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Brown spider (genus Loxosceles) venoms are mainly composed of protein toxins used for
predation and defense. Bites of these spiders most commonly produce a local
dermonecrotic lesion with gravitational spread, edema and hemorrhage, which
together are defined as cutaneous loxoscelism. Systemic loxoscelism, such as
hematological abnormalities and renal injury, are less frequent but more lethal. Some
Loxosceles venom toxins have already been isolated and extensively studied, such as
phospholipases D (PLDs), which have been recombinantly expressed and were proven to
reproduce toxic activities associated to the whole venom. PLDs have a notable potential to
be engineered and converted in non-toxic antigens to produce a new generation of
antivenoms or vaccines. PLDs also can serve as tools to discover inhibitors to be used as
therapeutic agents. Other Loxosceles toxins have been identified and functionally
characterized, such as hyaluronidases, allergen factor, serpin, TCTP and knottins (ICK
peptides). All these toxins were produced as recombinant molecules and are biologically
active molecules that can be used as tools for the potential development of chemical
candidates to tackle many medical and biological threats, acting, for instance, as
antitumoral, insecticides, analgesic, antigens for allergy tests and biochemical reagents
for cell studies. In addition, these recombinant toxins may be useful to develop a rational
therapy for loxoscelism. This review summarizes the main candidates for the development
of drugs and biotechnological inputs that have been described in Brown spider venoms.
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INTRODUCTION

Brown spiders are well-adapted arthropods with more than 150 species distributed in all continents
(World Spider Catalog. Version 22.0, 2021). In many places, the accidents with these venomous
spiders are considered a public health issue, such as in some regions of South America (Da Silva et al.,
2004). Few countries have a compulsory notification system that collect the number of cases of
loxoscelism, which is why the number of cases around the world is probably underestimated (Lopes
et al., 2020). Even in Brazil, which has a suitable notification system, this amount is possibly
underrated mainly because the causative specimen is usually not identified. Nevertheless, almost
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8,800 accidents with Brown spiders were reported in Brazil in
2019 and more than 80% of these cases occurred in the Southern
region of Brazil. Between 2010 and 2019, almost 80,000 accidents
were reported in Brazil (Ministério da Saúde, 2020). In Mexico,
envenomation caused by Loxosceles spider bites is considered a
public health problem as about 3,000 accidents with these spiders
are annually reported (Sanchez-Olivas et al., 2011). These spiders
are not aggressive and their bites usually occur when these
animals feel threatened after being compressed against the
skin (Futrell, 1992). Loxosceles spiders are small animals that
produce minute amounts of venom. They use their venom
primarily to kill or paralyze their prey—usually insects—and
to deter possible predators, such as human beings (De Castro
et al., 2004; Hogan et al., 2004; Chaim et al., 2011). The toxins that
comprise this potent venom are highly active against mammalian
tissues and trigger local and systemic signs that can vary widely.
Victims usually develop a cutaneous lesion near the bite site with
initial edema, erythema and itching followed by dermonecrosis
with a gravitational spread, which is the hallmark of loxoscelism.
The emergence of a systemic commitment is less frequent but is
the main cause of deaths. Acute renal failure and hematological
disturbances, such as intravascular hemolysis, figure as the major
systemic complications of loxoscelism (Da Silva et al., 2004).

Loxoscelism is related to the biological activity of a range of
toxins present in the brown spider venoms. Most of these toxins
are peptides and proteins mostly exhibiting molecular masses
between 5–40 kDa (Veiga et al., 2000; Gremski et al., 2010). One
family of enzymes, the phospholipases D, is responsible for most
local and systemic effects seen after envenoming. They cleave
various types of phospholipids and generate biologically active
lipids, which, after all, cause an exacerbated inflammatory
response and tissue damage (Gremski et al., 2020). Astacin-
like metalloproteases and hyaluronidases are also present.
They target extracellular matrix (ECM) components such as
fibronectin, entactin, proteoglycans and hyaluronan.
Hyaluronidases are involved in the noxious activity of Brown
spider venoms by acting as spreading factors of other toxins,
enhancing, for example, the gravitational spread of
dermonecrotic lesion (Ferrer et al., 2013). A Translationally
Controlled Tumor Protein (TCTP) is also part of the venom,
and acts as a histamine-releasing factor. Together with an allergen
from the cysteine-rich secretory protein (CRISP) family, TCTP
contributes to the allergic and inflammatory response of
cutaneous loxoscelism (Sade et al., 2012; Boia-ferreira et al.,
2019; Justa et al., 2020). A serine protease inhibitor from the
Serpin superfamily was also described in a Loxosceles venom and,
although its role as a toxin remains to be elucidated, the biological
activities of this inhibitor indicate a great potential for drug
development (Graeff et al., 2019). A great amount of knottins
is also reported and, although their role in loxoscelism remains
unknown, their insecticidal activity was already proved, which
makes these molecules promising candidates as agents for the
control of insect pests (Matsubara et al., 2017).

General data acquired from venom gland transcriptomes and
venom proteomes elucidated the toxins’ expression profile of
many Loxosceles species (Machado et al., 2005; Fernandes-
Pedrosa et al., 2008; Dos Santos et al., 2009; Gremski et al.,

2010; Trevisan-Silva et al., 2017; Calabria et al., 2019). In addition,
these screening efforts allowed the description of coding
sequences of less expressed toxins, which enabled the
production of these molecules as recombinant proteins (Sade
et al., 2012; Ferrer et al., 2013; Graeff et al., 2019; Justa et al., 2020;
De-Bona et al., 2021). In fact, some toxins, such as wild-type and
mutated/inactive phospholipases D and astacin-like
metalloproteases were recombinantly expressed before the first
screening reports (Fernandes Pedrosa et al., 2002; Kalapothakis
et al., 2002; Chaim et al., 2006; Da Silveira et al., 2007; Kusma
et al., 2008). However, the production of other recombinant
proteins, i.e., hyaluronidases, TCTP, ICK peptides, allergen
and serpin, was only possible after the initial descriptions of
their coding sequences (Sade et al., 2012; Ferrer et al., 2013;
Matsubara et al., 2017; Graeff et al., 2019; Justa et al., 2020).
Recombinant chimeric proteins consisting of Loxosceles toxins’
epitopes were also produced (Mendes et al., 2013; Lima et al.,
2018; Souza et al., 2018; Calabria et al., 2019). The expression
model differs for each recombinant Loxosceles toxin since some of
them are produced as soluble and active proteins by prokaryotic
expression systems, while others require a more complex model
to achieve the desired production protocol (Boia-ferreira et al.,
2019; Graeff et al., 2019; Gremski et al., 2020; Justa et al., 2020;
De-Bona et al., 2021). As the purification of toxins from Brown
spider venoms usually yields tiny amounts of proteins, the
production of recombinant toxins allowed their further
characterization. Due to this massive characterization of
Loxosceles venom components and to the possibility of
producing them as recombinant proteins, these molecules have
proven to be valuable tools for their application as antigens to
produce improved antivenoms and a vaccine, and as useful
scaffolds for the development of specific inhibitors, drugs and
biological agents.

A RATIONAL THERAPY FOR
LOXOSCELISM BASED ON VENOM
PROTEINS
Although accidents with Brown spiders are frequent and
occasionally severe, a definitive treatment for loxoscelism is
not well established. As depicted in Table 1, a few therapies
are available to manage patients with loxoscelism. As shown,
Loxosceles antivenom is the only specific treatment against
loxoscelism and its use is the standard recommendation in
several countries (Lévano and Fernández, 2004; Ministerio de
Salud, 2012; Bermúdez-Méndez et al., 2018; Ministério da Saúde,
2020). However, experimental studies with commercial products
are limited to animals, and demonstrate that antivenom reduces
cutaneous lesions in rabbits and protects mice of lethality induced
by venom (Gomez et al., 1999; Pauli et al., 2009; Fingermann
et al., 2020). Currently, clinical studies with available antivenoms
are scarce (Fingermann et al., 2020) and some difficulties to
produce them are reported. Spider capture and venom extraction,
for instance, are laborious and expensive procedures that restrict
the antivenom production. In addition, animal suffering is a
common inconvenience in the immunization process.
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Considering this, the search for novel therapies and new methods
of antivenom production are required and, fortunately,
technological innovation is a reality that will certainly
contribute to this improvement.

Antivenom and Monoclonal Antibodies for
the Treatment of Loxoscelism
The use of serum therapy to manage patients bitten by venomous
animals dates from the last decades of the 19th century (Calmette,
1986; Hawgood, 1992; Pucca et al., 2019). Despite the
advancements, current Loxosceles antivenoms are still based on
plasma-derived fragments of immunoglobulins from animals
hyper-immunized with venom. Since the purification of large
amounts of venom is one of the major hitches in this process, the
first efforts to use recombinant toxins as immunogens were made.
As phospholipases D (PLDs) can trigger most of the toxic effects
caused by crude venom, the first studies focused on these toxins to
replace the venom in the antivenom production (Chaim et al.,
2006; Kusma et al., 2008; Chaves-Moreira et al., 2009, 2011;
Gremski et al., 2014, 2020; da Silva et al., 2021).

The PLD/smase I from L. laetawas the first recombinant toxin
used as an antigen in an immunization protocol using rabbits.
The antiserum raised against this toxin blocked the development
of dermonecrosis induced by L. laeta venom in rabbits
(Fernandes Pedrosa et al., 2002). In addition, a mixture of
recombinant PLDs of two North American species L. reclusa
(Lr1N), and L. boneti (Lb1C), and one South American species L.

laeta (L11N; L12C) was later tested (Olvera et al., 2006).
Comparative analyses between the commercial Peruvian
antivenom, produced by hyperimmunization of horses with L.
laeta (Peru) venom, and a serum produced by
hyperimmunization of horses with a PLD of L. intermedia
(Brazil) (rLiD1) demonstrated a limited protection when only
the recombinant toxin was used as antigen. The anti-venom
performed 100% of protection against the lethality in mice
induced by L. laeta and L. intermedia venoms. Nevertheless,
while anti-PLD serum fully protected the animals from L.
intermedia venom, a partial protection (75%) was observed
against L. laeta venom (Duarte et al., 2015). Both sera
completely neutralized the dermonecrotic and hemorrhagic
activities, but partially inhibited the edematogenic activity of L.
laeta venom in rabbits (Duarte et al., 2015).

In 2008, the production and purification of a polyvalent serum
produced in horses with PLDs from L. intermedia (rP1 and rP2)
and from L. laeta (smase I) were patented (patent 0404765-6
INPI) (De Almeida et al., 2008). The efficacy of this serum in
reducing dermonecrotic lesions was compared to the commercial
anti-arachnid serum (produced in horses with a mixture of
venoms from Loxosceles gaucho, Phoneutria nigriventer and
Tityus serrulatus). The anti-PLD serum showed to be more
active than anti-arachnidic serum against dermonecrosis and
hemolysis caused by L. intermedia and L. laeta venoms and
had the same protection against the venom of L. gaucho (De
Almeida et al., 2008). A recombinant PLD of L. gaucho (LgRec1)
also demonstrated to be highly immunogenic, and the previous

TABLE 1 | Available therapies used to treat loxoscelism—summarization of their features and basic references on the matter.

Available therapies Purpose Target Limitations References

Anti-inflammatory drugs—mainly
dapsone (topic and oral)

Reduce the massive inflammatory
reaction mainly triggered by venom
PLDs and refrain the development of
dermonecrosis

Cutaneous lesion Non-specific (Manríquez and Silva.
(2009), Miranda et al.
(2021))

Adverse effects of dapsone, such as
anemia, colostasic jaundice, hepatitis,
leukopenia, which can be difficult to
differentiate as drug effect versus
potential visceral compromise of the
bite

Hyperbaric oxygen therapy Treat nonhealing wounds caused by
Loxosceles venom

Cutaneous lesion Non-specific (Beilman et al. (1994),
Hobbs et al. (1996))Aims only patients with nonhealing

wounds
High-cost method, not often available

Antibiotics Manage possible secondary infection Cutaneous lesion Non-specific (Miranda et al. (2021))
Does not prevent the development of
the normal lesion induced by the
venom

Therapeutic plasma exchange Removes molecular components from
the blood, possibly molecules related
to the complement system

Systemic injury Non-specific (Said et al. (2014);
Abraham et al. (2015))Targeted to specific patients, such as

those presenting hemolysis
Needs further investigation
High-cost method

Antiloxoscelic serum produced with
venoms of Loxosceles gaucho, L.
intermedia and L. laeta and
Antiarachnidic serum produced with
venoms of L. gaucho, Phoneutria
nigriventer and Tityus serrulatus

Neutralize circulating venom toxins,
reducing their action upon target
tissues, such as kidneys, blood and
liver

Systemic injury
(main) and
Cutaneous lesion

Efficacy depends on early application
(up to 6 h after the bite)
High-cost method
Animal welfare issues along the
production process
Present side effects that vary from
rashes to severe adverse reactions
(anaphylaxis, anaphylactoid reactions,
serum sickness and death)

(Barbaro et al. (1996), De
Almeida et al. (2008),
Pauli et al. (2009))
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incubation of the sera from rabbits immunized with this protein
fully inhibited dermonecrosis triggered by L. gaucho venom
(Magalhães et al., 2013). These studies showed that PLDs are
good candidates to replace crude venoms for antivenom
production. However, it is important to highlight that
Loxosceles venoms are composed by diverse homologous
isoforms of PLDs and other molecules that may play an
important role in the cutaneous and systemic loxoscelism. In
addition, the cross-neutralization is not observed among PLDs
from all Loxosceles species. Finally, active PLDs are toxic to the
injected animals and, as with the venom, continuous
immunizations with these proteins can greatly affect the health
of immunized animals and reduce their lifespan.

In this regard, efforts have beenmade to improve the protocol of
immunization. The use of synthetic peptides with amino acid
sequences corresponding to epitopes or antigenic regions of
toxins could also be applied to antivenom preparation. For
instance, antigenic regions of a PLD of L. intermedia (LiD1)
were synthesized and used to immunize rabbits. The purified
IgG pre-incubated with LiD1 reduced dermonecrotic,
hemorrhagic and edema activities of this protein by 82, 35 and
35% respectively, but the co-immunization of these peptides with
LiD1 improved the neutralization capacity of IgGs against LiD1.
However, the protection against the venom was not evaluated
(Felicori et al., 2009). One chimeric protein (Lil) containing
epitopes of L. intermedia, L. laeta and L. gaucho PLDs was also
tested as an immunogen. Around 40% of necrosis, hemorrhage and
edema were neutralized when L. intermedia venom was
preincubated with anti-Lil serum (Souza et al., 2018). Better
results were found when a recombinant chimeric protein
(rCpLi) formed by a fusion of three epitopes of LiD1 was used:
the previous incubation of anti-rCpLi IgG with rLiD1 partially
neutralized its dermonecrotic (95%), hemorrhagic (75%) and
edematogenic (10%) effects (Mendes et al., 2013). An
immunization schedule in horses that combined rCpLi and
Loxosceles venoms as immunogens produced sera that fulfilled
the efficacy tests (100% of reduction in dermonecrosis elicited by L.
intermedia venom in rabbits). The protocol included three initial
injections of a mixture of L. intermedia, L. laeta and L. gaucho
venoms, six additional injections with rCpLi and a re-
immunization schedule consisting of three boosters of the
venom mixture. The sera of horses that received only rCpLi on
immunizations performed around 50% of reduction in
dermonecrosis (Figueiredo et al., 2014). As mentioned earlier,
loxoscelic venoms have other proteins that play a role in
loxoscelism, i.e., metalloproteinases, serine proteases,
hyaluronidases, TCTP and allergens (Feitosa et al., 1998; Veiga
et al., 2000; Da Silveira et al., 2007; Trevisan-Silva et al., 2010; Ferrer
et al., 2013; Justa et al., 2020; De-Bona et al., 2021). Thus, the
inclusion of these toxins in the production of sera turns out to be a
strategy to enhance the efficacy of antivenoms. Therefore,
recombinant chimeric proteins containing selected epitopes of
some of these proteins were created. For instance, epitopes from
a smase I of L. laeta, a metalloprotease (LALP-1) and a
hyaluronidase (LiHyal) of L. intermedia were fused with rCpLi
forming a multiepitope chimeric protein (rMEPLox) which
was used as an immunogen in rabbits. Previous incubation of

anti-rMEPLox sera protected 60% of mice from lethal effects of L.
intermedia venom (Lima et al., 2018). In addition, pre-incubation
of this venom with anti-rMEPLox IgGs reduced 60% of the
hyaluronidase activity of venom (Lima et al., 2018). Another
chimeric protein (LgRec1ALP1) which included antigenic
regions of a PLD (LgRec1) and a metalloprotease (LgALP1) of
L. gaucho venom was also evaluated as antigen (Calabria et al.,
2019). Previous incubation of anti-LgRec1ALP IgGs with the
venoms of L. gaucho, L. intermedia, L. laeta reduced the
dermonecrotic effects of these venoms in 100, 79 and 68%,
respectively (Calabria et al., 2019). In vitro, those IgGs reduced
the platelet aggregation and the proteolytic action of
metalloproteases of the three venoms (Calabria et al., 2019).

Despite the use of chimeric proteins and linear epitopes with
antigenic regions in immunization protocols has demonstrated
promising results, structural analyses of epitope-antibody
interactions have shown that over 90% of epitopes in proteins
are conformational and do not react with any peptide fragment
derived from the parent protein (Van Regenmortel, 1996). In this
sense, the recombinant expression of PLDs, which is well-
established, allowed the production of non-toxic molecules that
may nonetheless elicit protective humoral responses while
minimizing envenomation and suffering of animals used in
antivenom production. The fusion of a β-galactosidase tag with
a PLD (Li-rec) eliminated its toxicity; the application of this protein
as an immunogen produced a serum that neutralized 2.5 LD50 of
L. intermedia venom per ml of serum in a murine lethality model
(Kalapothakis et al., 2002; Araujo et al., 2003). Comparative
analyses between the protection of animals immunized with
recombinant active (rLlPLD1) or inactive (rLlPLD2) isoforms of
L. laeta PLDs showed that both protocols reduced the development
of dermonecrotic lesions induced by L. laeta venom at similar
levels, thus reinforcing that the antigenic potential of these enzymes
is not related to their activity (Catalán et al., 2011). Molecular
engineering enabled the production of mutated PLDs from L.
intermedia, L. laeta and L. gaucho venoms with appropriate
conformational structure, but devoid of enzymatic activity,
opening the possibility to apply these proteins as immunogens
to the development of antivenoms or vaccines (Vuitika et al., 2016;
da Silva et al., 2021). Figure 1 illustrate this potential of such toxins.
Moreover, a hyaluronidase (LiHyal2) and an allergen (LALLT)
from L. intermedia venom were recombinantly expressed and may
be used to enhance the range of antigens for antivenom production
(Justa et al., 2020; De-Bona et al., 2021).

Another strategy that has been explored is the production of
monoclonal antibodies (mAbs) that cross-react with PLDs and
neutralize toxic effects of Brown spider venoms. One of these
mAbs, LimAb7, was initially produced by immunization with the
venom of L. intermedia and efficiently neutralized the
dermonecrotic activity of L. intermedia venom (Alvarenga
et al., 2003). However, this mAb did not cross-react either
with the venoms of L. gaucho or with the venoms of the
Peruvian and Brazilian L. laeta (Alvarenga et al., 2003).
LimAb7 was then re-engineered to a recombinant diabody,
which was efficient in neutralizing the sphingomyelinase and
hemolytic activities of L. intermedia venom, although it exhibited
a limited stability in this dimeric configuration (Karim-Silva et al.,
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2016). Recently, humanized recombinant single-chain antibody
fragments (scFvs) based on LimAb7 were produced and shown to
inhibit the hemolytic effect of L. intermedia venom in the
presence (68% of inhibition) or absence (>90%) of the
complement system (Karim-Silva et al., 2020).

Aiming to overcome the limited cross-reaction of LimAb7
with different Loxosceles species, LiD1mAb16 was produced by
immunization of mice with the PLD LiD1 (Dias-Lopes et al.,
2014). In fact, this novel mAb recognized at least 25 proteins in
each tested venom, i.e., L. intermedia, L. laeta and L. gaucho
venoms, and interacts with an epitope inside the catalytic loop of
LiD1. Pre-incubation of LiD1mAb16 with LiD1 protected the
rabbits against dermonecrosis and local hemorrhage induced by
the toxin with 80% of neutralization, while protection against
edema achieved 48% of neutralization (Dias-Lopes et al., 2014).
The chimeric protein rMEPlox mentioned earlier was also used as
antigen to produce a monoclonal antibody named Lox-mAb3.
This mAb recognized a metalloprotease of L. intermedia, cross-
reacted with metalloproteases of L. laeta and L. gaucho, and
neutralized the fibrinogenolytic activity of L. intermedia venom,
which may decrease hemorrhagic disturbances caused by
Loxosceles envenomation (Costa et al., 2020).

Thus, as addressed, different strategies have been explored by
toxinologists to acquire rationally designed tools to improve the
management of patients bitten by brown spiders. The development
of novel antivenoms based on recombinant toxins, chimeras or
synthetic peptides are all promising approaches. Monoclonal

antibodies and their derivatives are also tools with potential
application to treat patients affected by loxoscelism.

Vaccines to Prevent Loxoscelism
Alternative strategies, such as vaccination protocols, have been
studied to prevent loxoscelism. In this sense, various non-toxic
immunogens based on Loxosceles PLDs were tested. For instance,
some synthetic peptides similar to epitopes or antigenic regions of
toxins were tested as immunogens in protection experiments. Linear
and conformational epitopes from PLDs and chimeric proteins
containing epitopes of different toxins were evaluated. Initially,
rabbits immunized with a pool of non-toxic peptides
corresponding to antigenic regions of LiD1 that produced a
partially neutralizing serum (described in 2.1) was also tested for
protection. When these animals were challenged with recombinant
LiD1 (LiD1r), a protection of 40–50% was observed against
dermonecrotic and hemorrhagic activities of this toxin, and 10%
of protection was reached against the edematogenic effect (Felicori
et al., 2009). In addition, a continuous B-cell epitope (27-mer
peptide) corresponding to a region of LiD1 involved in the active
site were synthesized and used as immunogen in mice and rabbits
(Dias-Lopes et al., 2010). Immunizedmice challenged with 1.5 LD50
of LiD1r presented 75% of protection against the lethal activity of
this toxin. This immunization protocol in rabbits elicited about 70%
of protection against dermonecrotic and hemorrhagic activities of
LiD1r (1MND/kg), and a low protection against edema (Dias-Lopes
et al., 2010). Based on the findings regarding the epitope of LiD1 that

FIGURE 1 | Current antivenom therapy (antiloxoscelic serum) and the new approaches using non-toxic immunogens (second-generation serum and vaccine). (A)
The current serum is produced using the whole venom extracted by a qualified staff from spiders captured in nature; the immunized animals to produce the serum
develop unwanted reactions derived from the whole venom toxicity (pain and swelling at the inoculation site and, in some cases, suppuration; inappetence and episodes
of mild and transient fever may appear); although the current protocol is well established, it is subjected to a certain irreproducibility, since the yield of venom
extractions can vary and this could have a negative impact on the periodic animals’ immunization procedures. (B) The strategy regarding the second-generation serum
combines cost saving (no expenses related to spider collection missions andmaintenance of these animals in captivity), staff safety (no recurrent manipulation of spiders)
and easymanagement of the production process (it does not depend on the efficiency of the whole venom extraction); most importantly, the method for the generation of
the new antivenom assures the depletion of adverse signs and symptoms in the immunized animals (mutant PLDs used are not tissue-destructive as the native PLDs)
and the serum efficacy is expected to be higher, since it is produced using the molecules responsible for most of the noxious effects seen in the loxoscelism—the PLDs.
(C) The development of a vaccine based in recombinant mutant PLDs from different Loxosceles species will be important for the protection of individuals living in areas
where accidents with those species are endemic, as well as in people more exposed or not eligible to conventional treatments.
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is recognized by the monoclonal antibody LimAb7, two mimotopes
were synthesized, entrapped into liposomes and used as
immunogens in rabbits. These animals were challenged with L.
intermedia venom, and immunization protocol showed 60% of
protection against dermonecrosis, 80% against hemorrhage and
30% against edema (Moura et al., 2011). The aforementioned
chimeric protein rMEPLox, containing epitopes from PLDs of L.
laeta and L. intermedia, and from a metalloprotease and a
hyaluronidase from L. intermedia, was also evaluated for its
vaccinal potential. rMEPLox induced an immune response that
completely blocked the dermonecrosis induced by 3.35 MND of
L. intermedia venom (Lima et al., 2018).

Non-toxic PLDs with a three-dimensional structure similar to
active isoforms were also tested as immunogens, following the
notion that most epitopes in proteins are discontinuous and do
not react peptide fragments from the parent protein (Van
Regenmortel, 1996). For example, the aforementioned non-
toxic PLD fused with β-galactosidase (Li-rec) were used in a
vaccination protocol in mice, and fully protected the animals
against the lethal effects of 2.5 LD50 of L. intermedia venom. The
same study also showed that rabbits immunized with Li-rec were
partially protected against dermonecrosis 120 days after the last
immunization dose, indicating that this protein generates long
lasting antibodies (Araujo et al., 2003). The inactive PLD isoform

rLIPLD2 from L. laeta were also evaluated for this purpose. The
protection of rabbits against the dermonecrotic activity of L. laeta
venom was evaluated in animals previously vaccinated with
rLIPLD2, and a good protection was observed (Catalán et al.,
2011). These studies support the use of non-toxic recombinant
proteins in vaccination protocols against loxoscelism. In this
sense, the mutated and inactive recombinant PLDs of L.
intermedia, L. laeta and L. gaucho mentioned above could be
used as antigens in a new-generation vaccination protocol in
areas where accidents with those species are endemic, as well as in
people more exposed or not eligible to conventional treatments,
as depicted in Figure 1 (Vuitika et al., 2016; da Silva et al., 2021).

VENOM PEPTIDES AND PROTEINS AS
POTENTIAL NOVEL DRUGS

Brown spider venoms are complex chemical cocktails with proteins
and peptides with quite specific biochemical and biological activities.
Such activities can be further explored to apply these toxins as
therapeutic or biological agents optimized for numerous purposes
(summarized in Table 2). In the next items, such potential
applications will be explored, based on the known biological
activities of these toxins and on the literature regarding these proteins.

TABLE 2 | Summarization of the protein content of Loxosceles spiders’ venoms—classes of toxins and potential applications of these molecules to manage the loxoscelism
and to develop drugs and biological/biotechnological inputs.

Brown spider venom
molecules

Potential applications and basic references on the matter

Phospholipases D (30–35 kDa) • New therapies to treat loxoscelism
1. Development of a second generation antivenom produced from mutant PLDs or engineered peptides/chimeric proteins based on
PLDs (Mendes et al. (2013), Vuitika et al. (2016), Lima et al. (2018), Calabria et al. (2019), da Silva et al. (2021))
2. Development of monoclonal antibodies that cross-react with venom PLDs (Alvarenga et al. (2003), Dias-Lopes et al. (2014),
Karim-Silva et al. (2016), Costa et al. (2020))
3. Development of a vaccine for areas where the accidents are endemic (Lima et al. (2018), da Silva et al. (2021))
• Biotool to be used in studies regarding tumor cell biology (Wille et al. (2013), Siqueira et al. (2019))
• Antimicrobial drug (Segura-Ramírez and Silva Júnior. (2018))

Serpins (44–46 kDa) • Development of anticoagulant drugs (Schemczssen-Graeff et al. (2021))
• Development of drugs for cancer treatment (Schemczssen-Graeff et al. (2021))
• As potential antibacterial (Costa et al. (2014)) and insecticide (Clemente et al. (2019)) molecules
• As tools for cell biology studies regarding proliferation, migration and control for protein half-life (Marathe et al. (2019))

Allergens (42–45 kDa) • Development of skin and blood allergic sensitivity test (Linhart and Valenta. (2012))
• Therapeutic input to be used in desensitizing protocols to treat allergic patients (Linhart and Valenta. (2012))
• Biological inputs to be used in specific immunotherapy protocols (Linhart and Valenta. (2012))

Hyaluronidases (44–48 kDa) • Drug diffusion enhancer (Weber et al. (2019))
• Development of drugs/inputs for cancer treatment (Khan et al. (2018))
• Development of inputs for aesthetic procedures (Weber et al. (2019))

Knottins (ICK peptides) (5–10 kDa) • Development of effective bioinsecticides (Fitches et al. (2012), Bonning and Chougule. (2014), Herzig et al. (2016), Matsubara et al.
(2017), King. (2019))

• Development of analgesic drugs (Cardoso et al. (2017), Dongol et al. (2019))
• Development of antifungal (Ayroza et al. (2012)), antiarrhythmic (Bode et al. (2001)) and antimalarial (Choi et al. (2004)) drugs
• Biological inputs to be used as imaging agents for tumor detection (Moore et al. (2013); Kintzing and Cochran. (2016))

TCTP (22 kDa) • Biotool to be used in studies regarding parasites biology or biological input to be used in the development of vaccines against parasites
(Bhisutthibhan et al. (1998); Taylor et al. (2015))

• Development of drug delivery systems (Bae et al. (2018))
• Biotechnological input to be used as dental restorative material (Wanachottrakul et al. (2011), Sangsuwan et al. (2015),

Kedjarune-Leggat et al. (2020))
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Serine Protease Inhibitors: Candidates in
the Development of Biochemical Reagents,
Insecticides, Antibacterial and Antitumoral
Drugs
Serine protease inhibitors have been described in the literature as
molecules with many functional activities regarding both
physiological and pathological processes, not to mention the
vast potential for biotechnological exploitation (Gettins, 2002;
Huntington, 2011; Lucas et al., 2018). Although little studied,
serine protease inhibitors in the venoms of Loxosceles spiders
have been reported in different species, which shows the
biological conservation and the importance of this components
in the venoms. The first finding indicating the existence of serine
protease inhibitors in Loxosceles venoms was reported in a study
using the venom of L. reclusa (North America), in which the
presence of a complement inhibitor was identified after venom
fractionation using Sephadex G-75 exclusion chromatography
(Kniker et al., 1969). Later, other more specific and directed
studies identified these inhibitors in different species endemic in
Brazil and South America. Omics methods have reported the
presence of serine protease inhibitors in the venoms of L. laeta
(Fernandes-Pedrosa et al., 2008), L. intermedia (Dos Santos et al.,
2009; Gremski et al., 2010) and, more recently, in L. gaucho
venom (Calabria et al., 2019), always as low expressed proteins.
However, the presence of serine protease inhibitors in the venoms
of different species of Loxosceles spiders is not sufficient to prove
that these molecules are in fact toxins and have harmful activities
with clinical correlation to the envenoming. In this context, the
inhibitory activity of plasma coagulation induced by thrombin
was associated with a recombinant serpin of L. intermedia
(Schemczssen-Graeff et al., 2021), which could suggest that
these venom molecules may contribute with the delay of
plasmatic coagulation caused by Loxosceles venom (Zanetti
et al., 2002) and, consequently, increasing the hemorrhagic
disturbances during loxoscelism, such as local hemorrhage
observed in the cutaneous lesion (Ospedal et al., 2002). As
venom components, serine protease inhibitors may also act,
for instance, as protectors, preventing the proteolysis of self-
proteins/toxins and then increasing the half-life of them; this
contributes to the integrity of the venom, keeping its potentiality
in order to be used during hunting preys, defense against
predators or in accidents with humans (Dos Santos et al.,
2009; Gremski et al., 2010).

The great advance regarding studies of serine protease
inhibitors found in Loxosceles venoms emerged with the
cloning and recombinant expression of serine protease
inhibitor from L. intermedia in Spodoptera frugiperda cells
using baculovirus technology. This molecule was called
LSPILT, from Loxosceles Serine Protease Inhibitor-Like Toxin
(Schemczssen-Graeff et al., 2021). Authors have shown that this
protein has a molecular mass of 46 kDa, and the amino acid
sequence shows the presence of the signature for the Serpin super
family members. LSPILT is homologous to other serpins found in
spiders of other genus, as well as in other arthropods. In addition,
the immunoassays suggested the conservation of this class of
molecules in Loxosceles gaucho, L. laeta and L. intermedia venoms

(Schemczssen-Graeff et al., 2021). The expression and
purification of LSPILT yielded 8.0 mg/L of culture supernatant
in its soluble form and without requiring refolding. LSPILT
inhibits the activity of trypsin upon gelatin and vitronectin
in vitro. LSPILT activity was also demonstrated by its
inhibitory activity on the plasma coagulation induced by
thrombin, inhibitory effect of lysis of T. cruzi trypomastigotes
dependent on convertases (serino proteases) of complement
system. Finally, LSPILT induced the inhibition of melanoma
cell (B16-F10) proliferation and migration, events with great
participation of serine proteases. These results all together has
proven that LSPILT is a molecule with a broad spectrum of
inhibitory activity on serine proteases (Schemczssen-Graeff et al.,
2021).

These molecules are versatile and are efficient tools, which can
be used to understand the participation of serine protease
inhibitors in the context of envenoming or as endogenous
proteolytic inhibitor of venom components. Also, LSPILT
constitutes a tool to study structural aspects of serpin-family
members through crystallography methods. LSPILT can be used
as a prototype (taking into account the participation of serpins in
a large number of biological events and in human health) for
analyzes concerning biotechnological applicabilities, as
previously pointed for other serpin family-members (Gaci
et al., 2013). Regarding cell biology experimental studies, the
recombinant LSPILT can be used as a prototype in protocols
aiming to unveil how cells proliferate, migrate, undergo to
apoptosis and control cellular protein half-life (Marathe et al.,
2019). Regarding the control of agricultural infestations, LSPILT
can be investigated as a potential input, since serpins have been
shown as molecules able to inhibit digestive enzymes present in
the gastrointestinal tract of insect, inducing an insecticide effect
(Clemente et al., 2019). It has already been reported that serine
protease inhibitors can exhibit antibacterial activities, which
makes them potential antibacterial agents in the treatment of
human diseases (Costa et al., 2014). Finally, LSPILT can be used
as an useful reagent in different biochemical experimental
protocols, such as serine protease ligands in affinity
chromatography procedures, in the purification of proteases,
or as an inhibitory agent during cell analysis or protein
purification, avoiding undesirable proteolytic effects (Sabotič
and Kos, 2012).

Allergens: Potential Compounds to be
Applied in the Diagnose and Treatment of
Allergic Events
As mentioned above, the most common complications described
in accidents caused by Loxosceles spiders are inflammatory
reactions at the bite site, which can evolve to dermonecrosis
between 24 and 48 h after accidents (Isbister and Fan, 2011;
Malaque et al., 2011; Gremski et al., 2014; Chaves-Moreira et al.,
2017). Signs of allergenic responses are also reported, and are
characterized by swelling, itching, redness and cutaneous rash.
These allergenic manifestations are not restricted to the bite site
and usually emerge earlier when compared to inflammatory
signs, and they clearly indicate the presence of allergenic
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toxins in the venoms (Makris et al., 2009; Isbister and Fan, 2011;
Lane et al., 2011; Malaque et al., 2011; Justa et al., 2020). The
presence of toxins theoretically responsible for allergic responses
in the Loxosceles venoms was initially identified in the analysis of
the transcriptome of L. laeta venom glands (Fernandes-Pedrosa
et al., 2008). Subsequently, a proteomic study of the venom of L.
intermedia, revealed the presence of a molecule with high identity
to a protein similar to an allergen found inmites (Mite Allergen of
Group 7) (Dos Santos et al., 2009), which was later confirmed by
the analysis of L. intermedia venom gland transcriptome
(Gremski et al., 2010). The study of the transcriptome of L.
gaucho venom glands also reported transcripts related to allergens
(Calabria et al., 2019).

The confirmation of toxins as allergens in the venoms of
different Loxosceles species has finally been described by the
cloning and recombinant expression of a toxin from L.
intermedia (Justa et al., 2020). The authors showed the
presence of an allergen belonging to the CAP superfamily
(Cysteine-Rich Secretory Proteins) with 42 kDa. This toxin
was named LALLT (Loxosceles Allergen-Like Toxin), and it
was produced by using a eukaryotic heterologous expression
system (Sf9 insect cells combined to the baculovirus
technology) (Justa et al., 2020). Research on amino acid
alignments with other allergens, immunological reactivity
using antibodies raised originally to LALLT or crude venoms
from different Loxosceles species, and searches for high identity
mRNAs sequences in other Loxosceles species showed that
LALLT has biological conservation (Justa et al., 2020).
Recombinant LALLT was able to trigger mast cells
degranulation, in addition to cause leukocyte infiltration into
the dermis of rabbits, induce paw edema and increase the vascular
permeability in mice skin (Justa et al., 2020). Together, the
experimental data acquired state this toxin as an allergic agent
with clinical potential, which should be evaluated as a target in the
treatment of loxoscelism, especially in injured patients with a
history of previous allergies to arthropods.

As protein content in Loxosceles venoms is quite reduced
(Sams et al., 2001; Binford and Wells, 2003; Da Silva et al., 2004;
Senff-Ribeiro et al., 2008; Gremski et al., 2014), the production of
recombinant LALLT in a eukaryotic model is a breakthrough
regarding the characterization of toxins from Loxosceles spiders.
It was the first recombinant Loxosceles toxin to be successfully
produced in the mentioned model. The availability of correct-
folded and functional isoforms of LALLTs will allow, in a near
future, the crystallization of this toxin, providing data related to
the structure/function relationship and the action mechanism of
this molecule. In addition, with a functional eukaryotic
recombinant model, we can exhaust the analysis of
biochemical, biological, immunological and pharmaceutical
activities for members of this family. Questions regarding the
real allergenic potential of these toxins, other toxic activities that
have not yet been described and cell receptors involved with the
toxic activities can be answered using recombinant allergens
produced according to the mentioned methodology.

The availability of the recombinant LALLT may enable its use
as antigen for skin allergic sensitivity test, allowing the
identification of sensitive populations and more rational

treatments, reducing adverse reactions due to envenoming.
They may also be used as antigens for blood allergic tests,
seeking for reactivity with immunoglobulins present in the
blood of patients and confirming a predisposition to allergies.
In severe cases, recombinant LALLT may also be used in
desensitizing protocols to treat allergic patients. Finally,
recombinant LALLT can be used in specific immunotherapy
protocols for related antigens, giving rise to protective vaccines
against severe allergic attacks, as previously discussed for other
allergenic factors (Linhart and Valenta, 2012).

Hyaluronidases: Adjuvants to Enhance the
Diffusion of Other Drugs and Agents to
Correct Esthetic Filling Procedures
Together with mammalian hyaluronidases, venom
hyaluronidases belong to the EC 3.2.1.35 group of enzymes
and act as endo-β-N-acetyl-D-hexosaminidases. Their main
substrate is hyaluronic acid (HA), but can also cleave
chondroitin sulfate (Bordon et al., 2015). HA is abundant in
the extracellular matrix (ECM) of mammal soft connective tissues
(Girish and Kemparaju, 2007). Besides its structural basic
functions in ECM, HA has been linked to more specific
molecular functions, such as binding to ECM proteins and to
particular cell receptors that mediate important physiological
processes (Girish and Kemparaju, 2007).

Degradation of HA by hyaluronidase increases connective
tissue permeability and decreases viscosity of body fluids.
These enzymes are directly involved in the spread of venoms
and toxins, and in important processes such as fertilization and
cancer progression. Depolymerization of HA also impairs the
ECM activity as a reservoir of growth factors (Cramer et al., 1994;
Menzel and Farr, 1998; Kemparaju and Girish, 2006; Chao et al.,
2007). Hyaluronidases have been described in several animal
venoms like snakes, bees, scorpions, spiders, lizards and stingrays
(Kemparaju and Girish, 2006; Magalhães et al., 2008; Ferrer et al.,
2013). Hyaluronidases from venomous animals are commonly
described as spreading factors once HA degradation increases the
ECM permeability, rendering tissues highly permeable to the
toxic components of venom (Girish and Kemparaju, 2007).

Multiple applications regarding mammalian hyaluronidases
have already been described, one of which is related to the
combined use with local anesthetics to enhance the diffusion
of injected therapeutic drugs. On this subject, the application of a
recombinant human hyaluronidase (rHuPH20) has recently
gained prominence for the subcutaneous application of
insulin, morphine, immunoglobulins and other
pharmaceuticals (Weber et al., 2019). In different studies, it
has been demonstrated that the administration of
hyaluronidases with anti-cancerous drugs reduces the
interstitial fluid pressure within the tumorous tissue and, as a
spreading factor, these enzymes can also be used to enhance the
penetration of oncolytic agents, potentiating the effectiveness of
the therapy. The additive use of the hyaluronidases is not limited
to the chemotherapy as they may also be used in combination
with radioimmunotherapy (Khan et al., 2018). Furthermore,
studies have shown the effectiveness of hyaluronidase as an
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adjuvant in neuroplastic procedures by reducing pain rating
compared to other techniques (Helm and Racz, 2019). The
injection of hyaluronidase is also used to correct unaesthetic
overcorrections and to reverse chronic edema or vascular
occlusion after HA-filler applications (Weber et al., 2019).

Nowadays, commercial formulations of exogenous
hyaluronidases include purified forms from bovine (BTH) and
ovine testicles (OTH) and recombinant human hyaluronidase
(rHuPH20) (Searle et al., 2020). Animal derived hyaluronidases
are extracted from testis tissue, and are generally purified by series
of multiple precipitation, fractionation and filtration steps
(Farooqui and Srivastava, 1979; Lyon and Phelps, 1981; Kaya
et al., 2015). One of the limitations of these methods is that these
extracts are often contaminated with proteases, immunoglobulin,
and other elements, which can increase capillary permeability or
IgE-mediated hypersensitivity reactions (Silverstein et al., 2012).
The recombinant form of hyaluronidase is clinically available as
Hylenex™ (Baxter, Deerfield, IL). The recombinant human
hyaluronidase (rHuPH20) is a highly purified protein. The
production uses Chinese hamster ovary cells (CHO) to express
the human recombinant genetic engineered enzyme. This
hyaluronidase is purified through a series of column
chromatographies and other processing steps, generating a
protein with less impurities and potential pathogens, reducing
the risk of hypersensitivity reactions (Frost, 2007; Silverstein et al.,
2012).

Venom hyaluronidases have been studied as purified enzymes
(Poh et al., 1992; Girish et al., 2004;Morey et al., 2006; Horta et al.,
2014) or as recombinant proteins mainly expressed in insect cells
(Soldatova et al., 2007; Clement et al., 2012; De-Bona et al., 2021).
In Loxosceles spider venoms, hyaluronidase activity was identified
in six Loxosceles species (L. rufescens, L. deserta, L. gaucho, L.
intermedia, L. laeta and L. reclusa) and some of these results were
confirmed by subsequent proteome and transcriptome studies
that described hyaluronidases or coding sequences for such
enzymes in various Loxosceles venoms (Young and Pincus,
2001; Barbaro et al., 2005; Fernandes-Pedrosa et al., 2008; Dos
Santos et al., 2009; Gremski et al., 2010; Trevisan-Silva et al., 2017;
Siqueira et al., 2019). Initially, a recombinant hyaluronidase from
L. intermedia venom was produced in a prokaryotic model,
purified, refolded and characterized. LiHyal, as it was named,
was able to degrade hyaluronic acid and chondroitin sulfate
in vitro, and biological assays revealed that this recombinant
toxin was able to increase erythema, ecchymosis and
dermonecrotic effects when associated with a recombinant
phospholipase D, indicating that this protein acts as spreading
factor (Ferrer et al., 2013). Later, a similar isoform was expressed
in baculovirus-infected insect cells as a soluble and active
recombinant hyaluronidase, named LiHyal2, with similar
in vitro and in vivo activities than LiHyal (De-Bona et al.,
2021). As it was produced by eukaryotic cells, LiHyal2 is post-
translationally modified by the addition of high-mannose
N-linked carbohydrates.

In fact, other venom hyaluronidases, such as those from Apis
mellifera (honeybee) and Brachypelma vagans (tarantula), were
efficiently expressed in baculovirus systems in insect cells
(Soldatova et al., 2007; Clement et al., 2012). This expression

system has proved to be quite efficient in producing post-
translationally modified and active venom hyaluronidases and
may be an interesting alternative to purified or recombinant
mammal hyaluronidases. In addition, as venom hyaluronidases
belong to the same group of enzymes as mammal hyaluronidases,
which have already been used as therapeutic agents, they emerge
as an alternative source of such remarkable molecules.

Knottins (Inhibitory Cystine Knot Peptides):
Potential Peptides to be Used in the
Development of Bioinsectices, Analgesics
and Tumor Imaging Agents
Knottins, also known as ICK peptides (Inhibitory Cystine Knot),
constitute a family of peptides that characteristically contain
cysteine residues forming intramolecular disulfide bonds.
These disulfide bonds are arranged to set a pseudo-knot
structure, in which a ring established by two disulfide bonds
connected to the peptide backbone is intersected by a third
disulfide bond (Norton and Pallaghy, 1998; Saez et al., 2010).
Knottins have already been identified as components of
Loxosceles spiders’ venoms through biochemical and molecular
biology studies (De Castro et al., 2004; Gremski et al., 2010;
Matsubara et al., 2013, 2017; Meissner et al., 2016). Their
biological function as venom toxins has been proven to be
insecticide, by displaying toxic effects in insects for feeding
purpose. Two experimental studies regarding knottins from L.
intermedia have demonstrated this insecticide activity. First, De
Castro et al. (2004), through chromatography approaches,
purified a fraction containing three native knottins (identified
as LiTx1, LiTx2 and LiTx3) that induced lethal flaccid paralysis
on larvae of Spodoptera frugiperda (fall armyworm). Additionally,
Matsubara et al. (2017) produced a recombinant knottin (U2-
SCRTX-Li1b) that exhibited long-lasting paralysis in sheep
blowflies (Lucilia cuprina), which was irreversible even at 72 h
post-injection. These exploratory findings unveil the high
potential of knottins to be used in the development of
bioinsecticides, which constitute an environmentally healthier
approach to control pests of economic interest when compared to
the chemical pesticides widely used (Windley et al., 2012; King,
2019). Studies regarding knottins from spiders’ venoms have
shown that these peptides can be highly selective, being even taxa-
specific in some cases (Herzig et al., 2016; King, 2019). This
feature makes knottins desirable tools to manage crop pests, since
these molecules do not represent harm to insects or other non-
target organisms beneficial to the ecosystem (Nakasu et al., 2014).
Moreover, it has been described that knottins are, in general,
orally active, which means that these toxins are ingested by the
insects and are absorbed in the midgut. Some knottins have been
engineered in order to be produced as recombinant fusion
proteins to molecules (such as lectins) that enhance the
absorption by insect’s midgut epithelium (Fitches et al., 2004,
2012; Bonning and Chougule, 2014). Then, these peptides get into
the hemolymph and reach their targets, which are ion channels
and receptors present in neuromuscular junctions or neurons
located in the central nervous system (King, 2019). Due to their
“knot” structure, knottins are highly protease-resistant and have
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been proven to greatly maintain their stability in samples of insect
hemolymph (Herzig and King, 2015). In addition to all the
already mentioned advantages, spider knottins exert their
neurotoxic effects on insects in a fast-manner and are not
predicted to bioaccumulate or generate products toxic to the
environment after being degraded (King, 2019).

Experimental evidence regarding other applications of
knottins from Loxosceles spiders remains lacking. However, it
is relevant to highlight that L. intermedia knottins, for example,
have proven to be the most abundant in terms both of transcripts
encoded in the venom glands and protein content (together with
the phospholipases D) in venom samples analyzed using SDS-
PAGE (Gremski et al., 2010; Matsubara et al., 2017). Also, the
diversity of these peptides has shown to be even greater as
demonstrated by the existence of different knottins encoded in
the venom glands of three different Loxosceles species (Matsubara
et al., 2017). This great representativeness is a strong indication of
the existence of multiple targets and, consequently, of multiple
applications for these toxins. Thus, another search for the use of
knottins from Loxosceles is related to their possible analgesic
properties, which are suggested by the painless characteristic of
the bites in humans (Da Silva et al., 2004; Gremski et al., 2014).
Studies regarding knottins from several spiders’ species have
shown that these toxins can modulate specific ion channels
and receptors associated to the pathophysiological event of
pain, inducing analgesic effects. For example, it was shown
that two synthetic forms of the knottin peptide μ-TRTX-Df1a
(Df1a) from a tarantula (D. fasciatus) interacts with a specific
region of a voltage-gated sodium channel (Nav1.7), which is
known to be activated during the pain event in humans and
induces analgesia in mice previously treated with a scorpion
molecule (OD1) that potentiates the activity of NaV1.7 channels
(Cardoso et al., 2017; Dongol et al., 2019).

Knottins from spider venoms have also been associated to
antifungal (Ayroza et al., 2012), antiarrhythmic (Bode et al., 2001)
and antimalarial (Choi et al., 2004) properties. Other spiders’
knottins have been engineered to be used as imaging agents, by
producing molecules containing peptide fragments that bind to
tumor cells and fluorescent probes; the knottins have been
thought to be used in this approach because they are
extremely biological- and thermostable in body fluids, exhibit
high affinity to their target in minute concentrations, as well as
display rapid clearance from non-target tissues/organs, which
means that they are efficiently eliminated by the kidneys (Moore
et al., 2013; Kintzing and Cochran, 2016). As described, given the
diversity of knottins found in the venoms of Loxosceles spiders
and their respective targets, multiple activities such as those
herein mentioned can be investigated in order to determine
new uses for these toxins.

Translationally Controlled Tumor Protein:
Target Candidates in Histamine-Related
Pathologies and as Pro-Proliferative
Biomaterial
A protein from the translationally controlled tumor protein
(TCTP) family was described in Loxosceles venoms (Sade

et al., 2012). The TCTP protein, also known as histamine-
releasing factor (HRF) or fortilin, is a highly conserved and
ubiquitous protein, described as multifunctional due to its
wide range of function repertoire regarding both intracellular
and extracellular biological processes (Bommer and Telerman,
2020). Loxosceles TCTP was initially described in L. intermedia
transcriptome (Gremski et al., 2010). TCTP family proteins have
already been described in other arthropods such as in the gland
secretion of ixodid ticks (Mulenga and Azad, 2005), in the venom
gland of tarantula Grammostola rosea (Kimura et al., 2012), and
in the venom gland transcriptomic and proteomic analyses of
Scytodes spiders (Zobel-Thropp et al., 2014).

The recombinant L. intermedia TCTP (LiRecTCTP) produced
in a prokaryotic heterologous system causes edema and increases
vascular permeability in vivo and in animal models (Sade et al.,
2012). This protein was related to the inflammatory activity of the
venom of L. intermedia. Later, TCTP was also found in L. laeta
transcriptome study, and its presence in L. gaucho venom was
inferred by immunological cross-reaction studies (Buch et al.,
2015). TCTP protein was immunodetected in the whole venom of
Loxosceles species (L. intermedia, L. gaucho, and L. laeta) as well
as described in the proteomic study of L. intermedia venom
(Trevisan-Silva et al., 2017). Recently, we have shown that
LiRecTCTP acts as a synergistic factor for the PLD actions
(LiRecDT1), highlighting its contribution to the
pathophysiology of Loxoscelism (Boia-ferreira et al., 2019).

Loxosceles TCTP contribution to the exacerbated
inflammatory response observed in envenomated patients is
related to its histaminergic properties, which suggests that the
inhibition of LiTCTP mast cell activation effects could be a
therapeutic approach to reduce the inflammatory events
responsible for the main symptoms in cutaneous loxoscelism.
TCTP was already reported in the biological fluid of asthmatic
and parasitized patients (MacDonald, 2012) and human TCTP
(54.9% of similarity with LiRecTCTP, using EMBOSS Needle
tool) was described as a target for asthma and allergy clinical
treatments (Kawakami et al., 2019).

Regarding the multifunctional role of TCTP, LiTCTP is a
promising toxin and potential target model in the several cellular
processes in which TCTP protein participates (Amson et al.,
2013). As TCTP family is highly conserved, we can suggest to
LiTCTP some biotechnological applications that have already
been described for other TCTP proteins, in the different fields of
general biology (toxinology, allergy, parasitology, and oncology)
and biomaterial research (dental restoration and drug delivery) as
it is discussed hereafter.

In parasitology, TCTP is suggested to be involved in the
establishment, maintenance, and pathogenesis of parasite
infections. When the Plasmodium TCTP (42.2% of similarity
with LiRecTCTP) was evaluated as a malaria vaccine, a significant
reduction of parasitemia in the early stages of the infection was
seen (Taylor et al., 2015). Plasmodium TCTP has been shown to
bind directly the anti-malarial drug artemisinin (Fujita et al.,
2008) and to have higher expression levels on increased drug
resistance conditions (Bhisutthibhan et al., 1998).

TCTP proteins harbor, in their N-terminal, a transduction
domain (PTD) which could be applied as vehicles in drug delivery
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systems. These domains are recognized as promising vehicles for
the delivery of macromolecular drugs. Different studies showed
the effectiveness of the TCTP carrier peptide (residues 1-10,
MIIYRDLISH) internalization in different cell types (Bae and
Lee, 2013; Maeng et al., 2013; Calderón-Pérez et al., 2014). A
modified version of TCTP PTDwas shown as a promising vehicle
for intranasal delivery of insulin (Bae et al., 2018). More recently,
TCTP was shown to translocate into oocytes across the zona
pellucida (ZP) and to prevent quality deterioration during in vitro
culture. This data is quite important as the delivery of exogenous
molecules into mammalian oocytes or embryos has been a
challenge because of the existence of the protective ZP
surrounding the oocyte membrane (Jeon et al., 2017).

TCTP proteins present proliferative properties and anti-
apoptotic activity, and TCTP from Fenneropenaeus
merguiensis (banana prawn) was explored as supplements in
dental restorative materials (Wanachottrakul et al., 2011). This
TCTP was shown to promote osteoblast cells proliferation,
differentiation and function, highlighting its potential use as a
supplementary medical material in dentistry (Sangsuwan et al.,
2015; Kedjarune-Leggat et al., 2020). TCTP ability to protect cells
in a range of stress conditions was recently described in
cardiomyocytes (Cai et al., 2019). Results have shown that
TCTP plays a critical role for the survival of these cells and
has a protective function against drug-induced cardiac
dysfunction in mice.

TCTP’s collection of molecular partners and involvement in
different biological events is behind this protein’s
biotechnological potential, which exploration has just initiated.

Phospholipases D: Candidates in the
Development of Antibacterial Drugs and
Tools to Comprehend the Regulation of
Some Biological Processes
Phospholipases D are enzymes that have a broad range of
biological activities and are involved in the regulation of many
pathological processes including those related to tumor cells
(Houben and Moolenaar, 2011). The protein Autotaxin
(ATX), for example, is a phospholipase D with activity on
lysophosphatidylcholine and it is responsible for the formation
of lysophosphatidic acid (LPA) in the blood and other tissues.
ATX is highly expressed in several tumors, and the lipid mediator
released (LPA) evokes responses such as cell migration and
proliferation, as well as and survival for a wide range of tumor
cells (Tania et al., 2010; Houben and Moolenaar, 2011). The L.
intermedia PLD, LiRecDT1 can trigger some biological responses
on melanoma cells, such as proliferation and calcium influx,
besides binding to the membrane of B16F10 cells (Wille et al.,
2013). A study that investigated the activity of the L. gaucho PLD
LgRec1 on B16F10 cells showed that this toxin reduces the
viability of those cells, thus presenting a potential antitumor
activity (Siqueira et al., 2019). The authors potentialized this
activity by fusing this LgRec1 with a snake venom disintegrin
called Echistatin. The resulting hybrid protein, named
Rechistatin, was more efficient to promote cell death than only

Echistatin or only LgRec1 since the disintegrin portion helped
to deliver the PLD to the target cell (Siqueira et al., 2019). A
deeper investigation regarding this activity of Loxosceles PLDs
still remains to be done. In addition, as ATX, LiRecDT1 can
be a potential exogenous tool to better understand the
regulation of biological processes in tumor cells and in cell
membranes.

Besides the potential use of Loxosceles PLDs to study tumor
cells and their activities, other fields to apply these toxins as useful
components have been explored. Currently, the resistance of
some bacteria to antibiotics is a major problem to the health
care systems. Thus, the development of new drugs with
antibacterial activity has become an emerging area (Echols,
2012; Sudarshan and Dhananjaya, 2016). Peptides present in
venoms of animals such as scorpions, snakes and spiders are
potential sources of such molecules (Siqueira et al., 2019). In this
sense, Loxosceles venoms’ PLDs may also serve as potential
antimicrobial drugs. A peptide from the venom of L. gaucho
(U1-SCRTX-Lg1a) showed antibacterial activity in gram-
negative bacteria, such as Pseudomonas aeruginosa and
Enterobacter cloacae, and did not affect the viability of HeLa
cells. There is evidence that these peptides arise from a limited
proteolytic cleavage of PLDs, since it shows great similarity with
some regions of the amino acid sequences of nine Loxosceles
PLDs (Segura-Ramírez and Silva Júnior, 2018).

PERSPECTIVES

Brown spider venom presents a range of natural proteins and
peptides that could eventually find their way into
pharmaceuticals, biological agents and tools for the
development of novel therapies. The potential applications of
such molecules and the search for novel therapies to treat
loxoscelism will continue to stimulate the studies regarding
this complex venom, which will certainly result in novel
approaches to overcome various challenges in a foreseeable
future.
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