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Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) were first introduced for the treatment of type 2 diabetes 
(T2D) in 2005. Despite the high efficacy and other benefits of GLP-1RAs, their uptake was initially limited by the fact that 
they could only be administered by injection. Semaglutide is a human GLP-1 analog that has been shown to significantly 
improve glycemic control and reduce body weight, in addition to improving cardiovascular outcomes, in patients with 
T2D. First approved as a once-weekly subcutaneous injection, semaglutide was considered an ideal peptide candidate for 
oral delivery with a permeation enhancer on account of its low molecular weight, long half-life, and high potency. An oral 
formulation of semaglutide was therefore developed by co-formulating semaglutide with sodium N-(8-[2-hydroxybenzoyl]
amino)caprylate, a well-characterized transcellular permeation enhancer, to produce the first orally administered GLP-1RA. 
Pharmacokinetic analysis showed that stable steady-state concentrations could be achieved with once-daily dosing owing 
to the long half-life of oral semaglutide. Upper gastrointestinal disease and renal and hepatic impairment did not affect the 
pharmacokinetic profile. In the phase III PIONEER clinical trial program, oral semaglutide was shown to reduce glycated 
hemoglobin and body weight compared with placebo and active comparators in patients with T2D, with no new safety signals 
reported. Cardiovascular efficacy and safety are currently being assessed in a dedicated outcomes trial. The development of 
an oral GLP-1RA represents a significant milestone in the management of T2D, providing an additional efficacious treat-
ment option for patients.

Keywords  Sodium N-(8-[2-hydroxybenzoyl]amino)caprylate · SNAC · Semaglutide · Glucagon-like peptide-1 receptor 
agonists · GLP-1RA · Type 2 diabetes · Oral · Peptides
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s.c.	� subcutaneous
sema	� semaglutide
SGLT2i	� Sodium-glucose co-transporter-2 inhibitor
sita	� sitagliptin
SNAC	� Sodium N-(8-[2-hydroxybenzoyl]amino)

caprylate
SU	� Sulfonylurea
t1/2	� Terminal half-life
T2D	� Type 2 diabetes
Tmax	� Time to maximum concentration

1  Introduction

Peptide and protein therapeutics play an increasingly 
important role in the treatment of numerous diseases, but 
the development of oral peptide therapies remains an ongo-
ing challenge [1–4]. Due to their poor bioavailability when 
administered orally, peptide therapies typically require injec-
tion, which can impact on adherence, particularly in chronic 
diseases where long-term treatment is needed [2, 5–7]. The 
barriers to delivery of peptides via the oral route that can 
limit bioavailability include conditions in the stomach as 
well as low permeability of the gastrointestinal (GI) wall to 
peptides [2, 5]. The previous lack of progress in the devel-
opment of orally administered peptides is evidenced by the 
failure of repeated attempts to develop an oral formulation 
of insulin since its discovery in 1921 [8].

Glucagon-like peptide-1 (GLP-1)  receptor agonists 
(GLP-1RAs) are a highly efficacious class of drugs for the 
treatment of patients with type 2 diabetes (T2D) [9, 10]. 
GLP-1RAs provide effective glucose control while promot-
ing weight loss via effects on appetite and gastric emptying 
[11–14]. Furthermore, selected GLP-1RAs have been shown 
to reduce the risk of cardiovascular (CV) events in individu-
als with established/high risk of CV disease (CVD) [15–17]. 
These benefits are reflected in the clinical guidelines pub-
lished by the American Diabetes Association (ADA) and 
the American Association of Clinical Endocrinologists/
American College of Endocrinology (AACE/ACE), which 
recommend use of a GLP-1RA or a sodium-glucose co-
transporter-2 inhibitor (SGLT2i) with demonstrated CV risk 
reduction in patients with established/high risk of athero-
sclerotic CVD (ASCVD), while considering patient-specific 
factors [15, 17].

A number of GLP-1RAs are available for subcutane-
ous injection which differ in their molecular structure, 
size, half-life, and dosing interval (Fig. 1); these include 
exenatide (short-acting [18] and extended-release [19]), 
liraglutide [20], lixisenatide [21], dulaglutide [22], and 
semaglutide [23] (semaglutide is now also available in an 
oral formulation [24]). The first GLP-1RA to be approved 
was exenatide in 2005 [18]. Exenatide is a synthetic pep-
tide analog of GLP-1 (4,186.6  Da), originally identi-
fied in the lizard Heloderma suspectum [18]. Exenatide 
(short-release) has a mean terminal half-life of 2.4 h and is 

2005 2010 2014 2016 2017 2018
Year of first FDA approval

Exenatide (short-acting)18

• 4,186.6 Da
• 2.4 h half-life
• Synthetic peptide originally identified
 in the lizard Heloderma suspectum
• Administered twice daily

Liraglutide20

• 3,751.2 Da
• 13 h half-life
• Human GLP-1 analog (97% homology)
• Administered once daily

Dulaglutide22

• ~63,000 Da
• ~5-day half-life
• Two modified GLP-1 molecules attached
 to an immunoglobulin (Fc) fragment
• Administered once weekly

Lixisenatide21

• 4,858.5 Da
• ~3 h half-life
• Exenatide plus poly-lysine tail
• Administered once daily

Subcutaneous semaglutide23

• 4,113.6 Da
• ~7-day half-life
• Slightly modified GLP-1 (94% homology)
 with free fatty acid side chain attached 
• Administered once weekly

Exenatide (extended-release)19 
• Developed for once-weekly 
 administration by incorporating
 exenatide into an extended-
 release microsphere formulation 

2019

Oral semaglutide24  

• ~7-day half-life
• Administered once daily 

Fig. 1   Summary of GLP-1RAs approved for the treatment of type 2 diabetes. FDA US Food and Drug Administration, GLP-1 glucagon-like 
peptide-1, GLP-1RA glucagon-like peptide-1 receptor agonist
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administered twice daily [18]. An extended-release formu-
lation of exenatide was subsequently developed for once-
weekly administration by incorporating exenatide into an 
extended-release microsphere formulation [19]. Lixisena-
tide (4,858.5 Da) – an exenatide derivative – has a half-life 
of ~ 3 h and is suitable for once-daily administration [21, 
25]. Liraglutide is a human GLP-1 analog (3,751.2 Da) 
with 97% homology to native GLP-1, designed to bind to 
albumin via a fatty acid and a spacer covalently attached 
to the peptide backbone [20]. Liraglutide has a half-life of 
13 h and is also administered once daily [20].

Dulaglutide and subcutaneous semaglutide are longer-
acting compounds that require once-weekly administra-
tion [22, 23]. Dulaglutide (~ 63,000 Da) is derived from 
two modified GLP-1 molecules attached to an Fc frag-
ment of immunoglobulin G and has a half-life of ~ 5 days 
[22]. Semaglutide (4,113.6 Da) is a human GLP-1 analog, 
similar to liraglutide but engineered to have increased 
albumin affinity and resistance to dipeptidyl peptidase-4 
(DPP-4) inhibitor degradation to permit once-weekly sub-
cutaneous administration [12, 23]. The efficacy of sub-
cutaneous semaglutide was established in the phase III 
SUSTAIN program (SUSTAIN 1–5 and 7), in which sig-
nificant reductions in mean glycated hemoglobin (HbA1c) 
and body weight were demonstrated against placebo 
and a variety of active comparators in multiple patient 
groups with T2D [26–33]. Furthermore, in SUSTAIN 6, 
a dedicated CV outcomes trial  (CVOT), a 26% reduc-
tion in major adverse CV events (MACE) was observed 
with subcutaneous semaglutide compared with placebo 
(p < 0.001 for non-inferiority; p = 0.02 for superiority, 
not prespecified) [30]. This led to the US Food and Drug 
Administration (FDA)-approved indication for subcutane-
ous semaglutide for reducing MACE in patients with T2D 
and CVD [23, 30].

Despite their importance, GLP-1RAs were, until 
recently, only available for subcutaneous administration, 
which may have contributed to lower usage rates versus 
orally available therapies (i.e., SGLT2is and DPP-4 inhibi-
tors) [6, 7, 34–37]. In 2019, an oral formulation of sema-
glutide became the first orally administered GLP-1RA to 
be approved [3, 24]. It was developed by co-formulating 
semaglutide with the permeation enhancer sodium N-(8-[2-
hydroxybenzoyl]amino)caprylate (SNAC) to overcome the 
challenges of oral peptide delivery [24, 38]. The addition 
of oral semaglutide expands the treatment options avail-
able to those with T2D and may encourage increased and 
earlier use of GLP-1RAs, thereby enabling more patients 
to achieve better glycemic control [37–39].

This review will examine the development of oral 
semaglutide, including the challenges that had to be over-
come to produce the first oral peptide for T2D, other tech-
nologies developed to date, and the role of SNAC in the 

development of oral semaglutide. We will also review the 
mechanism by which SNAC enhances absorption of oral 
semaglutide and highlight the key preclinical and clinical 
data that led to approval of the first orally administered 
GLP-1RA for T2D.

2 � Challenges of developing an oral peptide 
therapy

The oral administration of peptides is not a new concept, 
and the challenges faced are best illustrated by considering 
the failure to date to produce a marketable oral formulation 
of insulin since its discovery in 1921 [1, 2, 8, 40]. The first 
attempt to deliver insulin orally was described in 1923 and 
involved the use of dilute alcohol as a solvent [41]; since 
then, there have been multiple other attempts, including 
some using permeation enhancers [6]. Several barriers 
must be overcome when developing orally administered 
peptides with a molecular weight above 1,000 Da, includ-
ing enzymatic degradation in the GI tract, pH-induced 
conformational changes, limited permeability of the intes-
tinal membrane, and variable GI tract absorption rates [2, 
3, 42, 43]. To overcome these barriers, peptides ideally 
need to have a large therapeutic index, some stability in 
the GI tract, a long elimination half-life, and a relatively 
low clearance rate [3, 43].

A number of technologies for the oral delivery of peptides 
– typically insulin – have been described in the literature, 
including nanoparticles, microneedle devices, self-emulsifying 
drug delivery systems, peptide conjugation, and permeation 
enhancers (reviewed in detail by Durán-Lobato et al. [44] and 
Zizzari et al. [45]). Of these, permeation enhancers are the most 
widely tested approach to improve oral absorption of peptides, 
due to the relative ease with which they can be incorporated into 
formulations compared with nanotechnology or device-based 
systems [43, 46].

In recent years, an oral formulation of a long-acting 
basal insulin analog (IO338) with the permeation enhancer 
sodium caprate was shown in a phase II study to have 
comparable efficacy to subcutaneous insulin glargine 
[47]. While this demonstrated the utility of permeation 
enhancers, further development of IO338 was discontin-
ued because the doses required were high and were judged 
not to be commercially viable [47].

3 � A brief history of SNAC

SNAC was developed in the 1990s by Emisphere (US) as 
part of a wider effort to identify carrier-based permea-
tion enhancers that could chaperone candidate peptides 
across the gastric lining [43, 46]. SNAC is a synthetic 
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N-acetylated amino-acid derivative of salicylic acid that 
displays amphiphilicity. It is a transcellular, carrier-based 
permeation enhancer that, unlike others, does not require 
a protective enteric coating [43].

Successful application of SNAC was first demonstrated 
by the approval of an oral formulation of vitamin B12 
(cyanocobalamin/SNAC) in 2014 by the US FDA, albeit 
as a medical food [43, 48, 49]. As part of the approval 
process, SNAC was assigned generally regarded as safe 
(GRAS) status by the US FDA [43, 49].

SNAC has since been extensively tested with a range of 
poorly permeable molecules, with limited success. SNAC 
was first utilized to develop an oral formulation of unfrac-
tionated heparin that historically had required parenteral 
administration [43, 50–53]. In phase I/II studies, oral hepa-
rin/SNAC was shown to have similar activity to subcuta-
neous heparin, but in subsequent phase III trials it did not 
demonstrate superiority to subcutaneous enoxaparin [53, 
54]. Further development of an orally administered heparin/
SNAC soft gelatin capsule was later discontinued, possibly 
due to the introduction of other anti-thrombotics [43, 55].

In 2017, subcutaneous semaglutide was approved for 
once-weekly administration [23], becoming only the second 
approved once-weekly GLP-1RA (after dulaglutide). How-
ever, there remained an unmet need for an oral agent as an 
alternative option to subcutaneously administered GLP-1RAs.  
Semaglutide was an ideal candidate for oral delivery with 
SNAC due to its low molecular weight (4,113.6 Da), long 
half-life (~ 7 days after subcutaneous administration), and 
high potency relative to other peptides [14, 40, 46, 56]. 
SNAC was therefore co-formulated with semaglutide to 
produce the first GLP-1RA suitable for oral administration.

4 � Mode of action of SNAC in oral 
semaglutide: preclinical and early clinical 
studies

The proposed mechanism of action of SNAC when co-
formulated with semaglutide is shown in Fig. 2 [56]. As 
the tablet is eroded, SNAC causes a local increase in pH 
via a buffering action. In vitro evidence suggests that this 
increase in gastric pH may protect semaglutide from enzy-
matic degradation by reducing the conversion of pepsinogen 
to pepsin [56]. In addition, SNAC promotes monomeriza-
tion of semaglutide by changing the polarity of the solu-
tion in which the tablet dissolves, thereby weakening the 
hydrophobic interactions that would otherwise promote 
semaglutide oligomerization [56]. The enhanced absorption 
of semaglutide is thought to be due to the indirect action 
of SNAC, which is incorporated into the lipid membrane 
of local gastric cells and fluidizes the plasma membrane of 
the gastric epithelium (a solid-to-fluid structural transition), 

allowing transcellular passage of semaglutide [3, 56]. 
Mechanistic analyses suggest that this action is transient 
and fully reversible [56].

Findings from basic science and clinical research suggest 
that, in contrast to most oral drugs, semaglutide co-formulated 
with SNAC is absorbed in the stomach [56]. Scintigraphic 
imaging of human volunteers following a single dose of oral 
semaglutide (10 mg with 300 mg SNAC) demonstrated ero-
sion of the tablet and absorption of semaglutide in the stomach 
[56]. In addition, plasma semaglutide levels were similar in 
dogs that had undergone pyloric ligation (to prevent intesti-
nal absorption) compared with non-ligated dogs, and plasma 
concentrations in the splenic vein (draining the gastric cavity) 
were significantly higher than in the portal vein (draining the 
GI tract), further implicating the stomach as the site of absorp-
tion [56].

The absorption-enhancing action of SNAC is thought 
to be highly dependent on the specific agent it is enhanc-
ing, which means that carefully tailored co-formulation is 
required rather than co-administration [56]. The structure of 
liraglutide (a structurally distinct analog of GLP-1RA) was 
found to be unfavorable for co-formulation with SNAC on 
account of its stronger membrane-binding properties, which 
reduced transcellular passage, as well as its greater tendency 
to oligomerize, which countered the monomerizing effects 
of SNAC [56]. In a preclinical study, plasma exposure was 
significantly higher for semaglutide than liraglutide after 
oral dosing with SNAC [56].

5 � Early clinical development (phase I, phase II) 
of oral semaglutide

5.1 � Phase I: pharmacokinetic profile of oral 
semaglutide

5.1.1 � Food and dosing conditions

In phase I studies, food and drink were found to impact 
the absorption of oral semaglutide, with limited or no 
measurable absorption reported in fed participants [57]. 
Oral semaglutide absorption increased with longer post-
dose fasting periods and was comparable when adminis-
tered with either 50 or 120 mL of water [57]. Complete 
tablet erosion was observed regardless of water volume 
but occurred at a slower rate with 50 mL versus 240 mL, 
resulting in higher semaglutide plasma exposure with 
lower water volumes (Fig. 3) [58]. SNAC absorption was 
generally rapid and eliminated with no measurable expo-
sure at ~ 4 to 6 h post-dose, while the terminal half-life of 
semaglutide (t1/2,semaglutide,day 10) was ~ 1 week, showing that, 
unlike initial absorption, the metabolism and elimination 
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of semaglutide are not affected by food ingestion or water 
volume [57]. These findings informed the phase II and III 
study recommendations to administer oral semaglutide in 
the fasting state with up to 120 mL water and wait for 
30 min post-dose before eating or ingesting other oral 
medications [39, 57, 59–62].

5.1.2 � Effects on satiety

In an exploratory, phase I study, oral semaglutide was 
found to reduce hunger, cravings for high-fat foods, and 
calorie consumption in patients with T2D [63], consist-
ent with results from an earlier study of subcutaneous 

Fig. 2   Mechanism of absorption 
and protection of the sema-
glutide molecule [38, 56]. GI 
gastrointestinal, SNAC sodium 
N-(8-[2-hydroxybenzoyl]amino)
caprylate

Complete erosion of 
the oral semaglutide tablet 
takes place in the stomach

The buffering action of 
SNAC raises the local pH 
by neutralizing the acidic pH
of the stomach

The higher local pH helps 
to protect semaglutide from 
enzymatic degradation and 
promotes monomerization

SNAC fluidizes lipid 
membranes to increase
membrane permeability
and allow the passage of 
semaglutide across GI 
epithelia via the 
transcellular route
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semaglutide in patients with obesity [64]. These results 
suggest that semaglutide, like other GLP-1RAs, may con-
tribute to promoting healthy lifestyle changes in addition 
to glycemic control.

5.2 � Phase II: dose selection of semaglutide 
and SNAC

Different combinations of semaglutide and SNAC doses 
were explored in phase I/II studies [59, 65]. In a phase II 
dose-finding study, oral semaglutide doses of 2.5 mg to 
40 mg co-formulated with 300 mg SNAC improved glyce-
mic control, with a dose-dependent mean reduction in HbA1c 
of up to 1.9% versus 0.3% for placebo, from a mean HbA1c 
level of 7.9% (standard deviation: 0.7%) [59]. The safety 
profile of oral semaglutide was consistent with the known 
adverse effects of other GLP-1RAs, and there were no 
unexpected safety findings [59]. The most common adverse 
events reported with oral semaglutide were GI events and 
were mostly mild to moderate in severity [59]. These adverse 
events were most frequent during the dose-escalation period 
and decreased over time with continued semaglutide treat-
ment [59].

In a single-dose trial, semaglutide exposure was high-
est when administered with 300 mg of SNAC, compared 
with 150 mg or 600 mg [65]. In a multiple-dose study of 
semaglutide co-formulated with 300 mg SNAC, semaglu-
tide exposure was two-fold higher with 40 mg versus 20 mg 
oral semaglutide, demonstrating dose proportionality [65]. 
The half-life of oral semaglutide was also ~ 1 week in both 

groups, which was comparable with subcutaneous sema-
glutide and illustrates that the half-life is not determined 
by the mode of administration [65]. No unexpected safety 
signals were observed; oral semaglutide up to 40 mg was 
safe and tolerable with the overall safety profile consistent 
with that of the GLP-1RA class [65]. Based on these results, 
oral semaglutide co-formulated with 300 mg of SNAC was 
selected for further development [65].

5.2.1 � Bioavailability of orally administered semaglutide

Model-based analysis of semaglutide pharmacokinetics 
suggests that once absorbed, semaglutide is distributed, 
metabolized, and eliminated in the same way regardless of 
the administration route (intravenous, subcutaneous, or oral) 
[66]. A population pharmacokinetic model developed using 
data from clinical trials of subcutaneous and intravenous 
semaglutide was modified to include data from six trials of 
oral semaglutide in healthy volunteers or patients with T2D 
and renal or hepatic impairment [66, 67]. The bioavailability 
of semaglutide was 0.8% when using the recommended dos-
ing conditions [66]. Bioavailability increased with a longer 
post-dose fasting time, reaching a plateau of 1.4% at around 
120 min, and decreased with higher water volumes (240 mL) 
[66]. Within-subject variability of bioavailability was esti-
mated to be high at 137%, but this was reduced to 33% in the 
steady state [66]. Bioavailability did not differ significantly 
between healthy participants and those with T2D [66]. Oral 
semaglutide was absorbed significantly faster, and showed 
lower and more variable bioavailability, than subcutaneous 
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Fig. 3   Effect of water volume with dosing on (a) AUC​0–24 h,semaglutide 
and (b) Cmax,semaglutide after a single dose of 10 mg oral semaglutide 
in healthy male subjects [58]. Bars are estimated means and 95% 
CIs. Treatment comparisons show estimated treatment ratios (95% 
CI) and p-value. Endpoints were analyzed on a logarithmic scale but 
are presented on the linear scale. n = 24 (50 mL) or n = 26 (240 mL). 
Conversion factor from molar concentration (nmol/L) to mass con-

centration (ng/mL), 4.11358. Reprinted from: Bækdal et  al. Clin 
Pharmacol Drug Dev. 2021;10(5):453–61. https://​doi.​org/​10.​1002/​
cpdd.​938. ©2021 The Authors. With permission from Wiley Periodi-
cals LLC on behalf of American College of Clinical Pharmacology 
(CC BY-NC-ND 4.0). AUC​ area under the curve, CI confidence inter-
val, Cmax maximum concentration
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semaglutide [66]. However, based on model-derived con-
clusions, once-daily dosing and the long half-life of oral 
semaglutide reduced day-to-day variability, resulting in sta-
ble steady-state concentrations [66]. According to the label, 
steady-state exposure of oral semaglutide is achieved follow-
ing 4–5 weeks’ administration [24].

5.2.2 � Impact of comorbidities commonly seen in patients 
with T2D on oral semaglutide absorption

Upper GI disease and hepatic and renal impairment are com-
mon comorbidities in patients with T2D that may influence 
the pharmacokinetics of antidiabetes drugs [68, 69]. How-
ever, pharmacokinetic studies suggest that these comorbidi-
ties do not affect the pharmacokinetics of oral semaglutide, 
and based on the observed safety profiles, no dose adjust-
ments are recommended [68, 69].

5.2.3 � Interactions with drugs commonly administered 
in patients with T2D

Many individuals with T2D are required to take multiple 
medications [70]. Given the mechanism of action of oral 
semaglutide [56], which includes delayed gastric empty-
ing [24], a number of studies have assessed the impact of 
oral semaglutide/SNAC on exposure to other commonly 
administered oral drugs [71–73]. In a pharmacokinetic 
study, co-administration of oral semaglutide with multiple 
(five) placebo tablets reduced the absorption of semaglutide 
[74]. Hence, clinical dosing guidance states that other oral 
medications should be administered at least 30 min after oral 
semaglutide [24, 74].

Other pharmacokinetic studies have shown no clinically 
relevant interactions – indicating that no dose adjustments 
are required – when oral semaglutide is administered in 
people receiving lisinopril, warfarin, metformin, digoxin, 
furosemide, rosuvastatin, ethinylestradiol/levonorgestrel, 
or omeprazole [24, 71–73]. In a study of healthy subjects, 
concomitant administration of oral semaglutide 2 h after 
intake of omeprazole – which increases gastric pH – led to 
a 14% increase in the area under the curve (AUC)0–24 h,Day10 
of SNAC compared with administration of oral semaglutide 
alone, whereas SNAC maximum concentration and time to 
maximum concentration (tmax) were similar with and with-
out omeprazole. In most patients, plasma concentrations of 
SNAC fell below the lower level of quantification within 
24 h, indicating rapid elimination [71]. Exposure to oral 
semaglutide was also slightly increased when administered 
with omeprazole compared with when administered alone 
(AUC​0–24 h,Day10), but this difference was not statistically 
significant (estimated treatment ratio: 1.13; 90% confidence 

interval: 0.88, 1.45) and the median tmax and t1/2 for oral 
semaglutide were similar with and without omeprazole [71]. 
This slight increase in exposure to semaglutide with ome-
prazole was not considered to be clinically relevant and no 
dose adjustments are recommended [71].

Co-administration of oral semaglutide with 600 μg of levo-
thyroxine – an oral medication with similar dosing require-
ments to semaglutide, namely administration once daily on an 
empty stomach with a full glass of water, 30–60 min before 
breakfast [24, 75] – increased exposure to thyroxine by 33% 
(AUC​0–48 h,T4), supporting the recommendation to avoid co-
administration of oral semaglutide within 30 min of other oral 
medications [24, 74]. No obvious effect on thyroxine expo-
sure was seen with SNAC alone, indicating that the increased 
exposure may be due to the delayed gastric emptying effect of 
semaglutide [74].

In addition to advising patients to wait at least 30 min 
before taking other oral medications after oral semaglutide, 
increased clinical and laboratory monitoring should be con-
sidered when prescribing medications with a narrow thera-
peutic index or those that require clinical monitoring, such 
as levothyroxine [24, 75].

6 � Phase III: efficacy and safety of oral 
semaglutide in T2D

6.1 � Overview of the PIONEER program (PIONEER 1–8)

The efficacy and safety of oral semaglutide have been exten-
sively evaluated across the continuum of T2D in the phase 
III PIONEER clinical trial program [39, 61, 62, 76–82]. 
PIONEER 1–8 enrolled patients with early, established, and 
advanced T2D from a global population. The details of the 
PIONEER program, including study design and results, have 
been published and reviewed extensively, therefore only a 
brief overview is provided here [38, 39, 61, 62, 76–82].

The PIONEER trials were among the first in T2D to utilize 
estimands based on regulatory guidelines during trial plan-
ning, trial conduct, data analysis, and interpretation of results 
[60]. Estimands are defined as targets of estimation based 
on the trial objectives, providing greater transparency of the 
effects reported [60]. The treatment policy estimand evalu-
ated the effect of treatment regardless of treatment discon-
tinuation or initiation of rescue medication [60], comparable 
to an intention-to-treat approach. The trial product estimand 
evaluated the treatment effect while on treatment and without 
the use of rescue medication [60], providing a more direct 
evaluation of medication efficacy. Further detail is provided 
by Aroda et al. [38, 60]. Throughout this review, the treat-
ment policy estimand is reported unless otherwise specified.
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6.2 � Key endpoints in the PIONEER program 
(PIONEER 1–8)

The primary endpoint in PIONEER 1–5 [39, 61, 62, 76, 77] 
and PIONEER 8 [82] was change from baseline in HbA1c, 
while change from baseline in body weight at Week 26 was 
included as a secondary endpoint. PIONEER 7 [81] was a 
flexible-dose study and PIONEER 6 was a CV safety trial 
[79]. Safety endpoints across all PIONEER studies included 
the number of treatment-emergent adverse events, hypoglyce-
mic episodes, laboratory tests, physical examinations, and pre-
defined outcomes of special interest [38, 39, 61, 62, 76–82].

6.3 � Patient population in the PIONEER program 
(PIONEER 1–8)

Across the PIONEER program, the majority of patients 
were adults (≥ 18 years) with a diagnosis of T2D and base-
line HbA1c levels in the range of 7.0–9.5% [38, 39, 61, 62, 
76–82]. In PIONEER 6, patients were aged ≥ 50 years and 
had clinical evidence of CVD or chronic kidney disease, or 
were aged ≥ 60 years with CV risk factors [38, 79]. A total of 
8,842 patients were randomized to receive oral semaglutide 
or comparators during the PIONEER program (1–8) and 
over 80% completed each trial [38, 39, 61, 62, 76–82].

6.4 � Doses and comparators in the global trials 
(PIONEER 1–8)

In the PIONEER studies, oral semaglutide doses of 14 mg, 
7 mg, and in some cases, 3 mg, were tested against either 
placebo or active comparators [38, 39, 61, 62, 76–84]. PIO-
NEER 1 compared oral semaglutide with placebo [76], 
while PIONEER 2–4 compared oral semaglutide with the 
SGLT2i empagliflozin (25 mg once daily), the DPP-4 inhibi-
tor sitagliptin (100 mg once daily), and the subcutaneous 
GLP-1RA liraglutide (1.8 mg once daily) [38, 39, 61, 62].  
In PIONEER 7, flexible dose adjustment of oral semaglu-
tide was compared with sitagliptin (100 mg) [81], while in  
PIONEER 5, 6, and 8, patients received either oral semaglu-
tide or placebo added to background medication [38].

6.5 � Key efficacy outcomes of the global trials 
(PIONEER 1–8)

The key efficacy outcomes of the global PIONEER studies  
(PIONEER 1–5 and PIONEER 7–8) are summarized in Fig. 4 [38].

6.5.1 � Oral semaglutide monotherapy in early T2D (mean 
disease duration: 3.5 years)

In patients with T2D insufficiently controlled by diet and 
exercise alone (PIONEER 1), oral semaglutide significantly 

reduced HbA1c versus placebo by an estimated treatment 
difference (ETD) of –0.6% (3 mg) to –1.1% (14 mg) from 
baseline at Week 26 (p < 0.001) [76]. Oral semaglutide also 
reduced body weight from baseline in a dose-dependent 
manner by an ETD between –0.1 kg (3 mg) and –2.3 kg 
(14 mg, p < 0.001) at Week 26 [76].

6.5.2 � Oral semaglutide in established T2D (mean disease 
duration: 7–9 years)

In patients with T2D uncontrolled on metformin (PIONEER 2),  
oral semaglutide (14 mg) provided significantly greater 
reductions in HbA1c versus empagliflozin (25 mg) at Week 26  
(–1.3% vs –0.9%; ETD: –0.4%; p < 0.0001) [61]. Oral 
semaglutide was not superior to empagliflozin in change 
from baseline in body weight at Week 26 or Week 52 by 
treatment policy estimand but was significantly better at 
Week 52 (–4.7 vs –3.8 kg; p = 0.0114) by the trial prod-
uct estimand [61]. In patients with T2D uncontrolled with 
metformin (with or without sulfonylurea) (PIONEER 3), 
oral semaglutide (7 and 14 mg) significantly reduced HbA1c 
versus sitagliptin 100 mg (ETD: –0.3% and –0.5%, respec-
tively; p < 0.001 for both) by the treatment policy estimand 
[62]. Oral semaglutide (7 and 14 mg) was superior to sit-
agliptin in reducing body weight from baseline at Week 26  
(ETD: –1.6 kg and –2.5 kg, respectively; p < 0.001 for both) 
[62]. In patients with T2D uncontrolled on metformin with 
or without an SGLT2i (PIONEER 4), oral semaglutide 
was non-inferior to subcutaneous liraglutide in decreasing 
HbA1c (ETD: −0.1%; p < 0.0001) and superior to placebo 
(ETD: –1.1%; p < 0.0001) at Week 26 [39]. Oral sema-
glutide also resulted in superior weight loss compared 
with liraglutide (ETD: –1.2 kg; p = 0.0003) and placebo 
(ETD: −3.8 kg; p < 0.0001) at Week 26 [39]. In PIONEER 7,  
flexible dose adjustment of oral semaglutide was more 
effective than sitagliptin 100 mg in reducing HbA1c (ETD: 
–0.5%; p < 0.0001) at Week 52 (at which time 30% of 
patients in the oral semaglutide group were receiving the 
7 mg dose and 59% the 14 mg dose) [81].

6.5.3 � Oral semaglutide in advanced T2D (mean disease 
duration: 14–15 years)

In patients with long-standing T2D and moderate 
renal impairment (estimated glomerular filtration rate 
30–59 mL/min/1.73 m2) (PIONEER 5), oral semaglu-
tide 14 mg was significantly more effective than placebo 
in reducing HbA1c (ETD: –0.8%; p < 0.0001) and body 
weight at Week 26 (ETD: –2.5 kg; p < 0.0001) [77]. In 
patients with T2D at high CV risk in PIONEER 6, oral 
semaglutide reduced HbA1c compared with placebo as 
an add-on to standard of care (mean change of –1.0% 

986 Reviews in Endocrine and Metabolic Disorders (2022) 23:979–994



1 3

vs −0.3%) at the end of the trial (not statistically analyzed; 
event-driven with follow-up continuing until accrual 
of ≥ 122 primary outcome events) [79].

In patients with advanced T2D uncontrolled on insulin 
with or without metformin (PIONEER 8), oral semaglu-
tide significantly reduced HbA1c compared with placebo at 
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Fig. 4   Key efficacy outcomes of the global PIONEER studies (PIO-
NEER 1–5 and PIONEER 7–8). (a) Reduction in HbA1c with oral 
semaglutide and comparators at the primary analysis time point 
(26  weeks except for PIONEER 7). Data are for the treatment pol-
icy estimand (including data from patients who discontinued treat-
ment or required rescue medication). (b) Reduction in body weight 
with oral semaglutide and comparators (26  weeks except for  
PIONEER 7). Data are for the treatment policy estimand (including 
data from patients who discontinued treatment or required rescue 
medication). Reprinted from: Thethi et  al. Diabetes Obes Metab. 

2020;22(8):1263–77. https://​doi.​org/​10.​1111/​dom.​14054. ©2020 The 
Author(s). With permission from John Wiley & Sons Ltd (CC BY-NC 
4.0). aHbA1c reduction was not the primary endpoint in PIONEER 7. 
*p < 0.05 for the estimated treatment difference with oral semaglutide 
versus placebo and/or active comparator. empa empagliflozin, HbA1c 
glycated hemoglobin, imp impairment, lira liraglutide, met met-
formin, OAD oral antidiabetes drug, pbo placebo, sema semaglutide, 
SGLT2i sodium-glucose co-transporter-2 inhibitor, sita sitagliptin, SU 
sulfonylurea, T2D type 2 diabetes
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Week 26 (ETD: −0.5% [3 mg] to −1.2% [14 mg]; p < 0.0001 
for all) [82]. Oral semaglutide was also superior to placebo 
in reducing body weight (ETD: –0.9 kg, p = 0.0392 [3 mg] 
to –3.3 kg, p < 0.0001 [14 mg]) at Week 26 [82].

6.5.3.1  Other outcomes of  the  global phase III trials  A 
greater proportion of patients consistently achieved the 
ADA-recommended glycemic target (HbA1c < 7%) with 

oral semaglutide 7 and 14  mg (42–77%) versus placebo 
(7–31%) and active comparators (25–62%) at the primary 
analysis time point across the global trials (PIONEER 1–5 
and PIONEER 7–8) with no weight gain or severe/blood 
glucose-confirmed hypoglycemia [38, 39, 61, 62, 76, 77, 81, 
82]. Furthermore, a greater proportion of patients achieved 
HbA1c reduction ≥ 1% with body weight loss ≥ 3% at Week 
26 with oral semaglutide 7 and 14 mg than with placebo and 
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active comparators [38, 39, 61, 62, 76, 77, 81, 82]. Quality-
of-life outcomes were similar between oral semaglutide and 
active comparators (including empagliflozin, sitagliptin, 
and subcutaneous liraglutide) across the trials [38, 39, 61, 
62, 76, 77, 81, 82].

Consistent with these data from the pivotal trials, prelimi-
nary evidence from studies of early adoption of oral sema-
glutide in the US also suggests real-world improvements 
in glycemic control, with a mean HbA1c reduction of 0.9% 
observed across patients [85, 86]. The PIONEER REAL 
prospective study is currently enrolling patients as part of 
local clinical practice in Canada, Europe, and Japan [87–93].

6.5.3.2  Safety and  tolerability  Across the PIONEER pro-
gram, the safety and tolerability of oral semaglutide were 
generally consistent with the known profile of GLP-1RAs; 
the most frequent adverse events reported were GI disorders, 
mainly nausea, vomiting, diarrhea, constipation, dyspepsia, 
and upper abdominal pain [38]. In PIONEER 4, the safety 
and tolerability of oral semaglutide were consistent with 
those of subcutaneous semaglutide and with the GLP-1RA 
class in general [39]. Adverse events were slightly more fre-
quent with oral semaglutide than with subcutaneous liraglu-
tide [39]. However, the majority of adverse events in both 

treatment groups were mild-to-moderate GI events, with the 
most common being transient nausea [39].

Propensity-matching analysis using data from the SUSTAIN  
(subcutaneous semaglutide) and PIONEER (oral semaglu-
tide) programs demonstrated that exposure–response rela-
tionships for efficacy and safety were consistent between oral 
and subcutaneous semaglutide (Fig. 5) [94].

6.6 � Cardiovascular outcomes

PIONEER 6 was an event-driven, preapproval CVOT in 
patients with T2D and high CV risk with follow-up until 
accrual of ≥ 122 MACE. The primary outcome – MACE 
– occurred in 3.8% of patients receiving oral semaglutide 
(61/1,591) versus 4.8% receiving placebo (76/1,592), with 
a 21% difference in risk (hazard ratio [HR]: 0.79; p < 0.001 
for non-inferiority) [79]. In SUSTAIN 6 – the preapproval 
CVOT for subcutaneous semaglutide – the rate of CV death, 
nonfatal myocardial infarction, or nonfatal stroke was sig-
nificantly lower among patients receiving semaglutide (6.6% 
[108/1,648]) than among those receiving placebo (8.9% 
[146/1,649]; HR: 0.74; p < 0.001 for non-inferiority; p = 0.02 
for superiority, not prespecified) [30]. The similarity of the 
HRs in PIONEER 6 and SUSTAIN 6 suggests that the CV 
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Fig. 5   Change from baseline in HbA1c in a propensity-score-matched 
population [94]. The plot shows the mean change and 95% CIs in 
HbA1c from baseline to Week 26 for the PIONEER program (includ-
ing PIONEER 1, 2, 3, 5, 8, and 9) and Week 30 for the SUSTAIN 
program (SUSTAIN 1, 2, and 3; SUSTAIN-Japan). Exposure is pre-
sented as quantiles of Cavg for semaglutide and one quantile for pla-
cebo (at Cavg of 0  nmol/L). The fitted solid line represents model-
derived relations for each program. The horizontal lines along the 
x-axes represent medians and 90% exposure ranges; median exposure 

is represented by a diamond. Datasets were propensity-matched due 
to differences in demographics between the PIONEER and SUSTAIN 
programs. Blue represents PIONEER, green represents SUSTAIN. 
Reprinted from: Overgaard et  al. Cell Rep Med. 2021;2(9):100387. 
https://​doi.​org/​10.​1016/j.​xcrm.​2021.​100387. ©2021 The Author(s). 
With permission from Elsevier (CC BY-NC-ND 4.0). Cavg average 
plasma concentration, CI confidence interval, HbA1c glycated hemo-
globin, s.c. subcutaneous

989Reviews in Endocrine and Metabolic Disorders (2022) 23:979–994

https://doi.org/10.1016/j.xcrm.2021.100387


1 3

effect of semaglutide is independent of the administration 
route [30, 79]. Furthermore, post-hoc analyses of SUSTAIN 
6 and PIONEER 6 combined revealed a HR of 0.76 for the 
effect of semaglutide versus placebo on overall MACE, 
driven mainly by the effect on nonfatal stroke [95]. A recent 
meta-analysis has subsequently confirmed a clear class effect 
of GLP-1RAs in reducing MACE in patients with T2D [96].

It is important to note that PIONEER 6 was designed to 
rule out an excess risk of CV events with oral semaglutide 
versus placebo; it therefore enrolled fewer patients and was 
shorter in duration than would be required to show safety in 
a post-approval setting, and was not powered to show supe-
riority [79, 95]. The SOUL study is an ongoing CVOT in 
patients with T2D that will compare the effects of oral sema-
glutide versus placebo on the occurrence of MACE [97].

7 � From trials to translation: oral 
semaglutide in practice

As per the ADA and AACE/ACE guidance, a patient-centered 
approach should be adopted when treating individuals with 
T2D, taking into consideration efficacy in addition to patient-
specific factors and preferences [15, 17]. If treatment intensi-
fication is required to improve glycemic control, oral medi-
cations (e.g., SGLT2is, DPP-4 inhibitors, sulfonylureas, or 
thiazolidinediones) and injectables (GLP-1RAs and insulins) 
can be considered, with many options for combining these 
therapies to step up treatment as needed to improve glycemic 
control [15, 17]. Patient-centered factors include comorbidi-
ties (established ASCVD or indicators of high-risk established 
kidney disease, or heart failure), the presence of a compelling 
need to minimize hypoglycemia, the need to promote weight 
loss or minimize weight gain, and cost [15, 17]. In cases 
where there is a need to minimize hypoglycemia or support 
weight loss, GLP-1RAs may be preferred to insulin [15, 17]. 
In patients with established ASCVD, clinicians should con-
sider using GLP-1RAs or SGLT2is with proven CVD benefit, 
independent of baseline HbA1c, individualized A1C target, 
or metformin use [15, 17]. At present, this recommendation 
includes subcutaneous semaglutide but does not yet include 
oral semaglutide [15, 17].

Oral semaglutide was approved in 2019 as an adjunct to 
diet and exercise to improve glycemic control in adults with 
T2D [24]. As the first orally administered GLP-1RA, oral 
semaglutide broadens the options available to patients and 
healthcare providers who may have expressed reluctance to 
use injectables [3, 37–39].

When using oral semaglutide, it is important to educate 
patients about potential GI symptoms that may occur, includ-
ing nausea, abdominal pain, diarrhea, decreased appetite, 
vomiting, and constipation. These are typically mild to mod-
erate in intensity, most often occur during dose escalation 

[24, 38, 39, 61, 62, 76–82], and most likely reflect the mecha-
nism of action of semaglutide in terms of delaying gastric 
emptying and increasing satiety via a central action [56]. To 
minimize potential GI side effects and support tolerability, 
oral semaglutide should be initiated at 3 mg once daily for 
30 days; the dose is then increased to 7 mg once daily for 
glycemic control [24, 70]. Following at least 30 days of 7 mg 
once daily, the dose may be increased to 14 mg once daily if 
additional glycemic control is required [24].

When prescribing oral semaglutide, patients should be 
advised to swallow the tablets whole with water (120 mL) 
at least 30 min prior to the first ingestion of food, bever-
age, or any other oral medications of the day [24]. Patients 
treated with oral semaglutide (14 mg daily) can be transi-
tioned to subcutaneous semaglutide (0.5 mg once weekly) 
the day after their last dose of oral semaglutide [24]. Patients 
treated with subcutaneous semaglutide (0.5 mg once weekly) 
can be transitioned to oral semaglutide (7 mg or 14 mg once 
daily) [24], and can be initiated up to 7 days after their last 
injection. There is no dose of oral semaglutide equivalent to 
subcutaneous semaglutide 1 mg [24].

8 � Conclusions

Semaglutide is the first GLP-1RA to be approved in an oral 
formulation for the treatment of T2D and illustrates how the 
transcellular carrier-based permeation enhancer SNAC can 
overcome the barriers to oral administration. Unlike other 
permeation enhancers, SNAC does not require a protec-
tive enteric coating and has been extensively tested with 
a range of molecules and assigned GRAS by the US FDA. 
Co-formulation of semaglutide with SNAC enables localized 
absorption of semaglutide in the stomach without affecting 
the absorption of other molecules. Model-based analyses 
suggest that semaglutide has a similar pharmacokinetic pro-
file once absorbed, regardless of whether it is administered 
via the subcutaneous or oral route. Clinical studies have 
shown oral semaglutide to have superior efficacy to placebo 
and to a number of oral and injectable active comparators 
representative of common drug classes (DPP-4 inhibitors, 
other GLP-1RAs, SGLT2is), with a safety and tolerability 
profile consistent with the GLP-1RA class.

The development of an oral semaglutide formulation with a 
similar exposure−response relationship to the well-established 
injectable formulation of semaglutide is a significant milestone 
in the treatment of T2D and in overcoming the barriers to oral 
peptide therapy. The availability of the first oral GLP-1RA not 
only expands the repertoire of highly effective treatments for 
patients with T2D but may also mark the beginning of a new 
era for oral peptides.
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