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Stem cells have been shown to have the potential to provide a source of cells for applications to tissue engineering and organ repair. The mech-
anisms that regulate stem cell fate, however, mostly remain unclear. Mesenchymal stem cells (MSCs) are multipotent progenitor cells that are
isolated from bone marrow and other adult tissues, and can be differentiated into multiple cell lineages, such as bone, cartilage, fat, muscles
and neurons. Although previous studies have focused intensively on the effects of chemical signals that regulate MSC commitment, the effects
of physical/mechanical cues of the microenvironment on MSC fate determination have long been neglected. However, several studies provided
evidence that mechanical signals, both direct and indirect, played important roles in regulating a stem cell fate. In this review, we summarize a
number of recent studies on how cell adhesion and mechanical cues influence the differentiation of MSCs into specific lineages. Understanding
how chemical and mechanical cues in the microenvironment orchestrate stem cell differentiation may provide new insights into ways to
improve our techniques in cell therapy and organ repair.
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Introduction

Many patients suffer from chronic organ failure, brought about by
myocardial infraction, chronic renal failure, diabetes, neural degenera-
tive diseases, etc. The major problem in these chronic diseases is the
progressive damage to tissues combined with the absence of ade-
quate endogenous repair systems. Tissue function is gradually lost,
and the patient’s condition becomes critical. Currently, allogenic
organ transplantation is the preferred approach for restoration of
organ function. Despite attempts to encourage organ donation, how-
ever, there is a shortage of transplantable human tissues and organs
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worldwide. Another disadvantage of organ transplantation is the seri-
ous outcome of organ rejection by recipients. For these reasons,
researchers are investigating new approaches for treating organ fail-
ure. An alternative to organ or tissue transplantation is the use of cell-
based therapies and tissue engineering to circumvent the shortage of
organ donors. Over the past few years, several studies reported
results that show great potential for cell-based therapy in regenerative
medicine [1-3]. One of the major limitations of cell-based therapy is
the limited number of available human cells. Another problem is when
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isolated and expanded in vitro, several cell types dedifferentiate and
lose their specific differentiation characters that are necessary for
their function. Recently, stem cells isolated from either developing
embryos or adult human tissues or genetically reprogrammed from
adult cells have been shown to be a superior source of undifferenti-
ated progenitor cells. With the importance of stem cells in tissue engi-
neering becoming well recognized, researchers are currently focusing
upon regulating stem cell commitment and applying stem cells to
tissue engineering.

General introduction of stem cell
biology

Stem cells are defined as unspecialized precursor cells capable of
self-renewal and differentiation into diverse specialized cell lineages
under appropriate stimuli. Stem cells can be categorized into three
broad types based on their ability to differentiate. Totipotent cells are
derived from early embryos, in which each cell can form a new indi-
vidual. Pluripotent stem cells [e.g. embryonic (E)SCs] are derived
from the undifferentiated inner cell mass of the blastocyst in early
embryos and can form most of the cell types in the body except the
placenta. Although ESCs are an excellent source for generating differ-
ent cell types, the experimental design of applying ESCs to tissue
replacement is poorly understood. ESCs have been used in several
degenerative disease models and may provide better treatment out-
come for those diseases [4-6]. There are still several obstacles to be
overcome, for example, after ESCs are transplanted into tissues, they
give rise to teratomas, which can eventually kill the host. Thus, pre-
venting ESCs from outgrowth and controlling the ESC fate to obtain
specific types of tissues are some of the major challenges in the stem
cell biology. Developing treatments for these diseases will require
better knowledge of the pathways, which are necessary for uncom-
mitted cells to become differentiated and restore the function of dam-
aged tissues. Mesenchymal stem cells (e.g. MSCs) are derived from
foetal tissues, cord blood, placenta and other adult tissues. Despite
the ability of these cells to differentiate into other lineages being more
limited than pluripotent stem cells, these multipotent cells already
have a track record of success in cell-based therapies [7-9]. Human
(h)MSCs isolated from bone marrow aspirates have been shown to
differentiate into fabricated bone, cartilage, fat, muscles, tendons/liga-
ments and other connective tissues both in vivo and in vitro [10, 11].
Transplantation of bone marrow-derived stem cells into adult mice
can give rise to brain astrocytes [12] and neurons [13]. It was also
been reported that MSCs can undergo transdifferentiation, in which
mesenchymal cells are induced to become parenchymal cell types,
such as hepatocytes [14, 15], endothelial cells [16] or cardiomyo-
cytes [17]. In addition to their differentiation ability, isolated MSCs
are able to grow in the presence of foetal bovine serum and maintain
the potential to differentiate into different lineages. However, the two
important features of self-renewal and multipotentiality of stem cells
become limited when these cells are introduced into in vitro culture,
and MSCs progressively senescence [18, 19]. In particular, long-term
culturing on rigid substrata inevitably leads to decreased growth rates
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and eventual senescence, with concomitant decreases in the differen-
tiation propensity and telomere length [20, 21]. In addition, adult
stem cells exhibit significant donor-to-donor variability in proliferation
rates and differentiation potential [18, 22, 23]. These phenomena are
critical because therapeutic tissue engineering requires large and reli-
able production of donor-specific cells. It is important to be able to
induce MSC proliferation without losing the differentiation potential
both in vivo and in vitro.

Various growth factors and cytokines have been applied to study
the control of stem cell proliferation. Treatment of hMSCs with fibro-
blast growth factor (FGF)-2 resulted in a faster proliferation rate, and
the doubling time was always shorter than the untreated controls
[24]. Incubation of MSCs with bone morphogenetic protein (BMP)-2
significantly increased proliferation as seen by bromo-deoxyuridine
(BrdU) incorporation, cell cycle progression and the expression of
proliferating cell nuclear antigen (PCNA) [25]. Cell proliferation was
further enhanced by the combined treatment with BMP-2 and FGF-2,
possibly because of synergistic effects resulting from signal crosstalk
between these two different stimuli [26]. Both BMP-2 and FGF-2 are
also involved in inducing osteogenesis of MSCs [26]. Other than
these soluble factors, recent studies also demonstrated that several
extracellular matrix (ECM) proteins are able to preserve the prolifera-
tion and differentiation potential of MSCs. The ECM made of bone
marrow cells facilitates expansion of MSCs [27, 28]. This ECM is
most likely composed of basement membrane proteins, including col-
lagen types |, Il and V, syndecan-1, perlecan, fibronectin, laminin, bi-
glycan and decorin [27]. In addition, treatment with hyaluronan alone
can also preserve the proliferation and differentiation potential of
MSCs [29]. Those studies suggested that appropriate control of the
stem cell growth and its stemness by these environmental cues may
provide insights into how to maintain and expand stem cell for in vitro
culture systems.

Cell adhesion and the generation of
adhesion forces

Cells adhere to the ECM through specific classes of transmembrane
receptor integrins. Binding of integrins to the ECM causes their clus-
tering in cell membranes [30], which in turns leads to the recruitment
of focal adhesion proteins that participate in intracellular signalling
pathways or that mechanically connect integrins to the cytoskeleton
[30, 31]. The assembly and disassembly of focal adhesions are very
highly regulated and play critical roles in cell spread and migration
[32-36]. Focal adhesions evolve from small, dot-like structures
located at the periphery of a spreading cell or the leading edge of a
migrating cell, termed as focal complexes. These structures are nas-
cent and can mature into focal adhesions [37]. Apparently, because
of the differentiation, localization, and size of focal complexes and
focal adhesions, the actin cytoskeleton associated with them differ-
ently. The tensile force generated by actin filaments attached to focal
complexes may also differ in magnitude from that of actin filaments
attached to mature focal adhesions. Several studies have revealed
that during the maturation of focal complexes to focal adhesions,
both small guanine triphosphatase (GTPase) Rho and myosin light-
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chain kinase have been shown to regulate contractile forces of the
actin cytoskeleton and formation of focal adhesions [38, 39]. A
decrease in myosin ll-driven contractility has been shown to diminish
the size of focal adhesions [40], and blocking contractility leads to
complete dissolution of focal adhesions [32, 41]. These studies sug-
gest that the mechanisms of assembly and disassembly of focal
adhesions are regulated by biochemical signals, and also by forces
generated by actino-myosin contractions.

Despite intensive efforts to understand how the cytoskeleton
responds to chemical stimuli, the mechanisms by which forces are
generated across cell surfaces and transduced into a cytoskeletal
response are still poorly understood. Measuring the force that is gen-
erated at a focal adhesion is not a simple task. Spatial and temporal
variations in force generated at focal adhesions from site to site make
it challenging to precisely measure. Previous studies have success-
fully demonstrated measurement of forces in focal adhesions of cells
cultured on flexible substrata, such as silicone membranes (Fig. 1A)
[42]. Deformation of a flexible substratum by cell-generated forces
can be visualized by microscopy, and subsequently, lateral deforma-
tion of the substratum can be used to calculate local forces. However,
silicon film does not behave like an ideal spring, and the complexity
of the preparation procedures renders it difficult to use. An alternative
flexible substratum for force measurements is polyacrylamide (PA)
gel. PA gel has several advantages of easy preparation and superior
mechanical properties. The flexibility of acrylamide gels can be easily
controlled by simply adjusting the ratio of acrylamide to bis-acrylam-
ide [43], and the three-dimensional (3D) porous structure mimics
physiological conditions. Using displacements of embedded fluores-
cent beads, deformations of PA gels can be used to calculate the
contractility (Fig. 1B) [43, 44]. Through this approach, a linear rela-
tionship was found between the forces exerted at adhesion and the
size of focal adhesions. Although these approaches provide strong
correlations between the mechanical force and cell behaviour, these
methods can neither provide causal relationships between forces and
cellular behaviours nor offer appropriate detection of forces in all indi-
cated intracellular regions. Recently, soft-lithography technology,
derived from the semiconductor industry, has been used to control
cell-ECM and cell-cell adhesions [45-47]. A device, composed of mi-
croneedle arrays (posts) fabricated in a polydimethylsiloxane (PDMS)
elastomer using a photolithographic method, was used to measure
forces generated by spreading cells (Fig. 1C-E) [48]. With application
of microcontact printing, contractile forces of cells attached to differ-
ent-sized areas can easily be quantified and compared. This device
provides a better way to study both spatial and temporal changes in
contractile forces generated by cells in response to environmental
changes.

Cell adhesion regulates MSC
differentiation

It is now well accepted that MSC differentiation and phenotypic
expression can be influenced by cues from the surrounding environ-
ment, both soluble (e.g. cytokines and growth factors) and insoluble
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(e.9. ECM density and stiffness) factors. However, the process of
MSC differentiation is not fully understood. It has been well estab-
lished that soluble growth factors (i.e. cytokines) regulate MSC com-
mitments into different lineages [49-52]. Although much effort has
intensively been focused on soluble factors in MSC differentiation, lit-
tle is known about the importance of cell adhesion in regulating MSC
differentiation. In adipogenic differentiation, for example, changes in
cell morphology, a decrease in assembly of cytoskeletal proteins and
an increase in the activities of numerous lipogenic enzymes were
found to be correlated with adipogenesis [53]. In the context of adipo-
genesis, expressions of ECM receptor integrins are differentially regu-
lated during adipogenesis. The level of b integrin gradually
diminishes during the induction of adipogenesis, whereas that of o6
increases. Qverexpression of o5 integrin results in enhanced prolifer-
ation and attenuated adipogenic differentiation, whereas overexpres-
sion of o6 integrin does not affect adipogenesis [54]. Given that
adipogenesis is a multistep process, one of the onsets of adipogene-
sis is ECM remodelling, as characterized by the conversion of the
fibronectin-rich matrix into laminin-rich ECM [55-57]. This result is
consistent with data showing that fibronectin increases cell spreading
and pre-adipocyte proliferation, while inhibiting adipogenic differenti-
ation [53]. Furthermore, cell adhesion and spread reflect cytoskeletal
tension. In this context, changes in a cell’s shape and cytoskeletal
tension have been reported to be crucial in determining MSC lineage
commitment into adipogenesis or osteogenesis [58]. Spreading facili-
tates osteogenesis, whereas unspreading facilitates adipogenesis.
Inhibition of cell spreading and cytoskeletal tension can also attenuate
BMP-induced osteogenic differentiation in hMSCs [59]. These results
suggest that adhesion of cells to the ECM induces assembly of the
actin cytoskeleton, which, through increasing spreading and cytoskel-
eton-driven tension, prevents adipogenic differentiation, but facilitates
osteogenesis.

In addition to adipogenesis, a previous study has shown that
blocking ECM-ligand interactions by applying the functional-perturb-
ing anti-o5p1 integrin reduced both bone-like nodule formation and
expressions of osteogenic genes. This result suggests that the o5p1
integrin mediates the binding of osteoblasts to fibronectin and is
required for osteogenic differentiation [60] and suggests a pivotal role
of fibronectin in osteoblast differentiation. Another study has demon-
strated that even though hMSCs can adhere to various ECM-coated
substrates (collagen |, fibronectin, vitronectin and collagen 1V), the
greatest osteogenic differentiation occurs among cells plated on vitro-
nectin and collagen | [61]. The type | collagen or «2p1 integrin recog-
nition sequence Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER) from the alpha
[1] chain of type | collagen promotes activation of focal adhesion
kinase (FAK), alkaline phosphatase and expression of osteogenic
genes in murine pre-osteoblast-like cells [62]. Blocking the interac-
tion of type | collagen with its receptor o231 integrin by Asp-Gly-Glu-
Ala (DGEA), an amino acid domain of type | collagen that interacts
with the o2p1 integrin receptor on cell membranes, shows that the
expression of the osteogenic phenotype of bone marrow—derived
stromal cells is suppressed [62, 63]. On the other hand, when hMSCs
are plated on laminin-coated dish, the proliferation of hMSCs is more
rapid than control cells, but the differentiation potential is still main-
tained. However, laminin suppresses chondrogenic differentiation of
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Fig. 1 Tools for measuring cellular forces. (A) Fish keratinocytes cultured on a flexible silicon substrate and wrinkling of the film because of the gen-
eration of traction in cells. (B) 3T3 cells cultured on polyacrylamide (PA) gel embedded with fluorescent microbeads. Both A and B are reproduced
with permission from Ref. [44]. (C) Schematic illustration of cells lying on posts and deformation of the posts by exertion of traction force on the
posts. (D) A uniform vertical microfabricated elastomeric array of posts. (E) Quantification of the subcellular distribution of traction forces. The
length of the arrow indicates the magnitude of the calculated force. C, D and E were reproduced with the permission from Ref. [48].

hMSCs, but has no effect on osteogenesis, suggesting that laminin
may contribute to osteogenic differentiation by promoting prolifera-
tion and suppressing chondrogenic differentiation [64].

Other than differentiating into known mesenchymal tissues, inves-
tigators have also been working on inducing MSCs into neuronal lin-
eages. Under certain conditions, MSCs can be induced to exhibit
neuronal morphology and express protein markers that are typical of
neurons [65, 66]. It has also been shown that MSCs exhibit high pro-
liferation on ECM-coated substrata that also support neuronal differ-
entiation [67]. These results indicate that multiple ECM proteins may
provide a suitable environment for MSC attachment to the underlying
substratum. The adhesion signal from each type of ECM protein is
transmitted through a specific integrin to regulate differentiation.
Although the aforementioned studies provided great insights into how
adhesion regulates intracellular forces, whether or not mechanical
stress mediates adhesion-induced MSC differentiation is still poorly
understood.

Substratum stiffness and MSC fate
decisions

The effects of mechanical forces induced by the surrounding environ-
ment (both soluble and insoluble factors) on cell behaviours are
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becoming an important topic in biological research. Cell adhesion to
the ECM regulates cell proliferation and differentiation, and it is
believed that tension has been shown to be one of the major media-
tors of both stimuli. However, most of our understanding of cell func-
tions is based on the studies of cells cultured on stiff surfaces, such
as glass coverslips and tissue culture dishes, which are often coated
with a very thin layer of ECM. Such a thin ECM coating might not be
relevant to the mechanical properties of the microenvironment for
most in vivo tissues. A previous study has revealed that tissue stiff-
ness runs from very stiff, such as Achilles’ tendon (ca. 310 MPa), to
very soft, such as mammary glands (ca. 160 Pa) [68]. These tissue
architectures serve as structural-based scaffolding and a source of
inherent forces of mechanical stimulation for single cells. Cellular
behaviours such as cell proliferation, differentiation and even apopto-
sis under stimulation by substrate stiffness are highly tuned [69].
Aberrant regulation of in vivo tissue stiffness may result in severe and
chronic pathological events, such as fibrosis and cancer [70-73].
Therefore, understanding cellular responses upon stimulation by
mechanical inputs from the substratum or surrounding microenviron-
ment may provide useful information for manipulating cellular behav-
jours. Several systems have been used to study the influence of
substratum stiffness on cellular behaviours. A simple method that is
typically used to change the stiffness of a substratum is protein-
based ECM gel, such as collagen, fibrin and collagen mixed with
fibrin, laminin and other ECM proteins [74-77]. Other materials such
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as polysaccharide-based alginate gel can also be manipulated to exhi-
bit distinct compliance [78, 79]. By increasing the protein concentra-
tion, the stiffness of the gel can be increased. However, the major
disadvantage of using natural gels is that changing the concentration
of these natural polymers affects the mechanical stiffness and the
ligand density, which may result in uncertain cellular responses upon
cell plating on substrates of different stiffness levels. In addition to
natural polymers, several groups have also developed synthetic poly-
mers, such as PA and poly(ethylene glycol) (PEG) gels. These gels
are chemically inert to cell adhesion unless the surface of the gel is
pre-coated with ECM proteins, such as fibronectin or collagen. Thus,
the stiffness of the gel can be manipulated by changing the cross-
linking of the polymer without changing the material chemistry [43,
44]. Several studies have shown that matrix compliance does affect
cellular functions. Fusion of myoblasts leads to the formation of poly-
nuclear striated myotubes on collagen strips attached to glass or PA
gels with various elasticities. Myotubes exhibit striations only on sub-
strates of intermediate stiffness (ca. 8-10 kPa), but not on substrates
of high (17 kPa) or low (ca. 1 kPa) stiffness (Fig. 2C and D) [80]. He-
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patocytes, as in the case of myotube formation, prefer slightly
cross-linked Matrigel that is stiffer than basal Matrigel and can form
aggregations and differentiation [81]. Using such a tunable substrate
system, it is demonstrated that elasticity of the matrix microenviron-
ment can modulate MSC lineage commitment as well. hMSCs differ-
entiate into neuronal-like cells on soft substrate that mimics the
stiffness of brain tissues. On the substrate with intermediate stiffness
similar to muscles, these cells differentiate into a myoblast lineage,
while these cells plated on stiff substrate with a stiffness similar to
bone differentiate into osteoblasts [82]. In addition, matrix stiffness
can modulate soluble factor-induced MSC differentiation. Park ef al.
have found that MSCs on a stiff substrate express smooth muscle cell
(SMC) markers, such as a-actin and calponin, whereas MSCs express
chondrogenic marker type Il collagen and the adipogenic marker,
lipoprotein lipase (LPL) on soft substrate. Treatment with transform-
ing growth factor (TGF)-B increases SMC marker expression on stiff
substrates, while TGF-B increases chondrogenic marker expression,
but suppresses adipogenic marker expression on soft substrates
[83]. However, the major disadvantage of using synthetic gels is that
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Fig. 2 Mechanical stimulus-induced differentiation. (A) Cell shape drives mesenchymal stem cell (MSC) lineage commitment. Human (h)MSCs
became bone only on large micropatterned islands, whereas adipogenesis occurred on small islands. (B) Quantitative results of MSC commitment on
different-sized islands. Both A and B were reproduced from Ref. [58]. (C) Myocytes cultured on collagen-coated polyacrylamide (PA) gels with vari-
ous stiffness levels. Striated myotubes formed only on gels of intermediate stiffness. (D) Quantification results of optimal myotube formation on gels
with different stiffness levels. Both C and D were reproduced from Ref. [80]. (E) The elastic modulus of solid tissues. (F) The stiffness of the PA gel
system can be modulated by changing the amount of the crosslinker. Cell adhesion to the gel can be controlled by covalent attachment of extracellu-
lar matrix (ECM) proteins (in this case, type 1 collagen). Human mesenchymal stem cells (hMSCs) seeded onto PA gels with different stiffness levels
showed different morphologies. Cells were unspread with a branched morphology on soft substrate (0.1—1 kPa), had a bipolar morphology on inter-
mediate stiffness (8-17 kPa) and had a polygonal morphology on stiff substrate (25-40 kPa) 96 hrs after seeding. (G) hMSCs differentiated into a
neuronal lineage on soft substrate (0.1-1 kPa; as indicated by staining of BlII tubulin staining in cell branches); myogenic on intermediate stiffness
(8-17 kPa; as indicated by MyoD staining of nuclei), and osteogenic on stiff substrate (as indicated by the punctuate CBFa1 staining of nuclei). E, F
and G were reproduced from Ref. [82] (© 2004 Rockefeller University Press. Originally published in J. Cell Biol. 166:877-887).
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changing the stiffness of the gel by modulating the cross-linker not
only alters the mechanics of these gels but also the material proper-
ties, such as the surface porosity, geometry and ligand-binding prop-
erties.  Therefore, microfabricated, micromolded elastomeric
micropost arrays, which decouple the substrate stiffness from adhe-
sive and surface properties to provide a wide range of substrate stiff-
ness values, were reported by Fu et al. [84]. These devices include
the same micropost surface geometry, but differ in post-heights,
which can generate substrate stiffness levels across a 1000-fold
range. Such devices provide an ECM analogue with different stiffness
levels to regulate stem cell commitment and also serve as a force
detector to measure contractile forces preceding MSC differentiation
at the single cell level [84]. Together, these studies provide insights
as to how substrate stiffness differentially regulates MSC lineage
commitment and how mechanical stimulation cooperates with soluble
factors to modulate MSC differentiation.

Molecular mechanisms relaying
substratum stiffness-regulated cellular
responses

Although mechanical properties of the matrix affect cell growth and
differentiation, how cells sense changes in substrate stiffness and
how mechanical signals of substrate compliance are transmitted into
cells to regulate cellular behaviours remain to be elucidated. One of
the known pathways that mediate stiffness-regulated cell behaviours
is through integrin-focal adhesion signalling. A previous study by
Shih et al. has indicated that stiffer matrix-regulated osteogenesis is
mediated by o2-integrin-mediated activation of FAK, Rho-dependent
kinase (ROCK) and extracellular signal-regulated kinase (ERK)1/2,
given that knockdown of o2-integrin alleviates matrix rigidity—regu-
lated osteogenic outcome and a2-integrin downstream signalling in
hMSCs [85]. In addition, using tunable PDMS substrates, Wang et al.
have demonstrated that stiffer substrates promote epidermal cell pro-
liferation, migration and re-epithelialization, whereas softer substrates
promote differentiation. The pathway mediating stiffer substrate—
induced cell proliferation and migration is through integrin-mediated
focal adhesion signalling [86]. Other than the current existing signal-
ling pathways, several transcription factors have been implicated as
being involved in mechanical force-regulated cell behaviour. Connelly
et al. have shown that the cell geometry regulates skin stem cell
differentiation, where cells plated on smaller islands are more highly
differentiated than cells that are allowed to fully spread out [47]. This
geometry-driven skin stem cell differentiation requires lower expres-
sion of stress fibres and a high amount of G-actin, suggesting the
involvement of megakaryoblastic leukaemia 1 (MAL) [87] and its
binding partner, serum response factor (SRF) [88]. The downstream
genes JunB (MAL-activated) and FOS are differentially regulated, sug-
gesting that microenvironmental cues, such as chemical and mechan-
ical signals, may work synergistically to regulate cell behaviour
through regulating different transcription factors. On the other hand,
Dupont et al. have demonstrated that the transcription factors, Yes-
associated protein (YAP) and transcriptional coactivator with a PDZ-
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binding motif (TAZ), serve as nuclear relays to mediate mechanical
stresses exerted by ECM stiffness and cell shape [89]. The results
indicated that RhoA activity and myosin-driven cytoskeletal contractil-
ity are required for regulation. YAP and TAZ are also found to be
crucial for ECM stiffness— and cell geometry—regulated MSC differen-
tiation, suggesting that YAP and TAZ serve as force sensors to relay
mechanical cues raised by the microenvironment.

Mechanical forces control MSC
differentiation

Under physiological conditions, all cells contact the ECM and receive
various forces from the surrounding environment; for example, endo-
thelial cells lining blood vessels responding to changes in fluid shear
stresses, compression of chondrocytes in knee cartilage and stretch-
ing of muscle during muscle contractions. These native mechanical
environments of tissues may facilitate the proliferation and differenti-
ation of cells into specific lineages. To address how mechanical
forces affect cellular differentiation, several different approaches have
been shown to provide robust stimuli for stem cell differentiation.
Uda et al. have demonstrated that using ECM-coated magnetic beads
and applying a magnetic field to generate a twisting force on mouse
ESCs resulted in the downregulation of Oct3/4 expression and a
decrease in cell proliferation via integrin [90]. However, the force
exerted on the cell—cell adhesion molecule, E-cadherin, has no effect
on cell spreading, Oct3/4 expression or self-renewal of mouse ESCs,
but significantly increases the cell stiffness. This study suggests that
forces exerted on integrin or E-cadherin may act through different
force transduction pathways to regulate early embryogenesis. The
chondrogenic differentiation of MSCs requires mechanical stimuli,
where mechanical loading helped to heal knee articulate cartilage [91]
and transplantation of MSCs into the knee joint accompanied by dif-
ferent local mechanical stimuli resulted in different responses in
reparative areas [92]. To mimic in vivo mechanical loading on articu-
lating cartilage, chondrogenesis of MSCs cultured in agarose or colla-
gen with the application of compressive stress has been studied
intensively. Compressive forces have been shown to induce expres-
sion of type Il collagen, aggrecan and chondrogenic-specific tran-
scription factors, such as sox-9 [93]. Induction of gene expression of
TGF-B1 by compressive loading/TGF-p1 treatment suggests that
compressive stresses induced chondrogenesis of MSCs by inducing
the biosynthesis of TGF-B1 [94]. In addition to mechanical loading,
cyclic stretching has been applied to stem cells to elucidate the role
of mechanical stresses on development and differentiation. Cyclic
mechanical loading is able to enhance the differentiation of human
umbilical cord-derived MSCs into osteoblast-like cells as determined
by the expression of osteogenic markers [95, 96]. This strain-induced
osteogenic differentiation is mediated by the activation of ERK1/2 and
a stretch-activated cation channel [96]. Furthermore, in a combination
3D culture system, application of mechanical strain to human osteo-
blastic precursor cells cultured in 3D collagen matrices resulted in
increased expressions of osteogenic markers such as cbfa-1, osteo-
pontin, osteocalcin and collagen type | [97]. This result suggests that
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mechanical loading has beneficial effects on tissue generation and
may be a good model for tissue engineering of bone and cartilage.
Loss of mechanical loading reduces expression of bone-associated
markers and osteogenic activity, which leads to bone loss and possi-
bly osteoporosis [98-101].

Summary

In summary, in addition to soluble factors, mechanical signals also
play pivotal roles in regulating stem cell commitment. Mechanical
stimuli can either work alone or together with soluble factors to regu-
late stem cell’s fate. These effects are similar to the stem cells in nor-
mal in vivo conditions where cells receive environmental stimuli to
guide differentiation towards specific cells or tissues. Despite the sig-
nificant progress in the field of mechanical stress on stem cell fate, a
number of questions remained unanswered. A recent report proposed
that cells may explore environmental changes through stretch-acti-
vated ion channels and integrin—cytoskeleton interconnections [37].
However, how forces are transduced across cell membranes into cells
and connected with intracellular signal pathways to regulate cell
behaviours remain to be elucidated.

Conclusions and future prospects

When in a highly dynamic environment, cells can change their func-
tion and reorganize the cytoskeleton in response to both chemical and
physical stimuli. Studies of physical stimuli in numerous systems can
lead to exploration of mechanical and chemical cues that act on cells
and regulate cellular behaviour. It is also true that mechanical signals
promote stem cell differentiation into distinct lineages, which mimics
the process of embryonic development. However, how MSCs sense
and respond to mechanical stimuli remains largely unknown. Several
studies have implicated the role of integrins and their downstream
signals, and cytoskeletons play important roles in mechanosensing
and responding in different types of cells [30, 31, 37, 72, 74]. The
detailed underlying mechanisms still need to be elucidated. In addition
to integrin and its downstream signalling, mechanically sensitive ion
channels are also shown to be involved in mechanosensing. These
mechanosensitive channels are involved in regulating a variety of cel-
lular functions, including axonal guidance, cell migration, perception
of pain and vascular responsiveness [102]. Recently, several types of
these channels have been identified as mechanosensing channels in
mammalian cells, including degenerin/epithelial sodium channel, tran-
sient receptor potential channels, acid-sensitive ion channels and oth-
ers [103]. Although some of these channels were shown to be
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important in maintaining stem cells, the detailed mechanisms of
how these channels are involved in mechanosensing and their
regulation of stem cell proliferation and differentiation remain to be
investigated.
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pressive stresses and shear stresses, which regulate MSC commit-
ment to specific lineages. Despite a lack of knowledge of how to
manipulate MSC fates, these cells are already known to have superior
regeneration potential in cell-based therapies when applied to specific
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ferentiate MSCs both in vitro and in vivo. Given that most tissues are
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sue-engineered scaffolds should allow for the establishment of mic-
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medicine will allow us to combine stem cell technology to create
alternative tissues and injectable/implantable materials to replace and
repair damaged parts after ablation of damaged tissues.

Acknowledgements

We apologize to those authors whose papers could not be cited as a result of
space constraints. We thank Drs. Lin Gao and Daniel Cohen (University of
Pennsylvania) for their helpful discussions and advice. This study was sup-
ported in part by research grants from Taipei Medical University start-up grant
(TMU101-AE1-B04), and the National Science Council of Taiwan (NSC101-
2320-B-006-016-MY3) to YKW, and grants from the National Institute of
Health (EB00262, EB001046, HL73305 and GM74048), Penn Center for Mus-
culoskeletal Disorders, Penn Center for Engineering Cells and Regeneration to
CSC.

Conflicts of interest

The authors state that there are no conflicts of interest.

Trachtenberg B, Velazquez DL, Williams
AR, et al. Rationale and design of the
transendocardial injection of autologous
human cells (bone marrow or mesenchy-
mal) in chronic ischemic left ventricular

829

Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



830

dysfunction and heart failure secondary to
myocardial infarction (TAC-HFT) trial: a
randomized, double-blind, placebo-con-
trolled study of safety and efficacy. Am
Heart J. 2011; 161: 487-93.

Vaca P, Martin F, Vegara-Meseguer J,
et al. Induction of differentiation of embry-
onic stem cells into insulin secreting cells
by fetal soluble factors. Stem Cell. 2006;
24: 258-65.

Bjorklund LM, Sanchez-Pernaute R,
Chung S, efal. Embryonic stem cells
develop into functional dopaminergic neu-
rons after transplantation in a Parkinson
rat model. Proc Natl Acad Sci USA.
2002; 99: 2344-9.

Wu JH, Wang HJ, Tan YZ, et al. Character-
ization of rat very small embryonic-like
stem cells and cardiac repair after cell
transplantation for myocardial infraction.
Stem Cell Dev. 2012; 21: 1367-79.
Schwarz SC, Schwarz J. Translation of
stem cell therapy for neurological diseases.
Transl Res. 2010; 156: 155-60.

Choudhery MS, Khan M, Mahmood R,
et al. Mesenchymal stem cells conditioned
with glucose depletion augments with their
ability to repair infracted myocardium. J
Cell Mol Med. 2012; 16: 2518-29.

Pileggi A. Mesenchymal stem cell for the
treatment of diabetes. Diabetes. 2012; 61:
1355-6.

Pittenger MF, Alastair M, Mackay AM,
et al. Multilineage potential of adult human
mesenchymal stem cells. Science. 1999;
284: 143-7.

Caplan Al. Mesenchymal stem cells: cell-
based reconstructive therapy in orthope-
dics. Tissue Eng. 2005; 11: 1198-211.
Azizi SA, Stokes D, Augelli BJ, et al.
Engraftment and migration of human bone
marrow stromal cells implanted in the
brains of albino rats—similarities to astro-
cyte grafts. Proc Natl Acad Sci USA. 1998;
95:3908-13.

Brazelton TR, Rossi FMV, Keshet Gl, et al.
From marrow to brain: expression of neu-
ronal phenotypes in adult mice. Science.
2000; 290: 1775-9.

Theise ND, Badve S, Saxena R, ef al. Deri-
vation of hepatocytes from bone marrow
cells in mice after radiation-induced my-
eloablation. Hepatol. 2000a; 31: 235-40.
Theise ND, Nimmakayalu M, Gardner R,
et al. Liver from bone marrow in humans.
Hepatol. 2000b; 32: 11-6.

Lin Y, Weisdorf DJ, Solovey A, et al. Ori-
gins of circulating endothelial cells and
endothelial outgrowth from blood. J Clin
Invest. 2000; 105: 71-7.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Orlic D, Kajstura J, Chimenti S, et al.
Bone marrow cells regenerate infracted
myocardium. Nature. 2001; 410: 701-5.
Conget PA, Minguell JJ. Phenotypical and
functional properties of human bone mar-
row mesenchymal progenitor cells. J Cell
Physiol. 1999; 181: 67-73.

Digirolamo CM, Stokes D, Colter D, ef al.
Propagation and senescence of human
marrow stromal cells in culture: a simple
colony-forming assay identifies samples
with the greatest potential to propagate and
differentiate. Br J Haematol. 1999; 107:
275-81.

Banfi A, Muraglia A, Dozin B, et al. Prolif-
eration kinetics and differentiation potential
of ex vivo expanded human bone marrow
stromal cells: implications for their use in
cell therapy. Exp Hematol. 2000; 28: 707-
15.

Bonab MM, Alimoghaddam K, Talebian F,
et al. Aging of mesenchymal stem cell in
vitro. BMC Cell Biol. 2006; 7: 14-21.
Bruder SP, Jaiswal N, Haynesworth SE.
Growth kinetics, self-renewal, and the oste-
ogenic potential of purified human mesen-
chymal stem cells during extensive
subcultivation and following cryopreserva-
tion. J Cell Biochem. 1997; 64: 278-94.
Phinney DG, Kopen G, Righter W, et al.
Donor variation in the growth properties
and osteogenic potential of human marrow
stromal cells. J Cell Biochem. 1999; 75:
424-36.

Ahn HJ, Lee WJ, Kwack K, et al. FGF-2
stimulates the proliferation of mesenchy-
mal stem cells through the transient activa-
tion of JNK. FEBS Lett. 2009; 583: 2922-6.
Akino K, Mineta T, Fukui M, ef al. Bone
morphogenetic protein-2 regulates prolifer-
ation of human mesenchymal stem cells.
Wound Rep Reg. 2003; 11: 354-60.
Hanada K, Dennis JE, Caplan Al. Stimula-
tory effects of basic fibroblast growth fac-
tor and bone morphogenetic protein-2 on
osteogenic differentiation of rat bone-mar-
row-derived mesenchymal stem cells. J
Bone Miner Res. 1997; 12: 1606-14.

Chen XD, Dusevich V, Feng JQ, et al.
Extracellular matrix made by bone marrow
cells facilitates expansion of marrow-
derived mesenchymal progenitor cells and
prevents their differentiation into osteo-
blasts. J Bone Miner Res. 2007; 22: 1943—
56.

Matsubara T, Tsutsumi S, Pan H, ef al. A
new technique to expand human mesen-
chymal stem cells using basement mem-
brane extracellular matrix. ~ Biochem
Biophys Res Commun. 2004; 313: 503-8.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

42.

43.

Chen PY, Huang LL, Hsieh HJ. Hyaluro-
nan preserves the proliferation and dif-
ferentiation  potentials  of long-term
cultured murine adipose-derived stromal
cells. Biochem Biophys Res Commun.
2007; 360: 1-6.

Boettiger D. Mechanical control of integrin-
mediated adhesion and signaling. Curr Opin
Cell Biol. 2012; 24: 592-9.

Geiger B, Bershadsky A, Pankov R, et al.
Transmembrane extracellular matrix—cyto-
skeleton crosstalk. Nat Rev Mol Cell Biol.
2001; 2: 793-805.

Burridge KM, Chrzanowska-Wodnicka M.
Focal adhesions, contractility, and signal-
ing. Annu Rev Cell Dev Biol. 1996; 12:
463-518.

Leonova EV, Pennington KE, Krebshach
PH, ef al. Substrate mineralization stimu-
lates focal adhesion contact redistribution
and cell motility of bone marrow stromal
cells. J Biomed Mater Res A. 2006; 79:
263-70.

Cavalcanti-Adam  EA,  Micoulet A,
Blimmel J, ef al. Lateral spacing of inte-
grin ligands influences cell spreading and
focal adhesion assembly. Eur J Cell Biol.
2006; 85: 219-24.

Wehrle-Haller B. Assembly and disassem-
bly of cell matrix adhesions. Curr Opin Cell
Biol. 2012; 24: 569-81.

Huttenlocher A, Horwitz AR. Integrins in
cell migration. Cold Spring Harb Perspect
Biol. 2011; 3: 2005074.

Geiger B, Bershadsky A. Assembly and
mechanosensory function of focal contacts.
Curr Opin Cell Biol. 2001; 13: 584-92.
Chrzanowska-Wodnicka M, Burridge K.
Rho-stimulated contractility drives the for-
mation of stress fibers and focal adhesions.
J Cell Biol. 1996; 133: 1403-15.

Ridley AJ, Hall A. The small GTP binding
protein rho regulates the assembly of focal
adhesions and actin stress fibers in
response to growth factors. Cell. 1992; 70:
389-99.

Balaban NQ, Schwarz US, Riveline D,
et al. Force and focal adhesion assembly: a
close relationship studies using elastic
micropatterned substrates. Nat Cell Biol.
2001; 3: 466-72.

Bershadsky AD, Balaban NQ, Geiger B.
Adhesion-dependent cell mechanosensitivi-
ty. Ann Rev Cell Dev Biol. 2003; 19: 677—
95.

Burton K, Park JH, Taylor DL. Keratocytes
generate traction forces in two phases. Mol
Biol Cell. 1999; 10: 3745-69.

Pelham RJ, Wang YL. Cell locomotion and
focal adhesions are regulated by substrate

© 2013 The Authors.

Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

flexibility. Proc Natl Acad Sci USA. 1997;
94:13661-5.

Beningo KA, Wang YL. Flexible substrata
for the detection of cellular traction forces.
Trend Cell Biol. 2002; 12: 79-84.

Singhvi R, Kuma E, Lopez GP, et al. Engi-
neering cell shape and function. Science.
1994; 264: 696-8.

Nelson CM, Chen CS. Cell-cell signaling by
direct contact increases cell proliferation
via a PI3K-dependent signal. FEBS Lett.
2002; 514: 238-42.

Connelly JT, Gautrot JE, Trappmann B,
et al. Actin and serum response factor
transducer physical cues from the
microenvironment to regulate epidermal
stem cell fate. Nat Cell Biol. 2010; 12:
711-8.

Tan JL, Tien J, Pirone DM, et al. Cell lying
on a bed of microneedles: an approach to
isolate mechanical force. Proc Natl Acad
Sci USA. 2003; 100: 1484-9.

Delcroix GJ, Curtis KM, Schiller PC, et al.
EGF and b-FGF pre-treatment enhances
neural specification and the response to
neuronal commitment of MIAMI cells. Dif-
ferentiation. 2010; 80: 213-27.

Huang Z, Ren PG, Ma T, et al. Modulating
osteogenesis of mesenchymal stem cells
by modifying growth factor availability.
Cytokine. 2010; 51: 305-10.

Weiss S, Hennig T, Bock R, ef al. Impact
of growth factors and PTHrP on early and
late chondrogenic differentiation of human
mesenchymal stem cells. J Cell Physiol.
2010; 223: 84-93.

Ayatollahi M, Soleimani M, Tabei SZ,
et al. Hepatogenic differentiation of mes-
enchymal stem cells induced by insulin like
growth factor-1. World J Stem Cells. 2011;
3:113-21.

Spiegelman BM, Ginty CA. Fibronectin
modulation of cell shape and lipogenic
gene expression in 3T3-adipocytes. Cell.
1983; 35: 657-66.

Liu J, DeYoung SM, Zhang M, et al.
Changes in integrin expression during adi-
pocyte differentiation. Cell Metab. 2005; 2:
165-77.

Mandrup S, Lane MD. Regulating adipo-
genesis. J Biol Chem. 1997; 272: 5367-70.
Smas CM, Sul HS. Control of adipocyte dif-
ferentiation. Biochem J. 1995; 309: 697—
710.

Selvarajan S, Lund LR, Takeuchi T, et al.
A plasma kallikrein-dependent plasminogen
cascade required for adipocyte differentia-
tion. Nat Cell Biol. 2001; 3: 267-75.
McBeath R, Pirone DM, Nelson CM, et al.
Cell shape, cytoskeletal tension, and RhoA

© 2013 The Authors.
Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

.

regulate stem cell lineage commitment.
Dev Cell. 2004; 6: 483-95.

Wang YK, Yu X, Cohen DM, et al. Bone
morphogenetic protein-2-induced signaling
and osteogenesis is regulated by cell
shape, RhoA/ROCK, and cytoskeletal ten-
sion. Stem Cells Dev. 2012; 21: 1176-86.
Moursi AM, Globus RK, Damsky CH. Inter-
actions between integrin receptors and
fibronectin are required for calvarial osteo-
blast differentiation in vitro. J Cell Sci.
1997; 110: 2187-96.

Salasznyk RM, Williams WA, Boskey A,
et al. Adhesion to vitronectin and collagen
| promotes osteogenic differentiation of
human mesenchymal stem cell. J Biomed
Biotech. 2004; 2004 24-34.

Mizuno M, Kuboki Y. Osteoblast-related
gene expression of bone marrow cells dur-
ing the osteoblastic differentiation induced
by type | collagen. J Biochem. 2001; 129:
133-8.

Xiao G, Wang D, Benson MD, et al. Role
of the alpha2-integrin in osteoblast-specific
gene expression and activation of the 0sf2
transcription factor. J Biol Chem. 1998;
273: 32988-94.

Hashimoto J, Kariya Y, Miyazaki K. Regu-
lation of proliferation and chondrogenic dif-
ferentiation of human mesenchymal stem
cells by laminin-5. Stem Cells. 2006; 24:
2346-54.

Sanchez-Ramos J, Song S, Cardozo-Pe-
laez F, et al. Adult bone marrow stromal
cells differentiate into neural cells in vitro.
Exp Neurol. 2000; 164: 247-56.

Deng WW, Obrocka M, Fischer I, et al. In
vitro differentiation of human marrow stro-
mal cells into early progenitors of neural
cells by conditions that increase intracellu-
lar cyclic AMP. Biochem Biophys Res
Comm. 2001; 282: 148-52.

Qiana L, Saltzman WM. Improving the
expansion and neuronal differentiation of
mesenchymal stem cells through culture
surface modification. Biomaterials. 2004;
25:1331-7.

Levental I, Georges PC, Janmey PA. Soft
biological materials and their impact on cell
function. Soft Matter. 2007; 3: 299-306.
Hoffman BD, Grashoff C, Schwartz MA.
Dynamic molecular processes mediate cel-
lular mechanotransduction. Nature. 2011;
475:316-23.

Lu P, Weaver VM, Werb Z. The extracellu-
lar matrix: a dynamic niche in cancer
progression. J Cell Biol. 2012; 196:
395-406.

Yu H, Mouw JK, Weaver VM. Forcing form
and function: biomechanical regulation of

J. Cell. Mol. Med. Vol 17, No 7, 2013

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

tumor evolution. Trends Cell Biol. 2011; 21:
47-56.

Levental KR, Yu H, Kass L, ef al. Matrix
crosslinking forces tumor progression by
enhancing integrin signaling. Cell. 2009;
139: 891-906.

Paszek MJ, Zahir N, Johnson KR, et al.
Tensional homeostasis and the malignant
phenotype. Cancer Cell. 2005; 8: 241-54.
Wei WC, Lin HH, Shen MR, ef al. Me-
chanosensing machinery for cells under
low substratum rigidity. Am J Physiol Cell
Physiol. 2008; 295: C1579-89.

Liu J, Tan Y, Zhang H, et al. Soft fibrin
gels promote selection and growth of
tumorigenic cells. Nat Mater. 2012; 11:
734-41.

Aguirre A, Planell JA, Engel E. Dynamic of
bone marrow-derived endothelial progeni-
tor cell/mesenchymal stem cell interaction
in co-culture and its implications in angio-
genesis. Biochem Biophys Res Comm.
2010; 400: 284-91.

Lai VK, Lake SP, Frey CR, et al. Mechani-
cal behavior of collagen-fibrin co-gels
reflects transition from series to parallel
interactions with increasing collagen con-
tent. J Biomech Eng. 2012; 134: 011004.
Smeds KA, Pfister-Serres A, Miki D, ef al.
Photocrosslinkable polysaccharides for in
situ hydrogel formation. J Biomed Mater
Res. 2001; 54: 115-21.

Balakrishnan B, Mohanty M, Umashankar
PR, et al. Evaluation of an in situ forming
hydrogel wound dressing based on oxi-
dized alginate and gelatin. Biomaterials.
2005; 26: 6335-42.

Engler AJ, Griffin MA, Sen S, et al. Myotu-
bes differentiate optimally on substrates
with  tissue-like stiffness: pathological
implications for soft or stiff microenviron-
ments. J Cell Biol. 2004; 166: 877-87.
Semler EJ, Moghe PV. Engineering hepato-
cyte functional fate through growth factor
dynamics: the role of cell morphologic
priming. Biotechnol Bioeng. 2001; 75: 510—
20.

Engler AJ, Sen S, Sweeney HL, et al.
Matrix elasticity directs stem cell lineage
specification. Cell. 2006; 126: 677-89.
Park JS, Chu JS, Tsou AD, et al. The effect
of matrix stiffness on the differentiation of
mesenchymal stem cells in response to
TGF-B. Biomaterials. 2011; 32: 3921-30.
Fu J, Wang YK, Yang MT, et al. Mechani-
cal regulation of cell function with geomet-
rically modulated elastomeric substrates.
Nat Methods. 2010; 7: 733-6.

Shih YV, Tseng K, Lai H, ef al. Matrix stiff-
ness regulation of integrin-mediated me-

831



86.

87.

88.

89.

90.

91.

832

chanotransduction  during  osteogenic
differentiation of human mesenchymal
stem cells. J Bone Miner Res. 2011; 26:
730-8.

Wang Y, Wang G, Luo X, ef al. Substrate
stiffness regulates the proliferation, migra-
tion, and differentiation of epidermal cells.
Burns. 2012; 38: 414-20.

Miralles F, Posern G, Zaromytidou Al,
ef al. Actin dynamics control SRF activity
by regulation of its coactivator MAL. Cell.
2003; 113: 329-42.

Vartiainen MK, Guettler S, Larijani B,
et al. Nuclear actin regulates dynamic sub-
cellular localization and activity of the SRF
cofactor MAL. Science. 2007; 316: 1749
52.

Dupont S, Morsut L, Aragona M, et al.
Role of YAP/TAZ in mechanotransduction.
Nature. 2011; 474: 179-83.

Uda Y, Poh Y, Chowdhury F, et al. Force
via integrins but not E-cadherin decreases
Oct3/4 expression in embryonic stem cells.
Biochem Biophys Res GComm. 2011; 415:
396-400.

0’Driscoll SW, Keely FW, Salter RB. Dura-
bility of regenerated articular cartilage pro-
duced by free autogenous periosteal grafts
in major full-thickness defects in joint sur-
faces under the influence of continuous

92.

93.

94.

95.

96.

97.

passive motion. A follow-up report at one
year. J Bone Joint Surg Am. 1988; 70:
595-606.

Wakitani S, Goto T, Pineda SJ, et al. Mes-
enchymal cell-based repair of large, full-
thickness defects of articular cartilage. J
Bone Joint Surg Am. 1994; 76: 579-92.
Takahashi 1, Nuckolls GH, Takahashi K,
et al. Compressive force promotes sox9,
type 1l collagen and aggrecan and inhibits
IL-1beta expression resulting in chondro-
genesis in mouse embryonic limb bud
mesenchymal cells. J Cell Sci. 1998; 111:
2067-76.

Huang CY, Hargar KL, Frost LE, ef al.
Effects of cyclic compressive loading on
chondrogenesis of rabbit bone-marrow
derived mesenchymal stem cells. Stem
Cells. 2004; 22: 313-23.

Kang MN, Yoon HH, Seo YK, ef al. Effect
of mechanical stimulation on the differenti-
ation of cord stem cells. Connect Tissue
Res. 2012; 53: 149-59.

Kearney EM, Farrell E, Prendergast PJ,
et al. Tensile strain as a regulator of mes-
enchymal stem cell osteogenesis. Ann Bio-
med Eng. 2010; 38: 1767-79.

Ignatius A, Blessing H, Liedert A, ef al.
Tissue engineering of bone: effects of
mechanical strain on osteoblastic cells in

98.

99.

100.

101.

102.

103.

type | collagen matrices. Biomaterials.
2005; 26: 311-8.

Zhang R, Supowit SC, Klein GL, ef al. Rat
tail suspension reduces messenger RNA
level for growth factors and osteopontin
and decreases the osteoblastic differentia-
tion of bone marrow stromal cells. J Bone
Miner Res. 1995; 10: 415-23.
Wimalawansa SM, Wimalawansa SJ.
Simulated weightlessness-induced attenua-
tion of testosterone production may be
responsible for bone loss. Endocrine. 1999;
10: 253-60.

Tamma R, Colaianni G, Camerino C, ef al.
Microgravity during spaceflight directly
affects in vitro osteoclastogenesis and
bone resorption. FASEB J. 2009; 23: 2549
54.

Dai ZQ, Wang R, Ling SK, ef al. Simulated
microgravity inhibits the proliferation and
osteogenesis of rat bone marrow mesen-
chymal stem cells. Cell Prolif. 2007; 40:
671-84.

Amadottir J, Chalfie M. Eukaryotic me-
chanosensitive channels. Ann Rev Biophys.
2010; 39: 111-37.

Kobayashi T, Sokabe M. Sensing substrate
rigidity by mechanosensitive ion channels
with stress fibers and focal adhesions. Curr
Opin Cell Biol. 2010; 22: 669-76.

© 2013 The Authors.

Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



