj 
between  θSj and θIj is fixed at π/220. This fact is also derived differently below in Fig. 1. Figure 1b originates from 
Ref.24 and is used to understand important quantum features. The first (second) MZI in Fig. 1b is controlled by 
�L1(�L2) , where ζj = 2π

�j
�L1 

(

ϕj = 2π
�j
�L2

)

 , and �j is the wavelength of the jth photon. Regardless of nonde-

generacy in χ(2) , all pairs are symmetrically detuned, whose corresponding phase difference is ±δfjτ = ±ζj , 
where τ is the relative delay between paired photons for measurements.

The coincidence measurements between output ports α and β on a beam splitter BS1 are for the second-order 
intensity correlation g (2)(τ) , where the jth output intensities are as follows (see Fig. S1 of the Supplementary 
Information):

(1)I
j
α(r, t) = I0

[

1+ sin
(

ζ′j

)]

,

Figure 1.   Interferometric quantum feature generation. (a) A SPDC-based photon-pair bandwidth. (b) A 
SPDC-based coupled interferometric scheme. BS Beam splitter, D Detector, M Mirror. ζ = 2π

�
�L1 ; ϕ = 2π

�
�L2 ; 

Δf: bandwidth; δfj : random symmetric detuning of the jth entangled photon pair.
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Phase ζ′j is described as:

For all δfj-dependent photon pairs, Iα =
∑

j I
j
α and Iβ =

∑

j I
j
β . Equation (3) represents four different sources 

of the induced phase ζ′j . The first, 
(

k0
2
�L1

)

 , is a center frequency-related fundamental oscillation as a function 
of �L1 : 2�0-dependent fast oscillation. The second, 

(

δkj�L1
)

 , is the detuning-caused slow oscillation, resulting 
in �f −1(τ )-dependent decoherence. The third, 

(

δϕj
)

 , is for a fixed relative phase π/2 between the signal and idler 
photons in each pair. The last, 

(

2δkjrs
)

 , is for �L1-independent frequency beating between the paired photons, 
resulting in a fixed phase. Because of the wide spectrum in Fig. 1a, this beating results in a �f −1(τ )-dependent 
wide envelope. Thus, Eq. (3) becomes a function of �L1 (or τ ) only. However, all δfj-caused phase factors in Eq. (3) 
cancel each other out due to the ±δfj distribution of all photon pairs except for the fixed δϕj at coincidence detec-
tion. Thus, the mean values of the output intensities are uniform, resulting in �Iα� = �I0� = I0 because 
〈

sin
(

ζ′j

)〉

= 0 , where the signal and idler photons are interchangeable. This is the physical origin why there is 
no g (1) correlation in g (2)(τ ) in the first MZI. As analyzed for the second MZI below, this is also the physical 
origin of how g (1) is retrieved in g (2)(τ ) as previously observed24. By the way, in Ref.24, a typical HOM dip without 
g (1) fringe is observed in the first MZI, while the λ-dependent g (2) correlation for PBW has been observed in the 
second MZI. The observed PBWs in the second MZI, however, have been interpreted as the result of the HOM 
dip in the first MZI, which is contradictory to the present analysis.

According to the definition of intensity correlation g (2)αβ (τ ) =  〈Iα Iβ〉〈Iα〉〈Iβ〉 , the following equation results from 
Eqs. (1) and (2):

To satisfy anticorrelation of g (2)αβj

(

τ = 0, δfj
)

= 0 in a SPDC-based HOM dip, δθj = ±π/2 must be satisfied 
for each photon pair20. If τ  = 0 , Eq. (4) gradually decays and shows a typical HOM dip curve as a function of 

(2)I
j
β(r, t) = I0

[

1− sin
(

ζ′j

)]

.

(3)ζ′j(r, t) =
(

k0

2
− δkj

)

�L1 −
(ω0

2
− δωj

)

τ + δϕj − 2
(

δkjrs − δωjts
)

.

(4)g
(2)
αβj

(

τ , δfj
)

= cos2
(

ζ′j

)

.

Figure 2.   Numerical simulations of the intensity correlation in a typical HOM dip with δθj = ±π/2 . (a) 
Photon distribution. (b) τ versus δj . (c) and (d) Sum g (2)(τ ) for all δj for different coverage �f  . Dotted: δθj = 0 . 
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delay time τc
(

= �f −1
)

 , where decay time τc in g (2)(τ )
[

=
∑

j g
(2)
j

(

τ , δj
)

]

 is preset according to the inverse of 
the SPDC-generated photon bandwidth �f  , as shown in Fig. 2.

Figure 2 shows numerical calculations for Eq. (4). Figure 2a shows the Gaussian distribution of SPDC-gen-
erated photon pairs with the bandwidth of �f = 0.5× 109 radians. According to Fig. 1a, the jth photon pair has 
different detuning at δfj , whose corresponding g (2)(τ , δfj ) is shown in Fig. 2b. In Eq. (4), the jth photon pair must 
contribute to different g (2)(τ ) only because of the detuning dependent ζ′j . By definition, g (2)(τ ) is obtained by 
averaging all δfj-dependent coincidence measurements for a fixed τ. As shown in Fig. 2c,d, the maximum g (2)(τ ) 
is bound to g (2)(τ ) = 0.5 , where g (2)(τ ) = 0.5 is a classical lower bound20. This upper limit of g (2)(τ ) = 0.5 
strongly supports the nonclassical phenomenon of entangled photon pairs24. If all of the spectral photon pairs 
are not fully covered for the measurements via spectral filtering, there is a wiggle in g (2)(τ ) as shown in Fig. 2c. 
This wiggle is due to incomplete coherence washout in the summation process24. Disappearance of the g (1) fringe 
in a HOM dip is not due to the measurement process or artifacts, but instead due to the inherent properties of 
the symmetrically detuned photon pairs in SPDC. If there is no relative phase between signal and idler photons 
(

δθj = 0
)

 , then there is no nonclassical feature in g (2)(τ ) as indicated by the dotted curve in Fig. 2d. If the rela-
tive phase δθj is random for all pairs, g (2)(τ ) = 1/2 regardless of τ, representing the property of the individual 
particle ensemble20.

In the second MZI in Fig. 1b, the �L2 effect can be classified for bunched photons only on BS1 if �L1 ∼ 0 . 
According to Eq. (3), all other terms become zero except for δϕj , which is π/2 for all j. The bunched photons in 
each path of the MZI are composed of signal and idler photon pairs, whose detuning is exactly opposite across 
the center frequency f0/2 as sown in Fig. 1a. Thus, whenever a nonzero �L2 occurs, the detuning δfj-caused 
phase terms in Eq. (3) are cancelled automatically due to the +/− relation in δfj . As a result, only the original 
2�0-dependent fast oscillation survives in the output fields. This is the unspoken secretes in the SPDC-based g (1) 
features observed in Ref.24 for g (2) measurements.

In the second MZI of Fig. 1b, the following amplitude relations are obtained for the final outputs EA and EB:

From Eq. (5), the corresponding intensities are as follows (see Fig. S2 of the Supplementary Information):

The anticorrelation condition ζ ′j = ±π/2 in Eq. (3), however, results in independence of ϕj . If ζ ′j = 0 , 

I
j
A = I0

(

1− sin ϕj
)

 and IjB = I0
(

1+ sin ϕj
)

 are obtained. In this case, however, the photon bunching or anticor-
relation in Eqs. (3) and (4) is violated, resulting in the classical feature of g (2)αβj

(

τ , δj
)

= 1 from Eq. (4) (see Fig. S3 
of the Supplementary Information). Although the normalized coincidence detection measurement becomes 
R
j
AB = 1

2

(

1+ cos2ϕj
)

 , g (2)ABj

(

τζ , τϕ , δj
)

= 1 shows a classical feature. The cos2ϕj modulation term in RAB is a typical 
classical feature of the intensity product from a single MZI, satisfying g (2)αβj

(

τ , δj
)

= 0 for photon bunching in a 

HOM dip violates Rj
AB = 1

2

(

1+ cos2ϕj
)

 (see Fig. S3 of the Supplementary Information). Thus, the observations 
of cos2ϕj modulation in Ref.24 are not from simultaneous satisfaction of nonclassical features in both MZIs of 
Fig. 1b. For N ≥ 4 in PBW, an inter-MZI superposition scheme can be a quantum solution as proposed21,22 and 
demonstrated23. Otherwise, an intrinsically multi-photon entangled photon pair must be involved with violation 
of HOM dip in the first MZI.

Figure 3 shows a coherence version of the entangled photon-pair generation comparable with Fig. 1. Because 
MZI works for either a single photon or coherence light equivalently26, there is no difference in the photon char-
acteristics. The photons propagating along different paths of MZI 1 are strongly coupled by the relative phase 
of π/2 created from the first BS, regardless of the input photon’s wavelength27. The matrix representations for 
Fig. 3a are as follows without considering �L1 : Iα = I0

2
(1− cosζ ) , Iβ = I0

2
(1+ cosζ ) , IA = I0

2 [1− sinϕsinζ ] , 
and IB = I0

2 [1+ sinϕsinζ ] (see Fig. S4 of the Supplementary Information). Using an acousto-optic modulator 
(AOM) driven by an RF pulse generator with an RF frequency of frf  , the role of δfj-caused random phases in 
Fig. 1 can be satisfied by a 50% duty cycle of AOM between 0 and frf  , as shown in Fig. 3b. In other words, the 
zeroth (original f0 ) and first-order ( f0 + frf T) diffracted light pulses are combined, where T is the RF pulse 
duration. If 2πfrf T = π , the output direction is reversed. Thus, the average of each output intensity is uniform, 
Iα = Iβ = IA = IB = I0 , satisfying randomness. Including the �L1 effect in ζ , the revised output intensities are 
as follows:

(5)
�

EA
EB

�

j

=
1

2





1− eiϕj ie
iζ

′
j
�

1+ eiϕj
�

i
�

1+ eiϕj
�

−e
iζ

′
j
�

1− eiϕj
�





�

ES
EI

�

j

.

(6)I
j
A = I0

(

1− cosζ ′j sin ϕj
)

,

(7)I
j
B = I0

(

1+ cosζ ′j sin ϕj
)

(8)Iα =
I0

2

(

1− cosζ ′
)

,
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where ζ′ = ζ + k�L1
(

2π frf T
)

.
Figure 3c shows numerical calculations for Eqs. (8)–(11) (see also Figs. S4 and S5 of the Supplemen-

tary Information). For ζ′ = ζ + π/2 , Eqs.  (8)–(11) are rewritten as Iα = I0
2
(1+ sinζ ) , Iβ = I0

2
(1− sinζ ) , 

IA = I0
2
(1+ sinϕcosζ ) , and IB = I0

2
(1− sinϕcosζ ) . The normalized intensity product Rij between Ii and Ij is the 

same as g (2)αβ (ζ ) =
1
2
(1− cos2ζ ) for MZI 1 and g (2)AB (ϕ) =

1
2

(

1− sin2ϕsin2ζ
)

 for MZI 2 due to the randomness 
by AOM. To satisfy the anticorrelation condition for g (2)αβ (ζ ) , ζ = ±π/2 is obtained as shown in the top panels of 
Fig. 3c. For the same conditions of ζ = ±π/2 , however, there is no way to satisfy the quantum feature between 
IA and IB , unless �L1 is changed. For RAB = 0 , ζ = ±nπ must be satisfied as shown in the bottom panels, where 
n = 0,1,2… As analyzed in Fig. 2, this also proves the violation of the quantum feature analysis in Ref.24. In a short 
summary, the correct condition for the quantum feature generation in Fig. 3a for the final outputs is to break 
the anticorrelation condition in ζ . Neither way, the PBW cannot be possible in the directly coupled MZI scheme 
due to this reason, where Fig. 3c is just for the diffraction limit of the Rayleigh criterion in the intensity product: 
RAB = (1+ cos2ϕ)/2 . As presented elsewhere, such PBW can be achieved by CBW via path superposition28. For 
this, an intermediate dummy MZI must be inserted between two MZIs in Fig. 3a.

Conclusion
In conclusion, the quantum features of anticorrelation and PBW were analyzed in a doubly coupled MZI system 
using pure coherence optics, where SPDC-generated symmetrically distributed entangled photon pairs played an 
essential role in both g (1) disappearance in the first MZI and the g (1) retrieval in the second MZI. Based on the 
χ(2)-generated entangled photon-pair distribution, the relative π/2 phase difference between all paired photons 
was derived as an essential condition for anticorrelation, i.e. a HOM dip. Moreover, the anticorrelation condition 
in the first MZI violated quantum feature generation conditions in the second MZI. In other words, satisfying 
the anticorrelation in one MZI resulted in destruction of quantum features in the other MZI. As a result, PBW 
could not be generated from the doubly coupled MZI system if a HOM dip condition is satisfied simultaneously. 
Instead, quantum superposition between MZIs via a dummy MZI can be used to create PBW21–23,28. Otherwise, 
a single MZI is available for PBW only with preset higher-order entangled photon pairs such as a N00N state 
via an action of quantum operators for a consecutive measurement process according to the particle nature of 
quantum mechanics29. Finally, a deterministic coherence version of entangled light pair generation was proposed 

(9)Iβ =
I0

2

(

1+ cosζ ′
)

,

(10)IA =
I0

2

[

1− sinϕsinζ ′
]

,

(11)IB =
I0

2

[

1+ sinϕsinζ ′
]

,

Figure 3.   Schematic of deterministic entangled photon-pair generations. (a) A coupled MZI structure. (b) 
Basis randomness for ζ(0;π) . (c) Numerical calculations for Rij = IiIj ∗ 4 at k�L1 = π

2
 . (Top row) For Iα and Iβ . 

(bottom row) For IA and IB . Ii and Ij are interchangeable on behalf of AOM.
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and analyzed using pure coherence optics applicable to both single photons and coherent light without violation 
of quantum mechanics.

Methods
The numerical calculations in Figs. 2 and 3 were performed by MATLAB using the equations in the text. The 
data that support the findings of this study are available from the corresponding author upon reasonable request.
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