
plants

Review

Structure–Function Analysis Reveals the Singularity
of Plant Mitochondrial DNA Replication
Components: A Mosaic and Redundant System

Luis Gabriel Brieba

Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del
IPN, Apartado Postal 629, Irapuato, Guanajuato C.P. 36821, Mexico; luis.brieba@cinvestav.mx

Received: 24 October 2019; Accepted: 19 November 2019; Published: 21 November 2019 ����������
�������

Abstract: Plants are sessile organisms, and their DNA is particularly exposed to damaging
agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival.
During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while
minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial
DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial
DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the
mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point
of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be
replicated by several processes. The analysis indicates that DNA replication in plant mitochondria
could be achieved by a recombination-dependent replication mechanism, but also by a replisome
in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase,
Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and
primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic
rearrangements in plant mitochondria.
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1. Introduction

1.1. Plant Mitochondria Genomes

Mitochondria arose from a monophyletic endosymbiotic event between an archaea and an
α-proteobacteria approximately two billion years ago [1]. During the evolution of eukaryotes,
mitochondrial genomes have evolved in size and complexity. For instance, mitochondrial genomes
vary in size more than three orders of magnitude and they exist as circular, linear, linear-branched,
linear-fragmented, and mixtures of maxi and mini-circles [2]. In general, metazoan mitochondrial
genomes are circular molecules that vary in sizes between 10 to 30 kb [3]. In contrast, plant mitochondrial
genomes are predominantly large linear DNA molecules (up to 11 Mb in angiosperms from the genus
Silene). Besides the differences between the physical structure of the plant and metazoan genomes
(linear versus circular), the most remarkable characteristics of plant mitochondrial genomes are their
ability to rearrange, their low nucleotide substitution rate, and the evolution of new mitochondrial open
reading frames. For instance, almost all vertebrates exhibit a similar organization in their mitochondrial
genome arrangement [4], whereas the mitochondrial genomic organization in plants is different even
between ecotytpes of the same species [5]. The abundance of noncoding sequences severely complicates
alignments of mitochondrial genomes from different plant families [6]. A comparison between the
mitochondrial genomes of Col-0 and C24 ecotypes of Arabidopsis thaliana, that diverged 200,000 years
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ago, shows that both genomes exhibit different configurations because of a large inverted repeat [5,7–9].
Even though plant mitochondrial genomes rearrange, the substitution rate in their coding regions is
almost negligible, in contrast with the highly mutable human mitochondrial genome [10,11].

1.2. Replication in Mammalian Mitochondria

Due to their bacterial origin, the mechanisms involved in mitochondrial and plastid DNA
replication are expected to be related to bacteria. Yet mitochondrial DNA replication in metazoans
is achieved by a replisome that is phylogenetically related to the bacteriophage T7 replisome [12,13].
In mitochondrial replisomes from metazoans, a bacteriophage-related RNA polymerase synthesizes
RNA primers to start replication at the heavy and light chains of the circular DNA mitochondrial
molecule, a hexameric helicase unwinds double-stranded DNA, and a trailing mitochondrial DNA
polymerase synthesizes DNA. Human mitochondrial DNA replication starts by a strand-displacement
model of replication in which human mitochondrial RNA polymerase (RNAP) transcribes the
heavy-strand promoter generating a primer that is processed and passed on to the mitochondrial
DNA polymerase (DNAP), DNA replication proceeds interruptedly to copy a new heavy-strand [14].
During this process, the replication fork replicates the light strand origin of replication. This DNA
sequence folds into a stem–loop structure that allows primer synthesis by the mitochondrial RNAP,
and these primers are elongated by the mitochondrial DNA polymerase [15]. Elongation of the heavy
and light chains continues asynchronically until the two chains are completely copied. Although
the strand-displacement model is generally accepted as the mechanism for mitochondrial DNA
replication, there are discrepancies regarding how it proceeds. To date, two alternative models explain
strand-asynchronous replication in mitochondria. One model proposes that long RNA molecules
hybridize to the single-stranded heavy-strand [16]. This ribonucleotide (RNA) incorporation occurred
throughout the lagging strand (RITOLS) transcripts that are continuously hybridized as replication
continues [17]. The second model proposes that single-stranded DNA binding proteins coat the
lagging-strand template [18]. Alternatively to the strand-displacement model, coupled leading
and lagging-strand DNA synthesis can occur bidirectionally in mitochondria [19,20] and recent
work stablished that cells can shift between the strand-asynchronous and the coupled leading and
lagging-strand DNA synthesis depending of the amount of transcripts [21].

2. Enzymes Involved in Organelle DNA Replication in Plants Can Be Grouped into
Bacteriophage-Related, Replication-Dependent Replication and Unique Enzymes

The main difference between the mitochondrial metazoan and bacteriophage T7 replisomes is that
the T7 primase-helicase harbors an active primase module that synthesizes primers for lagging strand
synthesis, whereas the primase module of metazoan primase-helicases is inactive and primer synthesis
depends solely on the mitochondrial RNA polymerase [22,23]. Thus, metazoan primase-helicases
harbors a primase module that has lost its priming activities. The similarities between the metazoan
replicative mitochondrial DNA primase-helicase and the primase-helicase of bacteriophage T7 resulted
in the name of TWINKLE (T7 gp4-like protein with intra-mitochondrial nucleoid localization) for this
protein [24].

2.1. A T7-Like Replisome in Plant Organelles

In this review, we focus on the proteins from the model plant Arabidopsis thaliana as a representative
of flowering plants. As their metazoan counterparts, plant organelles harbor enzymes related to the T7
replisome (Table 1). From the four enzymes involved in DNA replication in bacteriophage T7 and
metazoan mitochondria, land plants have conserved three of them: (a) The primase-helicase, (b) the
RNA polymerase, and (c) the single-stranded DNA binding protein (Table 1). The presence of these
proteins suggests that plant mitochondrial DNA replication is executed in part by a mechanism that
resembles the coordinated leading and lagging-strand replication model of bacteriophage T7 [22]. In this
model, a central primase-helicase unwinds dsDNA in the 3’-5’direction followed by a processive DNA
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polymerase in the leading strand. The primase module of the primase-helicase uses the unwounded
single-stranded regions to recognize a sequence to start the synthesis of very short ribonucleotides
that are handed off to the active site of the lagging strand DNA polymerase. The single-stranded
DNA regions generated during this trombone mechanism are coated by the single-stranded binding
proteins [22,25].

Table 1. Proteins related to bacteriophage T7 proteins present in plant mitochondria.

Enzyme Phage T7 Human
Mitochondria

Arabidopsis
Organelles Number Localization

DNA Polymerase T7 DNAP DNAPγ —- —- —-

Helicase-Primase Helicase-Primase Helicase AtTwinkle At1g30680 Chloroplast and
mitochondria

Primase —- —- AtTwinky At1g30660 ?

Primase T7 RNAP mtRNAP RpoTm At1g68990 Mitochondria

—- —- —- RpoTmp At5g15700 Chloroplast and
mitochondria

SSB SSB mtSSB mtAtSSB1 At4g11060 Chloroplast and
mitochondria

—- —- —- mtAtSSB2 At3g18580 Mitochondria

2.1.1. Plant Organellar Primase-Helicase (AtTwinkle)

Primase-helicases are the central component of replisomes [26,27]. These enzymes unwind
double-stranded DNA segments using NTP hydrolysis for translocation and primer synthesis, using
their helicase and primase modules, respectively [22,27]. The organellar primase-helicases in A. thaliana
(dubbed AtTwinkle) is a 709 amino acid protein with mitochondria and chloroplast localization [28]
(Figure 1A). AtTwinkle, as predicted for all plant primase-helicases, harbors both primase and
helicase activities [28–30]. Structural studies of primase-helicase show that these enzymes assemble as
heptamers or hexamers in which the helicase modules form a compact oligomeric ring to which the
primase modules attach [31,32] (Figure 1B,C). The primase module of AtTwinkle contains six conserved
motifs [30]. Motif I corresponds to the zinc binding domain (ZBD) necessary for template recognition,
whereas regions II to VI assemble the RNA Polymerase domain (Figure 1D). In contrast to all previously
characterized primase-helicases, AtTwinkle recognizes two cryptic nucleotides within the ssDNA
template [29], a biochemical property that may reduce the length of the Okazaki fragments during plant
mitochondrial replication. The helicase module of AtTwinkle shares high amino acid identity with
the helicase module of the T7 primase-helicase and harbors the five conserved motifs [33], including
a Walker motif necessary for nucleotide hydrolysis. The presence of an active AtTwinkle protein in
Arabidopsis suggests the presence of a plant mitochondrial replisome in which a DNA polymerase
replicates DNA following the unwinding of the double helix and exposing the leading-strand for
continuous synthesis [34]. The primase activity suggests that a trailing DNA polymerase synthesizes
the lagging-strand using primers synthesized by the primase module of AtTwinkle [29]. This model of
coordinated leading and lagging strands occurs in bacteriophages T4 and T7, but not in mitochondria
from metazoans and yeast [22,23,26]. Interestingly, Arabidopsis harbors a protein that contains the zinc
finger and the RNA polymerase module of AtTwinkle dubbed AtTwinky [28]. This module by itself is
functional in vitro [29]. An Arabidopsis insertional line in AtTwinkle shows no apparent phenotype,
maybe because the T-DNA insertion occurs in an intron or because of redundant mechanisms for
primer synthesis and DNA unwinding [34].
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Figure 1. AtTwinkle is a homolog of bacteriophage T7 primase-helicase and mitochondrial Twinkle.
(A) Schematic representation of the bifunctional T7 primase-helicase in comparison to AtTwinkle
and human Twinkle. T7 primase-helicase and AtTwinkle contain the conserved motifs necessary for
primase and helicase activities, whereas human Twinkle is inactive as a primase. (B) Homology model
of AtTwinkle showing its RNA polymerase domain and helicase modules with basis on the crystal
structure of the heptameric T7 primase-helicase [31]. (C) Close view of a monomeric module of the
RNAP and helicase of AtTwinkle. (D) Close view of the primase module composed of the zinc binding
domain (ZBD) and RNAP domain. The conserved cysteines that coordinate the zinc atom are colored
in red and magenta.

2.1.2. Bacteriophage-Type Plant Organellar RNA Polymerases

In yeast and metazoans mitochondria, transcription is carried out by a single RNA polymerase
(mtRNA) homologous to T7 RNA polymerase [35]. In contrast to metazoans that harbor one
nuclear-encoded mtRNAP, flowering plants encode three bacteriophage-type RNA polymerases [36,37].
One is localized into the mitochondria (RpoTm), one into the chloroplast (RpoTp), and the third one
presents dual mitochondrial and plastid localization (RpoTmp). In Arabidopsis, RpoTm and RpoTp
start transcription at a specific set of promoters. However, RpoTmp is unable to start transcription
by itself [38]. These enzymes are closely related to bacteriophage T7 RNAP and due to sequence
similarity are expected to fold into two conserved domains: An N-terminal domain, possibly involved
in RNA binding and a C-terminal or polymerization domain. The C-terminal domain is structurally
divided into three subdomains, dubbed palm, fingers, and thumb (Figure 2). Yeast and metazoan
mitochondrial RNAPs are only active by themselves on supercoiled templates; on linearized templates,
they need an associated transcription factor to start transcription [39,40]. Likewise, plant mitochondrial
RNAPs are only active in supercoiled templates [36], suggesting that they also need an unidentified
plant mitochondrial transcription factor for efficient promoter melting. Mitochondrial RNAPs from
metazoans and yeast contains an N-terminal pentatricopeptide repeat (PPR) not present in plant
mitochondrial RNAPs and T7 RNAP (Figure 2). Thus, plant mitochondrial RNAP are more compact
than yeast and metazoan mitochondrial RNAPs.

In bacteriophage T7 and metazoan mitochondria, their RNAPs synthesize long RNA chains at
defined sequences that mark their origins of replication [15,41–43]. It is unknown if plant mitochondrial
RNAPs play a role in synthesizing RNA primers during mitochondrial or plastid replication. However,
plant mitochondrial genomes are proposed to exist as a multitude of linear fragments, carrying only
partial segments of their genome [44–46]. The presence of numerous promoter DNA sequences in plant
mitochondria makes possible the existence of multiple initiation replication sites in mitochondrial DNA.

During metazoan mitochondrial DNA replication, the RNA primers generated by the
mitochondrial RNA polymerase are removed by a specific set of nucleases. In humans, five different
nucleases participate in this process [47–52]. From those enzymes, RNAse H1 plays a predominant role
by degrading the RNA primer until it reaches few nucleotides. These last two to three ribonucleotides
can be removed by the flap specific nucleases FEN1, DNA2, and MGME1 or by the selective 5′-3′

exonuclease EXOG [48,51]. Arabidopis encodes for three proteins highly homologous to RNase H1,
dubbed AtRNH1A (At3g01410), AtRNH1B(At5g51080), and AtRNH1C (At1g24090) [47]. AtRNH1A is
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localized into the nucleus, whereas AtRNH1B and AtRNH1C are imported into mitochondria and
chloroplasts, respectively. AtRNH1C prevents R-loop accumulation in chloroplast especially at highly
transcribed regions and putative origins of replication [47]. AtRNH1C is involved in assuring genome
stability in the chloroplast, suggesting the possibility that AtRNH1B may contribute to the removal of
RNA primers in plant mitochondria.

Figure 2. Bacteriophage-type plant organellar RNA polymerases. (A) Domain organization of
bacteriophage-related RNAP. These enzymes share a C-terminal or polymerization domain that is
divided into three subdomains: Fingers, palm, and thumb, and a N-terminal domain involved in
promoter opening and RNA binding. The N-terminal domain is colored orange and the subdomains of
the fingers, thumb, and palm of blue, green, and red, respectively. mtHsRNAP associates with two
accessory subunits (TFB2M and TFAM) to open double-stranded DNA and contains a N-terminal
pentatricopeptide repeat (PPR)-domain and a tether helix not present in plant mitochondrial RNAPs.
(B) Structural model of the mtAtRNAP compared to bacteriophage T7RNAP and human mtRNAP
during transcription initiation [40,53].

2.1.3. Plant Organellar Single-Stranded DNA Binding Proteins

All replisomes contain single-stranded DNA binding proteins (SSBs) that coat the lagging-strand
DNA chain and exert a multitude of interactions with DNA polymerases, DNA helicases, and other
proteins involved in DNA metabolism. Flowering plants encode for two canonical single-stranded
DNA binding proteins that are targeted to mitochondria (AtmtSSB1 and AtmtSSB2) [54,55]. Like all
SSBs, these proteins harbor an oligonucleotide/oligosaccharide/binding (OB)-fold domain and share a
conserved set of aromatic amino acids that in other bacterial and mitochondrial SSBs are important for
binding to single-stranded DNA. Among these amino acids, residues W54 and F60 that are determinant
for binding to SSB in bacteria are conserved in AtmtSSB1 and AtmtSSB2 [56–58] (Figure 3). AtmtSSB1
assembles as a tetramer, binds single-stranded DNA in the nanomolar range, and interacts with plant
mitochondrial DNA polymerases from Arabidopsis [59]. A recent proteomic analysis indicates that
both AtmtSSB1 and AtmtSSB2 are highly abundant proteins, suggesting that a great portion of the
mitochondrial single-stranded DNA is coated with them [55]. The last nine amino acids of E. coli SSB
are responsible for mediating protein–protein interactions [60,61]. AtmtSSB1 contains a predominant
acid tail while AtmtSSB2 harbors an aromatic tail (Figure 3), suggesting the possibility that both SSBs
exert differential protein–protein interactions.
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Figure 3. Homology model of tetrameric AtmtSSB1. (A) Homology model of AtmtSBB1 illustrating
its oligonucleotide/oligosaccharide/binding (OB)-fold and an acid C-terminal tail. (B) An amino acid
sequence alignment illustrates that the C-terminal tail of AtmtSSB2 is composed of two aromatic amino
acids, whereas AtmtSSB1 is acidic.

2.2. A Putative Recombination-Dependent Replication System in Plant Mitochondria

One of the main differences between plant and human mitochondrial genomes resides in the
presence of highly abundant repeats of different lengths in plant mitochondria [62,63]. These repeats
are classified by Gualberto and Newton as large repeats (>500 base pairs); intermediate-sized repeats
(50–500 base pairs); and small repeats (<50 base pairs) [64,65]. Seminal studies deduced that the
recombinogenic character at large repeats is responsible for plant mitochondrial DNA genomic
configurations [62,66,67]. Thus, it is generally accepted that recombination at large repeats results in the
presence of multiple mitochondrial genome conformations, whereas recombination at intermediate-size
repeats are not as frequent [5,68]. The low-frequency recombination at intermediate-size repeats leads
to changes in the stoichiometry of the mitochondrial genomes [69,70]. Finally, recombination at small
repeats drives the apparition of new open reading frames associated with traits like cytoplasmic male
sterility [71,72]. The notion that recombination is dependent on the length of the repeat is challenged
by comparing new mitochondrial DNA sequences between domesticated and wild-type cultivars and
by following the evolutionary history between species [73,74].

The recombinant character of the mitochondrial genome is reminiscent of bacteriophage T4
genome, which uses a recombination-dependent replication (RDR) mechanism [46,75]. Furthermore,
seminal studies have shown the presence of linear molecules, head-to-tail concatemers, branched, and
rosette-like structures during plant mitochondrial replication suggesting that free single-stranded DNA
ends direct primer formation [45,46,76,77]. In contrast to metazoan mitochondria, plant mitochondria
harbor a complete set of enzymes involved in HR. In bacteriophage, T4 RDR starts by coating of
the single-stranded DNA by a recombinase dubbed UvsX, a protein homolog to bacterial RecA,
or eukaryotic Rad51. As all recombinases, this protein uses ATP to catalyze the exchange of the
single-stranded DNA into double-stranded DNA. This initial step creates a triple-stranded DNA
region in which T4 DNA polymerase assembles to initiate replication. A replicative helicase loads
onto the displaced DNA strand, this enzyme translocates in 5’ to 3’ direction, unwinding DNA,
and generating a template for the trailing polymerase. The helicase associates with a primase that
recognizes single-stranded sequences in the 3’-5’direction and generates primers used by a second
DNA polymerase during replisome assembly. Although this system is relatively simple, it needs the
presence of several mediator proteins that coordinate protein loading. In Arabidopsis mitochondria,
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several homologs to the battery of T4 enzymes involved in RDR are present, suggesting the possibility
that RDR is a functional mechanism in plants (Table 2).

Table 2. Plant mitochondrial proteins related to bacteriophage T4 recombination-dependent
replication proteins.

Process or Enzyme Phage T4 Bacteria Arabidopsis
Organelles

Acession
Number Localization

Annealing to ssDNA UvsX RecA AtRecA2 At2g19490 Chloroplast and
mitochondria

AtRecA3 At3g10140 Mitochondria

Suppress Rec-A
Annealing —- RecX AtRecX At3g13226.1 ?

Mediator UvsY RecFOR AtODB1 At1g71310 Mitochondria and the
nucleus

Helicase Dda? RadA AtRadA At5g50340 Chloroplast and
mitochondria

Branch Migration
Remodeling UvsW RecG AtRecG1 At2g01440.1 RecG1

2.2.1. AtRecA

RecA and its homologs Rad51 and BRCA are the central components of homologous recombination.
RecA is an archetypical bacterial recombinase that loads onto resected single-stranded DNA in an
ATP-dependent reaction. It assembles a nucleic acid-protein filament that navigates the double-stranded
genome in search of a homologous sequence, and when a region of homology is encountered, this
filament perfectly pairs with its homologous partner (located within a dsDNA region) and generates
a heteroduplex or D-loop intermediate [78]. HR by Rad51/RecA is abrogated in the presence of
mismatches and bacterial RecA needs at least eight nucleotides of perfect complementarity to form a
stable D-loop, although the efficiency of heteroduplex formation increases according to the length of the
perfect complementarity [79–81]. In bacteria, the RecA monomer consists of a central or core domain
of approximately 230 amino acids. This domain folds into a single β-sheet and six α-helices [82].
This core domain is flanked by N and C-terminal domains of approximately 30 and 60 amino acids,
respectively [82]. The crystal structure of bacterial RecA–ssDNA filament illustrates how the RecA
assembles onto ssDNA and how Watson–Crick pairing is assured during the homology search [83]
(Figure 4A).

Unlike metazoan mitochondria that are devoid of RecA homologs, plant mitochondria harbor
orthologues of the recombinase RecA/Rad51 gene family [69,84–86]. These proteins are conserved
from algae to flowering plants. Genetic studies in Physcomitrella patens and Arabidopsis demonstrate
the role of RecA in preventing illegitimate recombination events at small repeats in P. patents and
intermediate-size repeats in Arabidopsis [69,86,87]. A. thaliana harbors three RecA genes. RecA1 is
targeted to the chloroplast, RecA2 is targeted to plastids and mitochondria, whereas RecA3 is only
targeted to mitochondria [69,88]. AtRecA1 is an essential gene, whereas AtRecA2 is only necessary
after the seedling stage [69,86]. AtRecA2 and AtRecA3 share 53% and 41% amino acid identity
with E. coli RecA, respectively. The latter suggests that HR in plant mitochondria may follow a
mechanism similar to bacteria. Interestingly, AtRecA3 lacks the last 22 amino acids of its C-terminal
domain in comparison to E. coli RecA. In bacteria, these residues have a highly acidic composition
and a deletion of 17 amino acids is more efficient in displacing bacterial SSB from ssDNA, thus the
C-terminal extension negatively modulates RecA activity [89] (Figure 4). Plants mutated in AtRecA3
are phenotypically normal. However, they are sensitive to genotoxic treatments [69]. The loss of
RecA2 and RecA3 promotes rearrangements at intermediate-size repeats [86]. These repeats are
not perfect and lead to homeologous recombinant products (illegitimate recombination products).
The increase of illegitimate recombination products in the absence of AtRecA2 or AtRecA3 suggests
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that less stringent RecA-independent pathways take over in their absence. One possible pathway is
the single-strand annealing recombination pathway (SSA) under the control of specialized SSBs with
annealing capabilities as is the case in Deinococcus radiodurans [90]. Recent proteomic studies indicate
that RecA2 is one of the most abundant DNA binding proteins in plant mitochondria [55].

Figure 4. Structural conservation of plant and bacterial RecAs. (A) Crystal structure of the bacterial
RecA postsynaptic nucleoprotein filament determined by Chen, Yang, and Pavletich [83]. Each of the
five RecA monomers is individually colored and labeled with numbers. The search strand is colored in
yellow and the complementary strand in red. The crystal structure comprises solely the RecA fold and
the C-terminal domain is not present in the initial construct. (B) Domain organization of AtRecA2 and
AtRecA3 in comparison to bacterial RecA. AtRecA3 lacks the C-terminal regulatory domain.

2.2.2. AtRecX

In bacteria, RecA can be inhibited by an interaction with a small protein (approximately 20 kDa)
dubbed RecX [91]. RecX proteins bind to RecA monomers and DNA [92]. Bacterial RecX proteins are
composed of nine α-helices that arrange into three three-helix bundles [93,94] (Figure 5A). RecX binds
to RecA filaments promoting their dissociation from single-stranded DNA and impinging homologous
recombination [95,96]. A. thaliana encodes for a gene of 382 amino acids, ortholog to bacterial RecX,
with a predicted mitochondrial localization signal in its first 25 amino acids, a domain of unknown
function and a C-terminal segment that presents 30% amino acid identity with E. coli RecX (Figure 5B).
The presence of this RecX ortholog (AtRecX) suggests the possibility that RecA activities are subject to
regulation in plants. The presence of three RecA genes in flowering plants also suggests that these
proteins may be subject to a gradient of regulation by RecX in vivo. In the moss Physcomitrella patens
RECX, overexpressing mutants exhibit increased recombination products at short dispersed repeats in
mitochondria [97], suggesting that RecX modulates RecA activity and when RecA is not functionally
active, less accurate DNA repair routes gain access to ssDNA with a concomitant appearance of
illegitimate recombination products.
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Figure 5. Structural organization of AtRecX. (A) Crystal structure of RecX from E. coli (PDB: 3c1d). RecX
is composed of three repeats of a three-helix motifs, (B) modular organization of AtRecX in comparison
to bacterial RecX. Plant RecX harbor a mitochondrial targeting sequence (MTS) and a N-terminal
domain of unkown function. AtRecX share more than 30% amino acid identity with bacterial RecXs.

2.2.3. Organellar DNA-Binding Proteins (ODBs)

Upon the formation of single-stranded breaks, canonical SSBs bind to ssDNA blocking its acess
to other binding proteins. In order for RecA to bind ssDNA, SSBs have to be removed from ssDNA.
In bacteria, a protein named RecO (or its functional homolog in yeast, Rad52) interacts with the
C-terminal tails of SSBs creating space for RecA binding [98]. Via proteomic studies, the Gualberto
group identified that Arabidopsis contains two organellar DNA-binding proteins (ODBs), one located in
the mitochondria (AtODB1) and the other in the chloroplast (AtODB2) [99]. AtODBs are homologous to
Rad52 and the yeast mitochondrial nucleoid protein Mgm101 [100]. Mgm101 assembles an oligomeric
ring structure and preferentially binds single-stranded DNA, suggesting a role in stabilizing and
annealing DNA segments [101,102]. Likewise, Rad52 induces the displacement of human replication
protein A (RPA) from ssDNA, anneals complementary ssDNA strands, and promotes strand exchange
between ssDNA and dsDNA [103]. Thus, Rad52 promotes HR by displacing RPA, and promotes
the coating of Rad51 by directing single-stranded annealing. Crystal structures of human Rad52 in
complex with ssDNA depict this molecule as an undecameric ring in which two Rad52 oligomers could
mediate HR in trans [104–106]. AtODB1 comprises 177 amino acids and shares extensive homology
with the N-terminal domain of Rad52 (that contains the DNA binding and oligomerization regions).
However, AtODB1 lacks a C-terminal domain containing the interacting motif for RPA and Rad51, that
are involved in their displacement from ssDNA [107,108]. AtODB1 is 41 amino acids shorter than the
construct of 212 amino acids used to crystallize human Rad52. Interestingly, the last 41 amino acids of
human Rad52 folds into an alpha-helix (named helix 5) that intercalates with the first alpha-helix of the
structure stabilizing the oligomeric assembly [104] (Figure 6).

Because of the reduced size of AtODBs, it is unknown if these proteins interact with SSBs from plant
mitochondria like AtmtSSBs, AtWhirlies, AtRecA, or AtOSBs. Arabidopsis odb1 insertional mutants
present no variation in phenotype, however upon genotoxic stress, they show inferior homologous
recombination potential and increased microhomology-mediated end joining (MMEJ) [100]. This suggests
that plant ODBs may function as mediator proteins that promote the annealing of plant RecAs onto
single-stranded DNA. Recombinantly expressed plant ODB1 can anneal short DNA sequences [100].
The increase in MMEJ in plants lacking AtODB1 may be related to a role of this protein in a single-strand
annealing recombination pathway, since human Rad52 proteins promote this route [109,110].
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Figure 6. AtODB1 resembles human Rad52. (A) Structural domain organization of AtODB1 in
comparison to human Rad52. AtODB1 lacks the C-terminal domain necessary to interact with RPA and
Rad51; (B) crystal structure of the undecameric ring of human Rad52. The undecameric structure is
stabilized by alpha-helix 5 that interacts with alpha-helix 1 of the neighbor molecule. Each subunit
(residues 1 to 172 is individually colored) and the C-terminal residues (172 to 212) are colored in read.
(C) Model of AtODB1 as a undecameric ring lacking alpha-helix 5 of human Rad52.

2.2.4. AtRadA

Bacterial RadA promotes single-stranded strand exchange similar to RecA, and was initially
suggested to be orthologous to RecA [111]. Bacterial RadAs have a conserved domain organization
composed of: (a) A putative zinc finger (ZnF), (b) a Rec-A like ATPase domain with a unique KNRFG
motif, and (c) a region homologous to the Lon protease. Gualberto and Newton have identified the
presence of a RadA-like gene in plant organelles [64] (At5g50340.1). This protein harbors a dual
organellar targeting sequence in its first 88 amino acids and has 63% amino acid similarity with RadA
from Streptococcus pneumoniae [112–114]. Bacterial Rad assembles as a hexameric ring, resembling the
structural organization of replicative DnaB helicases [112] (Figure 7). Bacterial RadA interacts with
RecA and unwinds dsDNA in the 3′-5′ direction. These biochemical properties suggest that RadA
promotes the extension of ssDNA after RecA mediated homologous recombination, similar to the
extension of bacterial origins of replication mediated by DnaB [112].

Because of the conserved domain organization of AtRadA, it is plausible that this protein is involved
in a recombination-dependent replication mechanism. The appearance of multiple origins of replication
in plant mitochondria by electron microscopy suggests the possibility that the unwinding ability of
AtRadA is a key element for break-induced replication, by stabilizing a D-loop in synchrony with
AtRecAs in which AtPolIs could be loaded. An interaction between RecA and RadA promotes D-loop
extension in bacteria [115], suggesting that a similar mechanism could exist in plant mitochondria.
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Figure 7. Plant RadA resembles the bacterial enzyme. (A) Structural organization of AtRadA in
comparision to bacterial RadA. AtRadA shares 63% amino acid similarity with RadA from S. pneumoniae
and complete amino acid identity in the catalytic amino acids. Bacterial RadA harbor a zinc finger
(ZnF), a Rec-A like ATPase domain with a unique KNRFG motif, and a region homologous to the
Lon protease. (B) Crystal structure of the Rec-A like ATPase and Lon protease domains of RadA from
S. pneumoniae showing its resemblance to a hexameric helicase. The ZnF domain is not present in the
crystal structure.

2.2.5. AtRecG

DNA lesions like thymine-dimers or abasic sites, that potentially block replicative DNA helicases
and DNA polymerases, are expected to be predominant in plant mitochondria. Thus, it is expected
that plant mitochondria have developed mechanisms to avoid replication roadblocks that lead to
replication fork collapse. Stalled replication forks can be resolved via the formation of four-strand
Holliday junctions. In bacteria and bacteriophage T4, the helicases RecG and UvsW execute this
process [75,116–118]. Bacterial RecGs are loaded in a stalled replication fork where they catalyze
replication fork reversal by “pushing” a halted three-strand fork and convert this three-strand fork
into a four-strand junction or Holliday junction [117–120]. The Holliday junction structure functions as
a starting point for replication fork restart.

Flowering plants encode a RecG homolog that is conserved from green algae [121]. In Arabidopsis
this protein consists of 957 amino acids, from those residues its first 57 amino acids correspond to an
organellar targeting sequence. AtRecG shares 34% amino acid identity with RecG from Thermotoga
maritima and is expected to have a similar structure (Figure 8). Arabidopsis plants compromised
in their RecG activity are prone to suffer recombination events at intermediate-size repeats and this
phenomenon increases in plants deficient in AtRecA3 [121]. Although the precise role of AtRecG is
unknown, this protein may be involved in the processing of Holliday junction structures and avoiding
replication fork collapse or promoting DNA double-strand break repair.



Plants 2019, 8, 533 12 of 28

Figure 8. Plants harbor a RecG ortholog. (A) AtRecG presents the same domain organization of
bacterial RecG, plus the addition of an N-terminal organellar targeting sequence. (B) RecG remodels
halted replication forks by promoting fork regression (chicken foot structure) that is converted to a
Holliday junction. (C) Crystal structure of T. maritima RecG illustrating its modular assembly.

2.3. Unique Proteins in Flowering Plant Mitochondria

Flowering plant mitochondria have unique proteins. These proteins include: (i) Replicative
DNA polymerases solely encoded by protists and plants, (ii) a modified family of single-stranded
binding proteins, dubbed organellar single-stranded DNA binding proteins (OSBs) in which their
OB-fold suffered extensive modifications, (iii) an associated motif dubbed PDF that plays a role in
binding to ssDNA, (iv) a protein that resembles Muts from bacteria, dubbed Msh1, that is only found
in plants and corals, and (v) a distinctive family of proteins that belong to a family dubbed whirly
(Table 3) [65,122–128]. Both Msh1 and whirlies are proposed to play a dual role in DNA metabolism
and as sensor proteins via retrograde signaling from chloroplast-to-nucleus [129,130].

Table 3. Unique proteins involved in DNA metabolism in flowering plant mitochondria.

Arabidopsis Organeles Acession Number Localization

AtPolIA At1g50840 Mitochondria and chloroplasts

AtPolIB At1g30680 Mitochondria

AtWhy2 At1g71260 Mitochondria

AtOSB1 At1g47720 Mitochondria

AtOSB3 At5g44785 Mitochondria and chloroplasts

AtOSB4 At1g31010 Mitochondria, chloroplasts

AtMsh1 At3g24320.1 Nuclear, mitochondria and chloroplasts

2.3.1. Plant Organellar DNA Polymerases (POPs)

DNA polymerases in metazoan mitochondria are related to bacteriophage T-odd DNA
polymerases [12,131]. Pioneering studies by the groups of Professors Sakaguchi and Sato revealed that
plant organellar DNA polymerases have a different evolutionary history than phage and mitochondrial
DNAPs from metazoans [122–125]. POPs belong to the family A of DNA polymerases; however, they
did not evolve from bacteriophage T-odd DNAPs. Flowering plants harbor two paralogous POP genes
with chloroplast and mitochondrial localization. In Arabidopsis, one POP is a high-fidelity DNAP
(AtPolIA), whereas the other, AtPolIB, is a low-fidelity enzyme [132]. From a structural point of view,
the most distinctive elements in POPs are the presence of three unique insertions in their polymerization
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domain, two of those insertions are located in the thumb subdomain (Ins1 and Ins2), whereas the
third insertion is placed in the fingers subdomain [122–125]. Ins1 and Ins3 are involved in lyase,
strand-displacement, and MMEJ activities [59,133,134] (Figure 9). AtPolIA and AtPolIB interact with
AtTwinkle, and extend primers synthesized by its primase module [29,34]. The physical interaction
between AtPolIs with AtTwinkle and AtSSB1 suggests the presence of a functional plant mitochondrial
replisome [34]. Biochemical and functional evidence suggests that AtPolIA plays a predominant role
in DNA replication, whereas the AtPolIB paralog plays a role in DNA repair [132,135,136]. The gene
duplication event in POP evolution suggests a possible event of specialization. This situation resembles
the presence of duplicated copies of the replicative DNA polymerase in Mycobacterium, in which one
copy contributes to drug resistance because of its low nucleotide incorporation fidelity [137]. In this
scenario, AtPolIB could be in the process of becoming a DNAP specialized in translesion synthesis
or in other DNA repair pathways. Although AtPolIA and AtPolIB share more than 70% amino acid
identity, a single amino acid change in homologous DNA polymerases provides translesion DNA
synthesis capabilities [138].

Figure 9. Structural comparison between AtPolIB and bacterial DNAPs. (A) Domain organization of
both DNAPs. The polymerization domains are colored in black and the 3′-5′ exonuclease domains in
orange. The unique amino acid insertions in AtPolIB in comparison to bacterial DNAPs I are depicted
in a ball-stick representation and colored in red, green, and cyan. AtPolIs contain an N-terminal DTS
and a disorder region not present in the structural model. (B) homology model of AtPolIBs with the
crystal structures of the Klenow fragment from E. coli DNAP I. In both models, the dsDNA from
Bacillus DNAP I is superimposed.

2.3.2. AtWhirlies

The most iconic family of single-stranded binding proteins in plant mitochondria is a family
dubbed whirly. Whirlies are oligomeric proteins unique to plants. In contrast to the majority of
organellar DNA binding proteins, whirlies are encoded in the nucleus and were initially identified
as nuclear transcription factors [139]. Whirlies assemble as tetramers, however, upon binding to



Plants 2019, 8, 533 14 of 28

long-stretches of ssDNA they form a 24-mer assembly [140,141]. Arabidopsis harbors three members
of the Whirly family, AtWhy2 localizes to mitochondria, and as a monomer is the most abundant
DNA binding protein in plant mitochondria [55], whereas AtWhy1 and AtWhy3 translocate into
chloroplasts [55,142]. T-insertional lines of Arabidopsis that knockout AtWhy1 and AtWhy3 accumulate
DNA arrangements at microhomologous repeats in the chloroplast [143]. However, Arabidopsis plants
devoid of AtWhy2 present a wild-type phenotype and do not accumulate MMEJ products in the
absence of agents that induce DSBs [135,144], and show only a small increase in MMEJ products in
presence of ciprofloxacin [135].

Whirly proteins bind ssDNA with nanomolar affinity and exhibit a novel protein fold in which
each whirly monomer consists of two antiparallel beta sheets organized along two alpha-helices that
resembles a whirligig [128,141]. The whirly domain comprises between 150 to 200 amino acids and
contains an acidic/aromatic C-terminal end, that is disordered in crystal structures. The residues
involved in ssDNA binding are distributed along the two antiparallel beta sheets and whirlies interact
with ssDNA via hydrophobic residues and hydrogen bonds mediated by polar amino acids [140]
(Figure 10). Whirlies harbor a conserved KGKAAL motif, located in the second beta strand of the first
β-sheet, whose integrity is necessary for the 24-mer assembly [140]. Although mutations in this domain
do not affect binding to short ssDNA segments, Arabidopsis complemented with a Why construct
in which the second lysine of the KGKAAL motif is mutated to alanine are incompetent to reduce
the appearance of microhomologies [140]. The latter suggests that the functional oligomeric state of
Whirlies in vivo is a 24-mer. The solvent exposed localization of the unstructured C-terminal tail in
whirlies suggests that they may mediate protein–protein interactions, analogous to bacterial SSB.

Figure 10. Structural organization of Whirlies. (A) Crystal structure of AtWhy2 (PDB ID: 4kop)
with model ssDNA from Solanum whirly. The crystal structure represents residues 45 to 212. The
second lysine of the KGKAAL motif is in a ball-stick representation. The C-terminal 310 helix is in red.
(B) Structural organization of AtWhy2. The disordered C-terminal tail is indicated in the diagram.

2.3.3. Organellar Single-Stranded DNA Binding Proteins (OSBs)

The groups of Gualberto and Imbault identified a unique family of single-stranded DNA binding
proteins conserved from green algae to flowering plants [126]. These proteins harbor an N-terminal
OB-fold domain linked to a motif of 50 amino acids dubbed PDF motif, because of a conserved
signature of Pro, Asp, and Phe. Those researchers coined the name “Organellar Single-stranded DNA
Binding proteins (OSB)” for members of this protein family. In OSBs, the PDF motif can be arranged
as one or multiple copies (Figure 11). Arabidopsis contains four OSBs proteins, dubbed AtOSB1 to
AtOSB4. AtOSB1and AtOSB2 are targeted exclusively to mitochondria and chloroplast, respectively,
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whereas AtOSB3 presents dual-target localization. Quantitative proteomic analysis showed that
AtOSB4 and AtOSB3 are highly abundant proteins in mitochondria, whereas AtOSB1 is present at very
low concentrations [55]. Remarkably, T-insertion lines of AtOSB1 generate homologous recombination
products at repeats that are not commonly used [126].

Figure 11. Structural organization of OSBs. (A) Structural model of AtOSB1 showing its predicted
OB-fold and PDF motif domains. (B) Modular organization of mitochondrial OSBs in Arabidopsis.
AtOSBs consist of an OB-like fold followed by one to three PDF motifs (54). Although AtOSB1 is
depicted as a monomer, AtOSB2 in solution assembles as tetramer.

AtOSB2 assembles as a tetramer and binds ssDNA with nanomolar affinity [59]. The PDF motif
of AtOSB1 is sufficient for binding to ssDNA, whereas its OB-fold appears to have lost its ability
to bind ssDNA [126]. AtOSB2 does not interact with AtPolIs, suggesting that in contrast to other
single-stranded binding proteins, its role is not to avoid the formation of secondary structure elements
that halt replicative DNA polymerases [59]. The high-affinity of AtOSBs for single-stranded DNA
regions and their high abundance within mitochondrial DNA suggest that they coat single-stranded
regions of DNA. This coating correlates with the increase of non-canonical homologous recombination
products in plants lacking AtOSB1 [126].

2.3.4. AtMhs1

George P. Rédei discovered that the CHLOROPLAST MUTATOR (chm) locus induces plant
variegation and impaired fertility, and that both traits are inhered maternally [145,146]. The chm
locus regulates the formation of rearrangements in plastids and mitochondria [147] and it encodes
for a protein with resemblance to bacterial MutS, and therefore it was named Msh1 [65]. In bacteria,
MutS and MutL are conserved elements of the DNA mismatch repair pathway. Within this pathway,
MutS recognizes a mismatch and recruits the MutL endonuclease. Recognition of the mismatch
correspondingly to the newly synthesized DNA chain is mediated by hemimethylation recognized
by MutH [148]. The MSH1 gene is only present in corals and plants and is a multidomain protein
harboring domains with homology to bacterial MutS and the GIY-YIG endonuclease [65,127,149,150].
Plants harboring deletions of this gene exhibit increased recombination frequencies at intermediate-size
repeats. It is clear that Msh1 guards organellar genomes against aberrant or not frequent recombination



Plants 2019, 8, 533 16 of 28

events and the roles of Msh1 appear to be related to homeologous recombination suppression [5,68].
Thus, Msh1 resembles a minimal MutS/MutL complex, in which the GIY-YIG endonuclease may play
the same role as that MutL endonuclease. In spite of its prevalent role in keeping a pristine plant
mitochondrial genome, the only functional study of this protein comes from the characterization of its
GIY-YIG domain. By itself this domain binds to branched DNA structures, however the individual
domain is not active as an endonuclease [151]. The proposed role of Msh1 in supressing homeologous
recombination resembles the role of MutS2 in Helicobacter pylori which harbors an Smr domain that is
a non-specific endonuclease [152,153].

2.4. The Bacterial Gyrase, the Eukaryotic DNA Ligase, and the Archaeo-Eukaryotic PrimPol

2.4.1. The Bacterial-Like Plant Organellar Gyrase

Topoisomerases are divided into two types, type I topoisomerases transiently introduce ssDNA
breaks and type II transiently generate dsDNA breaks. DNA gyrase is a type II topoisomerase typically
present in bacteria. This enzyme is a tetramer encoded by two subunits of the GyrA and GyrB proteins.
Bacterial gyrases use ATP to introduce negative supercoils in DNA. Wall and coworkers discovered that
flowering plants encode one gene for gyrA (At3g10690) and two functional genes of gyrB (At3g10270
and At5g04130) [154,155]. AtGyrA is targeted to mitochondria and chloroplast, whereas the product of
At5g04130 is targeted to mitochondria and was dubbed AtmtGyrB [154]. Both AtGyrA and the two
AtmtGyrBs have a clear cyanobacterial origin [154].

Structural studies of bacterial gyrases show the coordination between gyrA and gyrB that drives
cleavage of the DNA strands, strand passage between subunits, and ligation [156–158]. Heterologously
purified AtGyrA/AtmtGyrB present supercoiling activity [155] and the bacterial origin of the plant
organellar AtGyrA/AtmtGyrB makes them a target for the development of new herbicides based on
quinolones [155]. Ciprofloxacin, a quinolone drug, is commonly used to induce specific DSBs in plant
organelles as the gyrase catalytic cycle is not completed [135,159]. However, bacterial DNA gyrases in
complex with quinolone drugs pose a barrier for replication and transcription when bound to DNA
and it is possible that the DBS results from the collision of replication forks [160]. As replication induces
the formation of positive supercoils ahead of replication forks [161], the plant organellar DNA gyrase
may control the formation of origins of replication and the rate of transcription.

2.4.2. Nuclear DNA Ligase I Is Targed to Organelles

Arabidopsis thaliana encodes for three ATP dependent DNA ligases, dubbed DNA ligase I, IV, and
VI. From these, DNA ligase I is located in the nucleus and mitochondria. DNA ligase IV is solely nuclear
and DNA ligase VI is possibly targeted to both nucleus and chloroplast [162,163]. Thus, in flowering
plants, DNA ligase I (At1g08130.1) is the only ligase known to be targeted to mitochondria [163].
DNA ligase I from Arabidopsis (AtDNAligI) shares 46% amino acid identity with DNA ligase I from
humans and its mitochondrial targeting sequence is predicted to involve the first 53 amino acids [113].
The unique role of DNA ligase I in plants contrast with the situation in metazoans in which a specific
DNA ligase, dubbed DNA ligase III, is the main DNA ligase in human mitochondria. Although this
scenario appears to be specific to vertebrates and in lower eukaryotes, DNA ligase I is both a nuclear
and a mitochondrial ligase [164,165]. DNA ligases I are structurally divided into three conserved
domains: DNA binding, adenylation, and OB-fold. They also contain an N-terminal PCNA interaction
motif, as the interaction between DNA ligase I and PCNA is crucial for efficient nick-sealing. Human
DNA ligase I have a toroidal shape structure in which PCNA could be accommodated [166].

The ligase active site is assembled between amino acids from the DNA binding and adenylation
domains. Those domains harbors six conserved motifs (I, III, IIIa, IV, V, and VI) including the active site
lysine, involved in the formation of the ligase–AMP intermediate [166,167]. As flowering plants appear
to only have DNA ligase I in their mitochondria, this ligase is predicted to execute all nick sealing
reactions. ATLIG1 is an essential gene and besides its role in DNA replication, it is involved in repairing
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single and DSBs [162]. A homology-based model of A. thaliana DNA ligase I using human DNA ligase
I shows the predicted fold conservation between both proteins (Figure 12). The PCNA-interacting
peptide (PIP box) motif, located at the N-terminal region of DNA ligases, is predicted to be absent in
the mitochondrial isoform after its import into mitochondria (Figure 12). Although it is plausible that
Arabidopsis DNA ligase I establishes a set of specific protein–protein interactions with protein partners
in mitochondria, it is also possible that Arabidopsis DNA ligase I in mitochondria executes nick-sealing
without the assistance of accessory proteins. Supporting this scenario, human mitochondrial DNA
ligase III can be substituted for bacterial and viral ligases [168].

Figure 12. Structural comparison between HsDNAligI and AtDNligI. (A) AtDNAligI has a shorter
N-terminal region. However, the core structure that harbors the DNA binding domain (red) the
adenylation domain (cyan) and the OB-fold domain (orange) are conserved between both ligases.
(B) Homology modeling of AtDNAlig I with basis on the crystal structure of human DNA ligase I (PDB
ID: 1X9N).

2.4.3. Plant PrimPol

Three independent groups discovered that eukaryotic cells harbor a novel primase from the
archaeo-eukaryotic primase (AEP) superfamily [169–171]. This enzyme is homologous to eukaryotic
primases, but harbors both primase and polymerase activities in a single polypeptide and therefore
it was dubbed PrimPol [169–171]. PrimPol contains independent AEP and zinc finger domains; the
first domain is responsible for template-dependent nucleotide incorporation and the second domain
provides a mechanism to recognize single-stranded DNA templates [170,172–174]. Human PrimPol
localizes to the nucleus and mitochondria [170]. In human mitochondria, this enzyme is not involved
in primer synthesizes during mitochondrial replication, but in negotiating DNA lesions by repriming
and translesion DNA synthesis [169,175]. Arabidopsis thaliana harbors a PrimPol ortholog (AtPrimPol
-At5g52800-). This enzyme is potentially a translesion synthesis DNA polymerase able of primer
synthesis at specific single-stranded DNA sequences (Figure 13). This enzyme harbors localization
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signal for the nucleus, the mitochondria, and the chloroplast, suggesting that it may play a role in
translesion DNA synthesis in each genome.

Figure 13. AtPrimPol resembles HsPrimPol. (A) Both AtPrimPol and HsPrimPol share a modular
organization. AtPrimPol contains an N-terminal sequence for dual organellar targeting. (B) Structural
model of the archaeo-eukaryotic primase (AEP) domain of AtPrimPol. The structural model was
constructed with basis on the crystal structure of the AEP domain of HsPrimPol.

3. Known Unknowns in Plant Mitochondrial Replication

3.1. Mitochondrial DNA Replication Is Mosaic and Redundant

Plant mitochondrial DNA replication is carried out by mosaic and redundant elements
(Tables 1–3). For instance, two DNA polymerases (AtPolIA and AtPolIB) are capable of executing DNA
replication; at least three different processes may exist for DNA unwinding: (a) Direct unwinding
by AtTwinkle, (b) direct unwinding by RadA, and (c) intrinsic unwinding by AtPolIs due to their
strong strand-displacement activities; and five different processes (double stranded breaks, abortive
transcription by mitochondrial RNA polymerases, and primer synthesis by AtTwinkle, AtTwinky, and
AtPrimPol) could generate 3′-OHs needed to start replication. Thus, is not surprising that few genes
involved in mitochondrial DNA replication are essential.

In the coordinated leading and lagging-strand DNA synthesis model, an RNA polymerase
synthesizes long RNA primers at unknown replication origins, AtTwinkle assembles at the
single-stranded region, and these RNA primers are extended by a leading-strand AtPolI. AtTwinkle
coordinates leader and lagging-strand synthesis by its primase activity. In the recombination-dependent
replication system, a double-stranded break is resected and could be coated with AtRecAs. AtRecA
would be responsible to find a homologous region in a double-stranded DNA segment. During AtRecA
binding, the plant helicase AtRadA may bind to the single-stranded DNA assembling a replisome
upon the interaction with AtPolIA or AtPolB (Figure 14).
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Figure 14. Putative models for DNA replication in plant mitochondria. (A) Leader and lagging-strand
DNA synthesis. (B) Recombination-dependent replication systems in plant mitochondria.

In contrast to metazoan mitochondria, in which the four enzymes responsible for its replication
are clearly related to enzymes from T-odd bacteriophages, plant mitochondria harbor enzymes with
clear bacterial origin (DNA gyrase), proteins solely present in plant mitochondria (Msh1, OSBs, Why),
and enzymes related to bacteriophages (AtTwinkle). This redundant and mosaic system may be
responsible for the peculiarities present in plant mitochondrial genomes.

The study of DNA metabolism in plant mitochondria is in its infancy. We do not know how DNA
replication in plant mitochondria starts, if plant mitochondria genomes need an origin of replication,
and our knowledge of the physical interaction between the proteins involved in mitochondrial DNA
metabolism is practically null. The classic view of the need of an origin of replication is given by the
study of DNA replication in E. coli, where the initiator protein DnaA binds to specific sequences to
drive replication initiation. In metazoan mitochondria, its RNA polymerase synthesizes RNA primers
that function as primers for heavy and light chains, and it is generally accepted that yeast mitochondria
start its replication at double-stranded breaks.

3.2. How Is the Accesibility to Single-Stranded DNA Regulated?

A recent proteomic analysis shows that AtRecA2, AtSSB1, AtSSB2, AtWhy2, AtOSB3, and AtOSB4
are among the most abundant proteins in plant mitochondria [55]. In solution, AtSSB1, AtWhy2,
and AtOSB2 assemble as tetramers, although AtOSB2 readily form higher-order complexes (possible
8-mers or 16-mers) [59]. Surprisingly, AtWhy2 assembles as 24-mers in the presence of long segments
of ssDNA (more than 7 Kbs) [140]. The carefull study by Fuchs and coworkers reveals that plant
mitochondria contains approximately 140 tetramers of AtSSBs, 45 tetramers of AtOSB3 or AtOSB4,
and 240 tetramers of AtWhy2 [59,128]. The abundance of AtWhy2 correlates with the fact that plants
devoid of this protein accumulate DNA rearrangements mediated by microhomologous regions in the
presence of agents that create DSBs [135,140]. Although no cellular studies using AtOSB2 or AtOSB3
have been carried out to date, AtOSB1 mutants accumulate homologous recombination products
at repeats that are not commonly used [126]. Given that single-stranded regions of mitochondrial
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DNA are coated with AtSSB2s, AtWhy2, AtOSB2, and AtOSB3, it is unknown how these proteins are
removed. A possible mechanism involves AtODB1, however AtODB1 lacks the C-terminal domain
involved in protein–protein interactions. Thus, it is unknown if AtODB1 is able to displace ssDNA
binding proteins like AtWhy2, AtSSBs, or AtOSBs from ssDNA or if AtSSBs interact with AtRecA2 to
promote filament assembly.

3.3. Open Question in Plant Mitochondrial DNA Replication

It is puzzling how the open reading frames in plant mitochondria exhibit low substitution rates,
while their non-coding regions are highly variable [6,9]. Mitochondrial DNA in land plants exists as
linear molecules and it is proposed that neighboring DNA molecules can act as a template to avoid
mutations [6]. If this is the case, it is unknown how the correct sequence is selected, given that plant
mitochondrial DNA is not methylated. Furthermore, plant organellar DNA polymerases in Arabidopsis
present a gradient of almost 10-fold in replication fidelity [134] and it is unknown if postraslational
modification can affect their interaction with other proteins and their biochemical properties.

Several studies indicate the presence of non-homologous end joining (NHEJ) repair signatures
in plant mitochondria. However, the key components of this route Artemis and Ku proteins are not
targeted to plant mitochondria and the mechanisms by which a NHEJ-like route operate in plant
mitochondria are unknown. Recent work using hybrid mitochondrial cell lines discovered that changes
in the human epigenome are driven by modifications in the mitochondrial genome [176]. Does the
highly recombinogenic nature of plant mitochondrial DNA confers an evolutionary advantage for
flowering plants as a hub for adaptation?
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