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Abstract

N-terminal andC-terminal heptad repeats (NHRandCHR) ofHIV type 1 (HIV-1) glycoprotein 41 are known to be regions directly
related to cell fusion during virus attack, and their complex core constructs a coiled-coil structure in the fusion process. In our recent
studies, MT-4/17-3-6, a strain of HIV-1, showed the strong resistance to peptide fusion inhibitors compared with other strains such as
MT-4/LAI, L-2 and CU98-26, and had a distinctive L565M mutation in the central region of NHR. To investigate the relationship
between the mutation and resistance, we performed a molecular modeling of the coiled-coil of MT-4/17-3-6 by using energy minimi-
zation and molecular dynamics simulation based on the MT-4/LAI X-ray structure. As a result, we found that H564 in the NHR
was pushed to the outer side by this mutation, and three hydrogen bond bridges of Y638-H564-E560-Q650 could be formed, enclosing
the coiled-coil. The binding of peptide inhibitors would be disturbed by the structural stabilization of these bridges in MT-4/17-3-6.
� 2005 Elsevier Inc. All rights reserved.
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The ectodomain of human immunodeficiency virus
type 1 (HIV-1) glycoprotein 41 (gp41) has been investi-
gated as a part of the spike protein directly related to the
cell fusion of virus, and it consists of fusion protein
(FP), N-terminal heptad repeats (NHR), interdomain
fusion protein (IFP), C-terminal heptad repeats
(CHR), and other regions [1]. Studies by electron
microscopy [2–4] demonstrated that the spike protein
of HIV-1 formed a trimer complex in fusion process.
In addition, molecular structure analyses [5–7] revealed
that NHR and CHR had similar helical conformations
packed in an anti-parallel manner, and that the three
pairs of NHR and CHR in a trimer gp41 were arranged
tightly in a trimeric coiled-coil. Three NHR regions were
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coiled in the inner side and the three CHR regions cov-
ered the NHR coil on the outer side. This coiled-coil
complex could be constructed by conformational chang-
es of glycoprotein 120 interacting with CD4 and
CXCR4 coreceptor [8,9]. Formation of the coiled-coil
causes the viral envelope to approach the target cell
membrane via tight binding, and allows membrane fu-
sion associated with rapid entry of the viron core into
the target cell [1,10,11]. Thus, the NHR–CHR interac-
tions are very important for investigating the fusion
mechanism of the virus entry process and for designing
the inhibitors against the cell fusion.

One complicating fact is that HIV-1 is genetically var-
iable [12]. Among HIV-1 genome, env gene has been
widely used for the classification by phylogenetic analy-
sis [13]. Based on the sequence of complete viral gen-
omes [14], HIV-1 nucleotide sequences circulating in
the world have been divided into three groups: M
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Table 1
Amino acid sequences of the NHR and CHR regions of HIV-1s used in our previous research [23]

HIV-1 Subtype Amino acid sequencea

NHR CHR

a A dash (-) indicates identity with the corresponding MT-4/LAI amino acid residue.
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(major); O (outlier); and N (non-M or O). Within the
most prevalent group, M, there are at least eight discrete
subtypes (A, B, C, D, F, G, H, and J) and 14 circulating
recombinant forms. Different HIV-1 subtypes and re-
combinant forms are generally associated with different
countries and continents [15,16], and the similarities
among these subtypes are distributed widely [17,18]. It
was also reported that homologous synthetic peptides
of the NHR and CHR regions, called N34 and C34,
had binding activities to CHR and NHR, respectively
[19–21]. Therefore, these synthetic peptides play an
important role as experimental tools for studies of cell
fusion and its inhibition because of the affinities to gp41.

We have studied the fusion mechanism to identify the
important factors for the design of inhibitors, and
reported that strain MT-4/17-3-6 [22] from a Japanese
patient with acquired immunodeficiency syndrome
(AIDS) showed stronger resistance against both N34
and C34 peptides than other strains, MT-4/LAI, L-2,
and CU98-26 [23]. In this article, to investigate the basis
of the resistance of MT-4/17-3-6, an NHR–CHR com-
plex model was predicted stereo-chemically by molecu-
lar modeling with energy minimization and dynamics
simulation. We compared it with MT-4/LAI model,
especially focusing the central region of the coiled-coil,
which was not markedly affected by any other parts of
the envelope protein. This central region includes the
M565 of MT-4/17-3-6, which is mutated distinctively
from the L565 of MT-4/LAI, L-2 and CU98-26. The
amino acid sequences of NHR and CHR of these strains
are summarized in Table 1.
Materials and methods

Molecular modeling of MT-4/17-3-6 NHR–CHR complex. The
initial model for the MT-4/17-3-6 complex was constructed by
using of residue replacements on the coordinate sets 1AIK in
Protein Data Bank [5], a NHR–CHR complex X-ray model of
MT-4/LAI. Structural optimization was performed for this model
by an energy minimization method with an MMFF94 force field
[24] considering water molecules within 10 Å around protein atoms.
The energy cutoff distance was set at 10 Å and the dielectric
constant was distance dependent based on the value of 1.0 for the
protein atoms and 80.0 for the solvent atoms. The 1AIK X-ray
model of MT-4/LAI was optimized for comparison with the MT-4/
17-3-6 model by the same method.

100 ps molecular dynamics simulation was performed for each
optimized model with the water molecules at 300 K by using a 0.002 ps
time step, the MMFF94 force field and NVT method (number of
particles, volume, and temperature were fixed) [25–27]. Before these
equilibrium iterations, 1ps heating iterations were employed to con-
sider the stable equilibration. The potential energy of each total
molecular system after the 100 ps simulation was �5.85 · 104 kcal/mol
and �5.67 · 104 kcal/mol, including 3233 and 3252 water molecules
for MT-4/17-3-6 and MT-4/LAI, respectively. Hydrogen bond analy-
ses were based on 100 conformations sampled every 0.5 ps during the
equilibrium iterations from 50 to 100 ps, in which the potential energy
seemed to settle down clearly.

All operations and calculations were performed using a graphical
package for molecular structure analyses, Molecular Operating Envi-
ronment (CCG, http://www.ccg.com/).
Results and discussion

A possible structure of the MT-4/17-3-6 NHR–CHR
complex predicted from energy minimization is shown
in Fig. 1A. We found three sets of hydrogen bond bridg-
es which seemed to fix the complex effectively. The
bridge consisted of three hydrogen bonds of Y638Og–
H564Nd1, H564Ne2–E560Od1 and E560Od2–Q650Ne2, and
three of the bridges enclosed the complex on its surface.
The alignment of functional groups in the bridge was
seemed to be similar to the charge relay system of serine
protease active sites. In the structure of the MT-4/LAI
NHR–CHR complex, shown in Fig. 1B, only E560Od2–
Q650Ne2 was formed and Y638Og–H564Nd1 and
H564Ne2–E560Od1 were not formed. Especially, the phen-
yl ring of Y638 and the imidazole ring of H564 existed
side by side, but Og and Nd1 or Ne2 were not placed
where they could form a hydrogen bond. The sidechain
of H564 in the MT-4/17-3-6 complex shifted slightly to
the outer side of the complex compared with the
MT-4/LAI complex, and it was thought that the
formation of hydrogen bonds of Y638Og–H564Nd1 and
H564Ne2–E560Od1 was enable by this shift. The total
interaction energy between NHR and CHR was �4.52 ·
102 kcal/mol in MT-4/17-3-6 and �4.05 · 102 kcal/mol
in MT-4/LAI; thus, the NHR and CHR of MT-4/17-3-6
were combined more strongly than these of MT-4/LAI.

http://www.ccg.com/
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Fig. 1. Optimized models of MT-4/17-3-6 and MT-4/LAI NHR–CHR complex. The optimized structures of the NHR–CHR regions of MT-4/17-3-
6 and MT-4/LAI are shown by tube models with ball and stick models of Y638, H564, E560, and Q650 in A and B respectively. The helical structures of
the NHR core coiled-coil are colored by red, blue and green, and the helical structures of CHR are colored by purple, light blue and yellow. Possible
hydrogen bonds are shown by black dotted lines.
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The statistical analyses of the formation of these
hydrogen bonds during the later iterations of the molec-
ular dynamics simulations are summarized in Table 2,
and a superimposed stereo view of the most stable struc-
ture in the simulations is shown in Fig. 2. In the MT-4/
17-3-6 complex, hydrogen bonds were formed in the
conformation with probabilities of 82.3% and 59.7%
for Y638Og–H564Nd1 and H564Ne2–E560Od1 respectively,
which are very high probabilities compared with these
for MT-4/LAI. Just beside H564, the L565M mutation
was found in MT-4/17-3-6 compared with MT-4/LAI.
In the MT-4/LAI complex, as shown by dark blue and
green sticks in Fig. 2, the L565 sidechain contacted
CHR sidechains of I635 and I642 by hydrophobic interac-
tion, and this interaction was fixed tightly by the exis-
tence of a hydrogen bond between Q567 and T639. On
the other hand, in the MT-4/17-3-6 complex, as shown
by orange and yellow sticks, a longer hydrophobic side-
chain of M565 existed instead of the shorter sidechain of
leucine. Two isoleucines, glutamine and threonine in the
MT-4/17-3-6 complex remained at the same positions in
the MT-4/LAI complex and fixed the sidechain of
methionine. In addition, the I635 residue, especially its
sidechain, was close to the sidechain of M565 because
of loss of the branched structure in the sidechain L565.
Table 2
Probability of hydrogen bond formation during the molecular dynamics sim

Models Probability of hydrogen bond form

Y638Og–H564Nd1

MT-4/17-3-6 82.3
MT-4/LAI 1.0

a Hydrogen bond analyses were based on 100 conformations sampled every
for hydrogen bond formation were as following; bond length of N–O < 3.6
We found that H564 in the NHR was pushed to the
outer side in the MT-4/17-3-6 complex, and three hydro-
gen bond bridges of Y638–H564–E560–Q650 could be
formed and seen to enclose the coiled-coil. As shown
in detail in Fig. 2, the structural difference from the
MT-4/LAI complex in this region was that the M565

mainchain and the H564 of NHR were pushed to the out-
er side (from dark blue to orange) and the neighboring
Y638 and T639 of CHR were shifted to the opposite direc-
tion (from green to yellow). As a result, the imidazole
ring of H564 in the MT-4/17-3-6 complex was placed in
the position and direction where it could be stabilized
by hydrogen bonds with both Y638 in the CHR region
and E560 in the same NHR region.

We tentatively optimized another virtual model with
mutation of only L565M from MT-4/LAI, and also
found similar Y638–H564 hydrogen bonds as in the
MT-4/17-3-6 model (data not shown). As shown in Ta-
ble 1, E630Q, S641G, and N651I mutations were found
distinctively in the CHR region of MT-4/17-3-6, but
all of these residues were placed on the outer side, which
had no direct interaction with the inner NHR coils.
S641G and N651I were adjacent to Y638 and Q650. It
seemed that these mutations might contribute to the
formation of hydrogen bond bridges by increasing the
ulation

ation (%)a

H564Ne2–E560Od1 E560Od2–Q650Ne2

59.7 74.3
0.3 76.7

0.5 ps during the equilibrium iterations from 50 to 100 ps. The criteria
Å and bond angle of N–H–O > 110�.



Fig. 2. A superimposed stereo view of the molecular models of MT-4/17-3-6 and MT-4/LAI. The most stable structures in our molecular dynamics
simulations of MT-4/17-3-6 and MT-4/LAI were superimposed by a fitting of all mainchain atoms, and only parts related to the hydrogen bond
bridges of MT-4/17-3-6 are shown. The NHR and CHR regions of MT-4/17-3-6 are shown by orange and yellow sticks, and these of MT-4/LAI by
dark blue and green sticks, respectively. Oxygen, nitrogen, and sulfur atoms are colored by red, light blue, and white. Each hydrogen bond and its
length is shown by a green line and numerical value, and the atoms involved in these hydrogen bonds and sidechains of the 565th residues are shown
by a ball and stick model.
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flexibilities of the neighboring mainchain of Y638 and
decreasing the hydrogen bonding to the Q650 sidechain
via water molecules, respectively.

Therefore, it was thought that the L565M mutation
would be a major factor affecting the coiled-coil stabil-
ization by these bridges, and the binding of peptide fu-
sion inhibitors might be distinctively disturbed by this
stabilization in MT-4/17-3-6. The parallel stacking of
two rings of H564 and Y638 was also found in the
X-ray structure [7], but no hydrogen bond between these
sidechains was shown in the structure, because the two
rings were placed too closely, as was also true in the
MT-4/LAI model. We think that the hydrogen bond be-
tween H564 and Y638 fixes the sidechain of H564 in the
position that makes it easy to form the next hydrogen
bond with E560, and that the positional relationship of
the two rings is very important for the total formation
of the hydrogen bond bridges shown in the model for
MT-4/17-3-6.

Coiled-coil trimeric structures are commonly found
in the spike proteins of not only HIV but also other
corona viruses, including influenza virus, Ebola virus,
and SARS virus [28]. In these coiled-coil structures, it
seemed that HIV had the most tightly combined
complex of NHR and CHR, and therefore the mode
of interaction between NHR and CHR of HIV may be
most effective for the trimeric formation at the time of
virus attack. We found in our previous research that
the differences of gp41 resistance to peptide fusion inhib-
itors were larger for intra-subtype comparisons, such as
MT-4/LAI and MT-4/17-3-6, than for inter-subtype
comparisons, such as MT-4/LAI and CU98-26 (sub-
types are shown in Table 1) [23]. These large intra-sub-
type differences can be explained by our model, which
showed that the L565M mutation could stabilize the
coiled-coil without affecting the structure of the protein
widely. We previously reported that the resistance to
peptide fusion inhibitors differed markedly between
MT-4/LAI and L-2 in spite of the fact that they had
the same sequences of NHR and CHR (Table 1). It is
not thought that all of the differences between these
virus strains could be explained in here clearly, because
the interactions between the NHR–CHR complex and
the other regions of the spike protein were not consid-
ered in our analyses. However, by the focusing on the
L565M mutation in the inner and central moiety, which
would be not affected by the other regions, we found
that this mutation might be an important factor for
the resistance of MT-4/17-3-6 to peptide inhibitors with
respect to coiled-coil formation and cell fusion.
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