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OBJECTIVES: Critically ill patients with coronavirus disease 2019 have variable 
mortality. Risk scores could improve care and be used for prognostic enrichment 
in trials. We aimed to compare machine learning algorithms and develop a simple 
tool for predicting 28-day mortality in ICU patients with coronavirus disease 2019.

DESIGN: This was an observational study of adult patients with coronavirus di-
sease 2019. The primary outcome was 28-day inhospital mortality. Machine learn-
ing models and a simple tool were derived using variables from the first 48 hours 
of ICU admission and validated externally in independent sites and temporally 
with more recent admissions. Models were compared with a modified Sequential 
Organ Failure Assessment score, National Early Warning Score, and CURB-65 
using the area under the receiver operating characteristic curve and calibration.

SETTING: Sixty-eight U.S. ICUs.

PATIENTS: Adults with coronavirus disease 2019 admitted to 68 ICUs in the 
United States between March 4, 2020, and June 29, 2020.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: The study included 5,075 patients, 
1,846 (36.4%) of whom died by day 28. eXtreme Gradient Boosting had the 
highest area under the receiver operating characteristic curve in external valida-
tion (0.81) and was well-calibrated, while k-nearest neighbors were the lowest 
performing machine learning algorithm (area under the receiver operating charac-
teristic curve 0.69). Findings were similar with temporal validation. The simple tool, 
which was created using the most important features from the eXtreme Gradient 
Boosting model, had a significantly higher area under the receiver operating char-
acteristic curve in external validation (0.78) than the Sequential Organ Failure 
Assessment score (0.69), National Early Warning Score (0.60), and CURB-65 
(0.65; p < 0.05 for all comparisons). Age, number of ICU beds, creatinine, lactate, 
arterial pH, and Pao2/Fio2 ratio were the most important predictors in the eXtreme 
Gradient Boosting model.

CONCLUSIONS: eXtreme Gradient Boosting had the highest discrimination 
overall, and our simple tool had higher discrimination than a modified Sequential 
Organ Failure Assessment score, National Early Warning Score, and CURB-65 
on external validation. These models could be used to improve triage decisions 
and clinical trial enrichment.

KEY WORDS: artificial intelligence; coronavirus disease 2019; intensive care 
unit; machine learning

Coronavirus disease 2019 (COVID-19) has infected over 30 million 
people and killed more than 500,000 in the United States as of June 
2021 (1). Most deaths have occurred in the approximate 11% of patients 

requiring ICU admission (2). In some locations, the number of critically ill 
patients has exceeded ICU capacity, and frameworks have been proposed that 

Matthew M. Churpek, MD, MPH, 
PhD1

Shruti Gupta, MD, MPH2

Alexandra B. Spicer, MS1

Salim S. Hayek, MD3

Anand Srivastava, MD, MPH4

Lili Chan, MD, MSCR5

Michal L. Melamed, MD, MHS6

Samantha K. Brenner, MD, MPH7,8

Jared Radbel, MD9

Farah Madhani-Lovely, MD10

Pavan K. Bhatraju, MD, MSc11

Anip Bansal, MD12

Adam Green, MD, MBA13

Nitender Goyal, MD14

Shahzad Shaefi, MD, MPH15

Chirag R. Parikh, MD, PhD16

Matthew W. Semler, MD17

David E. Leaf, MD, MMSc2

for the STOP-COVID Investigators

Machine Learning Prediction of Death in 
Critically Ill Patients With Coronavirus  
Disease 2019

ORIGINAL CLINICAL REPORT

LWW

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Churpek et al

2     www.ccejournal.org August 2021 • Volume 3 • Number 8

allocate scarce resources based on maximizing benefit 
(3–5). This includes some states incorporating severity 
of illness scores, such as the Sequential Organ Failure 
Assessment (SOFA) score, into triage criteria for ven-
tilator allocation (6). Resource utilization, ICU triage, 
and goals of care discussions could be facilitated by 
an objective model that accurately predicts mortality. 
Although prior studies have identified risk factors for 
severe disease and a growing number of studies have 
published prognostic models, most have been limited 
by modest sample sizes from single health systems and 
lack of both external and temporal generalizability 
assessment (7–12). As a result, no validated prognostic 
models are in widespread use today.

Prediction models in medicine have historically 
relied on logistic regression (13). However, more flex-
ible machine learning methods have led to the devel-
opment of highly accurate models. For example, recent 
studies have demonstrated that machine learning 
algorithms, such as random forests and deep neural 
networks, can predict acute conditions in hospitalized 
patients more accurately than traditional logistic re-
gression (14, 15). Nevertheless, it is difficult to deter-
mine in advance which method will work best for a 
specific problem (16).

Given the paucity of rigorously validated predic-
tion models for mortality in critically ill patients with 
COVID-19, we aimed to develop and both externally 
and temporally validate a simple tool for predicting 
28-day mortality that could be calculated at the bedside 
using a dataset of patients admitted to the ICU in 68 
hospitals across the United States as part of the Study 
of the Treatment and Outcomes in critically ill Patients 
with COVID-19 (STOP-COVID) (9). We also aimed 
to compare different machine learning approaches for 
predicting 28-day mortality. Finally, we aimed to iden-
tify risk factors for death using interpretable machine 
learning approaches.

MATERIALS AND METHODS

Study Design and Patient Population

STOP-COVID is a multicenter cohort study that 
enrolled consecutive adult ICU patients with COVID-19  
from 68 U.S. hospitals, including a variety of hospital 
sizes and types across a wide geographic range (9). The 
list of participating sites is shown in eTable 1 (http://
links.lww.com/CCX/A759). Adult patients (≥ 18 yr) 

with laboratory-confirmed COVID-19 admitted to an 
ICU at a participating site between March 4, 2020, and 
June 29, 2020, were eligible for inclusion. Patients were 
followed until death, hospital discharge, or at least 28 
days after ICU admission. The Institutional Review 
Boards at Partners Human Research Committee 
(2007P000003) and the University of Wisconsin (2019-
1124) approved the study with waiver of informed 
consent. Additional details are found in the eMethods 
(http://links.lww.com/CCX/A759).

Data Collection

Study personnel at each site performed manual chart 
review using a standardized case report form. These 
data included demographic information, comorbidi-
ties, symptoms, vital signs on ICU admission, longi-
tudinal laboratory values and physiologic parameters, 
and outcomes. Hospital-level data included the number 
of pre-COVID ICU beds. Definitions of key variables 
and outcomes are shown in eTable 2 (http://links.lww.
com/CCX/A759), and the complete list of variables is 
shown in the Case Report Form in the Supplemental 
Material (http://links.lww.com/CCX/A758).

Outcomes

The primary outcome was inhospital death within 28 
days of ICU admission. Patients discharged alive be-
fore day 28 were assumed to be alive at day 28. We con-
firmed the validity of this assumption in a subset of 
patients (eMethods, http://links.lww.com/CCX/A759).

Predictor Variables

Variables from the first 2 days of ICU admission were 
included based on missing data considerations in the 
training data. Because data collection days were based 
on calendar dates, utilizing 2 days of data ensured that 
all patients would have at least 24 hours of data for 
use in the models. Candidate variables excluded from 
consideration due to greater than 50% missing values 
included interleukin-6 and fibrinogen. Variables with 
low frequency categories (< 5% positive) were also 
excluded (e.g., mechanical cardiac support devices). 
The final variable list is shown in eTable 3 (http://
links.lww.com/CCX/A759) and included age, vital 
signs and respiratory support on ICU admission, 
Fio2 among patients requiring invasive mechanical 
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ventilation, laboratory values, and organ support. If 
values were collected on both days 1 and 2, the worst 
value was used. Bagged trees were used for missing 
value imputation for the machine learning models 
using the caret package in R (The R Foundation for 
Statistical Computing, Vienna, Austria), which takes 
into account interactions and nonlinearity automati-
cally (17).

Splitting Into Training and Testing Data

To estimate external generalizability of the models 
(primary analysis), the 68 ICUs were randomly sepa-
rated into two groups, with the models developed 
using training data from admissions during March 
2020 and April 2020 in 75% of the hospitals and tested 
in 25% of the hospitals. A temporal validation was also 
performed as a secondary analysis by validating these 
same trained models in data from all admissions from 
May 2020 to June 2020. Performance metrics were 
based on the out-of-sample test set predictions for 
both the external and temporal validations using the 
same models developed in the March and April train-
ing data.

Machine Learning Methods

Several machine learning algorithms were compared, 
which are described briefly below and in more detail 
in the eMethods (http://links.lww.com/CCX/A759) 
(18). Hyperparameters were selected using 10-fold 
cross-validation in the training data to maximize the 
area under the receiver operating characteristic curve 
(AUC).

Elastic Net Logistic Regression. This approach com-
bines logistic regression with lasso and ridge regres-
sion penalty terms. These penalty terms shrink model 
coefficients to decrease overfitting and improve gen-
eralizability. To account for potential nonlinearity of 
predictor variables, restricted cubic splines were used 
(18). This allows the risk of mortality to vary nonline-
arly across values of a variable.

eXtreme Gradient Boosting. Gradient boosted 
machines (GBMs) are based on decision trees that sep-
arate patients with and without the outcome of interest 
using simple yes-no splits, which can be visualized in 
the form of a tree (18). GBM builds trees sequentially 
such that each tree improves model fit by more highly 
weighting the difficult-to-predict patients. A popular 

implementation of GBM, called eXtreme Gradient 
Boosting (XGBoost), was used in this work.

Random Forests. The random forests algorithm is 
similar to XGBoost in that it builds an ensemble of 
decision trees, but instead of building them sequen-
tially, it builds each tree separately based on a random 
sample of the training data (18). Within each tree, only 
a random number of predictor variables are available 
for each yes-no split, which results in trees that are dif-
ferent from each other.

Neural Networks. Neural networks are flexible, 
nonlinear models that were initially inspired by how 
the brain works (19). These models are composed of a 
combination of individual neuron-like units that take 
the predictor variables as inputs, combine them in hid-
den layers, transform them through activation func-
tions, and then output predictions (18).

Support Vector Machines. Support vector machines 
(SVMs) project the data into multidimensional space 
based on the variable values for each patient and 
then create a boundary that attempts to maximize the 
margin between the patients with and without the out-
come (18).

K-Nearest Neighbors. K-nearest neighbor (KNN) 
also projects the patients into multidimensional space 
based on their variable values, but instead of identify-
ing a separating boundary, KNN assigns the outcome 
of a new patient based on the majority outcome of the 
K closest training patients (18).

Published Scoring Systems

These machine learning models were compared with 
the SOFA score, the National Early Warning Score 
(NEWS), and CURB-65. The SOFA score is commonly 
used for predicting death in critically ill patients (20, 21).  
In this study, the SOFA score was modified due to var-
iable availability (eTable 4, http://links.lww.com/CCX/
A759), which has been used in prior work (22). NEWS 
is a vital sign-based early warning score and was mod-
ified for this study (eTable 5, http://links.lww.com/
CCX/A759) (23). CURB-65 was originally developed 
for patients with pneumonia and incorporates confu-
sion, blood urea nitrogen greater than 19 mg/dL, res-
piratory rate greater than or equal to 30 breaths per 
minute, systolic blood pressure less than 90 mm Hg or 
diastolic blood pressure less than or equal to 60 mm 
Hg, and age greater than 65 years (24). The score was 
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modified due to the absence of blood urea nitrogen in 
the database, a version that has been previously vali-
dated to predict outcomes in patients with commu-
nity-acquired pneumonia (25). For these published 
scores, missing values were assumed to be normal, as 
is typically done when they are calculated clinically.

Development of a Simple Clinical Tool

A simple clinical tool was developed by choosing the 
top 20 variables from the XGBoost model because it 
had the best discrimination and then predefining vari-
able cutpoints a priori based on clinical knowledge and 
prior literature (9). Alanine transaminase was excluded 
due to its high correlation with aspartate transaminase 
(> 0.85). Missing values were imputed using the mode 
of each variable category in the training data to make it 
easier to operationalize at the bedside. Lasso regression 
was then used for variable selection to develop a parsi-
monious model with less than or equal to 10 variables, 
with 10-fold cross-validation in the training data used 
to optimize the lasso penalty. Model performance was 
calculated in the out-of-sample external and temporal 
test data in the same manner as the machine learning 
models. The final model coefficients were multiplied 
by a factor of fifteen and rounded for ease of use.

Statistical Analysis

Patient characteristics were compared between those 
alive versus dead at 28 days using Wilcoxon rank-sum 
and chi-square tests. Model discrimination was calcu-
lated using the AUC and compared using the method 
of DeLong et al (26). Permutation importance was cal-
culated for each model to determine the most impor-
tant variables, with the exception of Elastic Net, which 
used the absolute value of the model coefficients (18). 
Partial dependence plots were used to illustrate the 
relationship between variable values and mortality in 
the model with the highest discrimination (18). Model 
calibration, which compares the true probability of the 
outcome versus a model’s predictions, was compared 
using calibration intercept, slope, and unreliability 
index p value, with p value of less than 0.05 denoting 
poor calibration (27). Model Brier scores were also 
calculated in the test sets, which are defined as the 
mean squared difference between the model predicted 
probabilities and the outcome. Two-sided p values less 
than 0.05 were considered statistically significant. All 

models were developed using the caret package in R 
(The R Foundation for Statistical Computing).

RESULTS

Patient Characteristics and Comparisons

A total of 5,075 patients were included in the study, 
1,846 (36.4%) of whom died by day 28. Baseline char-
acteristics for patients who died versus survived by 
day 28 are shown in eTable 6 (http://links.lww.com/
CCX/A759) and eTable 7 (http://links.lww.com/CCX/
A759). Patients who died were older (median [inter-
quartile range (IQR)] age 67 yr [58–76 yr] vs 59 yr 
[49–68 yr]), more likely to be male (66% vs 61%), had 
a lower Pao2/Fio2 (P/F) ratio on ICU admission (me-
dian [IQR] 106 mm Hg [76–159 mm Hg] vs 122 mm 
Hg [84–178 mm Hg]), were more likely to have chronic 
kidney disease (17% vs 11%), and were more likely to 
be receiving invasive mechanical ventilation within the 
first 2 days of ICU admission (71% vs 53%). The dis-
tribution of the number of patients per site is shown in 
eFigure 1 (http://links.lww.com/CCX/A759).

Machine Learning Model and Published Scoring 
Systems Performance

For the primary external validation analysis, 51 sites 
(n = 3,825 admission) were included as training data 
and 17 sites were included for independent validation 
(n = 810 admissions) using data from March 2020 to 
April 2020. Missing data percentages for the variables 
included in the study are shown in eTable 3 (http://
links.lww.com/CCX/A759). During external valida-
tion, the XGBoost model had the highest AUC (0.81; 
95% CI, 0.78–0.85), followed by random forests (AUC, 
0.80; 95% CI, 0.77–0.84), SVM (AUC, 0.80; 95% CI, 
0.77–0.84), Elastic Net (AUC, 0.79; 95% CI, 0.76–0.83), 
neural network (AUC, 0.78; 95% CI, 0.74–0.82), and 
KNN (AUC, 0.69; 95% CI, 0.65–0.73; Fig. 1). In addi-
tion, the hyperparameter values searched and chosen 
for each model, software packages used, and methods 
to calculate probabilities from the models are shown in 
eTable 8 (http://links.lww.com/CCX/A759). The mod-
ified SOFA score had an AUC of 0.69 (95% CI, 0.65–
0.73), NEWS had an AUC of 0.60 (95% CI, 0.55–0.64), 
and CURB-65 had an AUC of 0.65 (95% CI, 0.61–0.69). 
Pairwise comparisons between XGBoost and the other 
models using the method of DeLong et al (26) dem-
onstrated statistical improvement in discrimination 
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over the neural network and KNN models (p < 0.05 for 
AUC comparisons to XGBoost). Results were similar 
when using inhospital mortality as the model outcome 
(eFig. 2, http://links.lww.com/CCX/A759). XGBoost, 
SVM, and Elastic Net were all well-calibrated (unreli-
ability index p > 0.05), in contrast with all of the other 
models (calibration p < 0.01; eFig. 3, http://links.lww.
com/CCX/A759). XGBoost also had the lowest Brier 

score (0.16; eFig. 3, http://links.lww.com/CCX/A759). 
Risk of 28-day mortality for SOFA score, NEWS, and 
CURB-65 values in the external validation dataset are 
shown in eFigures 4–6 (http://links.lww.com/CCX/
A759).

Results for the secondary temporal validation, which 
used the same models from the training dataset above 
(n = 3,825 admission) and validated the models in 440 

admissions from May 2020 
to June 2020, were similar 
(Fig. 1), with XGBoost hav-
ing the highest discrimina-
tion (AUC 0.82) and KNN 
having the lowest (AUC 
0.69). XGBoost, SVM, and 
Elastic Net were all well-
calibrated and XGBoost 
had the lowest Brier score 
(0.14; eFig. 2, http://links.
lww.com/CCX/A759).

Variable Importance

The most important vari-
ables in the XGBoost 
model were age, number 
of ICU beds, serum cre-
atinine, lactate, arterial 
pH, and P/F ratio (Fig. 2).  
This was similar to the 

Figure 1. Comparison of model discrimination between the different models in both the external and temporal validation cohorts. As 
shown, with point estimates and 95% CIs for the area under the receiver operating characteristic curve (AUC), the eXtreme Gradient 
Boosting (XGBoost) model had the highest discrimination in both validation datasets. KNN = K-nearest neighbors, NEWS = National 
Early Warning Score, SCMI = Study of the Treatment and Outcomes in Critically Ill Patients With Coronavirus Disease 2019 Mortality 
Index, SOFA = Sequential Organ Failure Assessment, SVM = support vector machine.

Figure 2. Variable importance for the eXtreme Gradient Boosting (XGBoost) model. Permutation 
variable importance for the most accurate model (XGBoost) scaled to a maximum of 100, which 
shows that age, number of ICU beds, creatinine, and lactate were the most important variables 
for predicting 28-d mortality when using data from the first 2 d of ICU admission. ALT = alanine 
transaminase, AST = aspartate aminotransferase, BMI = body mass index, CPK = creatine 
phosphokinase, CRP= c-reactive protein, P/F ratio = Pao2/Fio2 ratio.
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other models, with the exception of Elastic Net (eFig. 7,  
http://links.lww.com/CCX/A759). Partial depend-
ence plots for the most important continuous variables 
in the XGBoost model are shown in Figure 3. Age 
showed a relatively flat risk profile up to age 40 after 
which risk of death increased linearly with increasing 
age. Risk of death also increased with smaller ICU size, 
with a rapid increase in risk for hospitals with less than 
100 ICU beds.

Simple Tool

The developed simple tool, hereafter referred to as the 
STOP-COVID Mortality Index (SCMI), was created 
using the most important variables from the XGBoost 
model and is shown in Table 1. The SCMI includes 10 

variables, with risk denoted using a point system, and 
the final score can be calculated as the sum of the in-
dividual values for each variable. Figure 4 shows the 
risk of 28-day mortality across different values of the 
total sum score, and Table 2 shows accuracy at differ-
ent score threshold cutoffs. During external validation, 
the tool had an AUC of 0.78, which was significantly 
higher than the modified SOFA score (AUC 0.69), 
NEWS (AUC 0.60), and CRB-65 (AUC 0.65; p < 0.05 
for all comparisons). For the secondary temporal val-
idation, the discrimination of SCMI was lower (AUC 
0.74) and similar to the SOFA score (AUC 0.73;  
p = 0.78) but significantly higher than NEWS (AUC 
0.65; p < 0.01) and CURB-65 (AUC 0.68; p = 0.04). 
In both validations, scores between 0 and 2 had a risk 

Figure 3. Partial dependence plots for eXtreme Gradient Boosting (XGBoost) illustrating the relationship between 28-d mortality and 
values of the six most important predictor variables. As shown, the risk of mortality increases with age greater than 40 yr, fewer than 
100 (and especially < 50) ICU beds, serum creatinine greater than 1 mg/dL, arterial pH less than 7.30, lactate greater than or equal to 2 
mmol/L, and Pao2/Fio2 ratio (P/F ratio) less than 150 mm Hg.
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of mortality of 9–10%, whereas scores greater than or 
equal to 14 had very high mortality rates at 28 days (> 
70%; Fig. 4). The positive predictive value (PPV) and 
specificity of a score greater than 10 was 70% and 90%, 
which increased to 77% and 96% for scores greater 
than 13 (Table 2).

DISCUSSION

In this multicenter study of 5,075 critically ill patients 
with COVID-19 admitted to ICUs at 68 geographically 
diverse hospitals across the United States, we developed 
and validated a simple tool (SCMI), which could be cal-
culated at the bedside using data from the first 2 days of 
ICU admission to estimate a patient’s risk of mortality. We 
also found that XGBoost had the highest discrimination 
and best calibration of all the machine learning models 
we tested. The machine learning models, except for KNN, 
had higher discrimination than a modified SOFA score, 
NEWS, and CURB-65. Our results provide a simple bed-
side tool and highlight risk factors that can provide im-
portant information for goals of care discussions, triage 
decisions, and prognostic enrichment in clinical trials.

Our developed tool, the SCMI, includes 10 commonly 
collected variables found to be important in the XGBoost 
model and had higher discrimination than a modified 
SOFA score, NEWS, and CURB-65 on external valida-
tion and similar discrimination to some of the machine 
learning methods that would be more difficult to deploy. 
Its AUC was higher than the SOFA score on temporal 
validation, but this difference was not statistically signif-
icant. This tool could be used for prognostication to help 
clinicians better prepare for the likely future trajectory of 
their patients. It could also be used to help triage patients 
in times of limited resources, as it could identify patients 
at very high and very low risk of mortality (4, 5). For ex-
ample, scores greater than 13 had a PPV of 77% and a 
specificity of 96% for 28-day mortality. However, further 
validation in patients outside the ICU is needed to deter-
mine if it can predict risk of mortality in patients prior 
to their transfer to the ICU. Similar severity of illness 
scores, such as the SOFA score, are included in the triage 
guidelines in some states (6). Furthermore, this tool could 
identify high-risk patients for clinical trials for prognostic 
enrichment. Although the SCMI tool is simpler to calcu-
late, this does come at the cost of decreased performance 
compared with the more complex machine learning algo-
rithms. As with any tool designed to predict the complex 
outcome of mortality in critically ill patients, choosing an 
optimal threshold for use involves a trade-off between 
PPV and sensitivity. Thus, the choice of threshold should 
be individualized to the planned use, with the under-
standing that these scores can identify patients at high 
(or low) risk of mortality, which could allow for more 
personalized prognosis and treatment than without the 
score, but these predictions are imperfect. Importantly, 

TABLE 1. 
Study of the Treatment and Outcomes 
in Critically Ill Patients With Coronavirus 
Disease 2019 Mortality Index—A Simple 
Scoring System for Predicting 28-Day  
Mortality

Risk Factor Points

Age (yr)  

 18–69 0

 70–79 2

 ≥ 80 5

Altered mental status  

 Yes 5

 No 0

Number of ICU beds  

 ≤ 50 6

 > 50 0

Arterial pH  

 ≤ 7.2 6

 > 7.2 0

Creatinine (mg/dL)  

 < 2 0

 ≥ 2 or renal replacement therapy 2

Lactate (mmol/L)  

 ≤ 2.0 0

 > 2.0 2

Pao2/Fio2 ratio (mm Hg)  

 ≤ 100 1

 > 100 0

Sodium (mEq/L)  

 ≤ 145 0

 > 145 1

Urine output (mL)  

 ≤ 200 1

 > 200 0

Cardiovascular comorbidity  

 None 0

 Any 2
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using the tool outside of data collection processes similar 
to the STOP-COVID cohort requires validation to ensure 
that the tool retains similar accuracy before use.

Our finding that XGBoost was the most accurate al-
gorithm is consistent with prior studies. For example, 
we previously found that random forests and GBM 
had the highest discrimination for predicting clinical 
deterioration (14). Our group and others have used 
these algorithms to develop models for predicting 
acute kidney injury, respiratory failure, ICU readmis-
sion, and mortality (28–31). However, it is important 
to note that more advanced algorithms will not always 
outperform logistic regression (16). Furthermore, deep 
neural networks are even more flexible, and it is pos-
sible that with a larger sample size the neural network 
model could have outperformed other algorithms, as 
it has in other studies (15, 32). Importantly, the de-
veloped models performed similarly in the external 
and temporal validations. This included similar model 
discrimination as well as calibration (i.e., agreement 
between predicted and actual mortality). Although 
reports of improving outcomes of COVID-19 patients 
over time have suggested that this might be due to 
improvements in the quality of care, our findings sug-
gest that at least in patients admitted to the ICU that 
models developed using acute physiologic and demo-
graphic variables are robust to these time trends early 
in the pandemic.

Flexible machine learning models are more difficult 
to interpret. However, interpretable machine learning 
approaches have been developed to better understand 
these models (33, 34). In this work, we investigated the 

most important variables in the XGBoost model and 
found that older age, higher serum creatinine, and ad-
mission to a hospital with fewer ICU beds were most 
important. Risk factors for severe disease in patients 
with COVID-19 have been also described by others. 
For example, Wang et al (11) investigated risk factors 
for death in 296 hospitalized patients and found that 
older age and impaired kidney function were among 
the most important risk factors. Others have identified 
risk factors for mortality, such as comorbidities, liver 
function test abnormalities, platelet count, ferritin, and 
other inflammatory markers (7, 10, 12, 35, 36). Our 
work highlights the fact that, even in a granular dataset 
with many variables, age remains one of the strongest 
predictors of death. Mortality also increases sharply 
with worsening renal function. Finally, we discovered 
an increase in mortality in hospitals with fewer than 
100 ICU beds. This could relate to lack of capacity and 
hospital strain or to more favorable outcomes of crit-
ically ill patients admitted to larger volume hospitals 
(37–39). However, this finding should be interpreted 
with caution because resource availability and other 
hospital-level variables were not collected.

This study has several strengths, including its large 
sample size and the fact that we presented both ex-
ternal and temporal validation results across patients 
admitted to 68 ICUs at geographically diverse hospitals. 
Although performance often degrades with external 
and temporal validation as opposed to internal valida-
tion, we used this approach to estimate the expected 
model performance when used on new patients from 
other centers or future patients from the same centers.

Figure 4. Calibration results for Study of the Treatment and Outcomes in Critically Ill Patients With Coronavirus Disease 2019 Mortality 
Index (SCMI) in the external and temporal validation cohorts. Bar chart showing the percentage of patients who died across values of 
the SCMI scoring system in both the external (A) and temporal (B) validation cohorts.
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There are also several limitations to this work. First, 
the data used for model development were collected 
using manual chart review. This may result in data entry 
errors, although we performed data quality checks to 
ensure accuracy. In addition, we assumed that patients 
discharged alive from the hospital before 28 days were 
still alive at 28 days, which may not be true. However, 
we did validate this at six participating hospitals, and 
results were similar when using inhospital mortality 

as the outcome. Furthermore, the scope of variables is 
limited compared with electronic health records, and 
we were unable to investigate the predictive value of 
some variables due to high rates of missingness. This 
also required us to modify previously published tools, 
which may have decreased their performance. Finally, 
we were unable to account for ICU structural variables, 
such as the presence of an intensivist and nurse staffing 
ratios, which may influence patient outcomes.

TABLE 2. 
Accuracy of Score Cutoffs for Detecting 28-Day Mortality Using the Study of the Treatment 
and Outcomes in Critically Ill Patients With Coronavirus Disease 2019 Mortality Index in 
the External Site Validation

Score Cutoff Sensitivity (%) Specificity (%) Positive Predictive Value Negative Predictive Value

> 0 99 11 36 93

> 1 98 13 37 93

> 2 92 40 44 90

> 3 87 49 47 88

> 4 80 62 52 86

> 5 75 67 55 84

> 6 68 72 56 81

> 7 61 78 60 79

> 8 58 82 62 79

> 9 47 88 68 76

> 10 42 90 70 75

> 11 38 93 74 74

> 12 32 95 76 73

> 13 26 96 77 71

> 14 21 97 78 70

> 15 18 98 80 70

> 16 17 98 85 69

> 17 13 99 85 69

> 18 10 99 90 68

> 19 8 100 92 68

> 20 6 100 94 67

> 21 4 100 100 67

> 22 3 100 100 66

> 23 2 100 100 66

> 24 2 100 100 66

> 25 1 100 100 66

> 26 1 100 100 66

> 27 1 100 100 66

> 28 0 100 100 66
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CONCLUSIONS

In conclusion, we found that age, serum creatinine, 
lactate, and number of ICU beds were the most im-
portant predictors of 28-day mortality in ICU patients 
with COVID-19, and XGBoost was the most accu-
rate machine learning model for predicting this out-
come. A simple tool we developed, the SCMI, could 
be calculated at the bedside of critically ill COVID-19 
patients to provide prognostic information for patients 
and providers, resource utilization, and clinical trial 
enrichment.
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