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The conserved oligomeric Golgi (COG) complex, a multisubunit tethering

complex of the CATCHR (complexes associated with tethering containing

helical rods) family, controls membrane trafficking and ensures Golgi home-

ostasis by orchestrating retrograde vesicle targeting within the Golgi. In

humans, COG defects lead to severe multisystemic diseases known as COG-

congenital disorders of glycosylation (COG-CDG). The COG complex both

physically and functionally interacts with all classes of molecules maintaining

intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs,

coiled-coil tethers, and vesicular coats. Here, we review our current knowl-

edge of COG-related trafficking and glycosylation defects in humans and

model organisms, and analyze possible scenarios for the molecular mechanism

of the COG orchestrated vesicle targeting.
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Intracellular membrane trafficking
pathways and machinery

Membrane trafficking transports ~ 30% of all pro-

teins through the secretory pathway, a process that

governs proper localization of both soluble and

membrane-bound proteins as well as lipids in

eukaryotic cells (Fig. 1). Trafficking and post-transla-

tional modifications begin in the endoplasmic reticu-

lum (ER) and continues in the Golgi before cargo is

sorted and sent to its final destination. This process

is also called anterograde trafficking. Proteins and

enzymes that are part of the trafficking and process-

ing machinery also get packaged into transport inter-

mediates during anterograde trafficking. However, it

is important that they remain properly compartmen-

talized, and thus must be returned to their proper

location. This is achieved by retrograde vesicular

trafficking.
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The Golgi makes up < 10% of total cellular mem-

branes but is a central hub for membrane trafficking,

receiving a constant flux of membranes from the plasma

membrane (PM), endosomes, and the ER. Active

anterograde and retrograde trafficking occurs both

within and to/from the Golgi, making it a highly

dynamic organelle. This balance of anterograde and ret-

rograde trafficking at the Golgi is important for preserv-

ing the Golgi structure and maintaining proper

concentrations of the resident Golgi proteins and lipids.

Vesicle formation, tethering, and fusion

The process of forming a vesicle is initiated by the

binding of activated small GTPases from the Arf/Sar1

subfamily to the membrane, which recruit coat pro-

teins. As coat proteins polymerize, they form a cage

that enhances membrane curvature to begin the forma-

tion (or budding) of the vesicle [1–3].

There are at least three types of coats that function

at different locations in and around the Golgi: COPI,

COPII, and clathrin [4–9]. Each of these coats, though

composed of different subunits, all follow the same

basic steps outlined above. COPI-coated vesicles are

mostly utilized in retrograde transport, both within the

Golgi and from the Golgi to the ER. The COPI coat

is composed of seven different protein subunits aCOP,

bCOP, b’COP, cCOP, dCOP, eCOP, and fCOP [7].

The COPII coat is composed of Sec23 and Sec24 on

the inside of the coat and Sec13 and Sec31 on the out-

side and is mostly involved in anterograde ER–Golgi

transport [9]. Clathrin coat is composed of clathrin

heavy and light chains and one of several adaptor

complexes and functions in anterograde trafficking

from the Golgi, retrograde trafficking from PM, as

well as trafficking between endosomes and other com-

partments [8,10,11]. The clathrin coat works with sev-

eral different classes of adaptor proteins to give a

specificity for packaging of these vesicles [8,11,12].

Shortly after the vesicle buds from the donor mem-

brane it becomes completely or partially uncoated.

The coat remnants can then interact with tethering

machinery (such as tethering complexes Dsl1 [13] and

COG [14] before vesicles become fully uncoated [15].

Vesicle fusion occurs by interaction between the

uncoated vesicle and the target membrane in SNARE-

dependent process (see below). A schematic depicting

the major players in vesicle formation, tethering, and

fusion is shown in Fig. 2.

Rab GTPases are peripheral membrane proteins that

behave as molecular switches—‘turning on or off’

depending on the nucleotide they are associated with.

There are ~ 20 different members in the Rab family

that associated with the Golgi. Each Rab has a pre-

ferred cellular location, with each step of membrane

trafficking having different Rabs or Rab combinations.

[16–19]. When a Rab binds to GTP it becomes acti-

vated, attaches to the membrane, and then recruits

other factors (primarily molecular motors and tethers)

needed for vesicle fusion.

Prior to fusion vesicles must find their target mem-

brane and be properly aligned. This step is called

Fig. 1. Anterograde and retrograde

trafficking pathways and organelles in

eukaryotic cell.

2467FEBS Letters 593 (2019) 2466–2487 ª 2019 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

J. B. Blackburn et al. The COG complex controls Golgi functions



tethering and is mediated by two different classes of

proteins: coiled-coil tethers (CCTs) [20–22] and multi-

subunit tethering complexes (MTCs) [5,22–26].

Coiled-coil tethers, as their name suggests, consist of

a long coiled-coil structure often terminating with a

noncoiled-coil head domain, and, many if not all

CCTs function as dimers [20,22,24,27]. Most of the

known CCTs reside at the Golgi and are often called

Golgins [28]. Although CCTs all have a similar struc-

ture, they vary greatly in size (from ~ 50 to

~ 400 kDa). Due to their elongated structure, CCTs

are thought to make first contact with the vesicle,

bringing it closer to the target membrane. Supporting

this role in trafficking, CCTs interact with SNAREs,

Rabs, and other small GTPases located on vesicles

and target membranes [23–25]. The binding of tethers

to vesicle-associated Rabs may induce changes in a

CCT’s structure, generating an ‘entropic collapse

force’ that pulls the captured vesicle toward the target

membrane [29,30].

Multisubunit tethering complexes are generally

shorter than CCTs, and are composed of multiple differ-

ent subunits, which potentially allow them to interact

with the fusion machinery in a simultaneous or sequen-

tial manner [27,31]. MTCs are subdivided into

CATCHR (complexes associated with tethering con-

taining helical rods: Dsl1, COG, GARP, EARP, and

exocyst) and non-CATCHR (TRAPP I, II and III,

HOPS and CORVET) complexes based on the structure

of their subunits [25]. The majority of MTCs interact

with Rabs, CCTs, and SNAREs suggesting similar func-

tions for all members within this family. The site of

action for different MTCs is depicted in Fig. 3.

SNAREs (soluble N-ethylmaleimide-sensitive, fac-

tor-activating protein receptors) are transmembrane

molecular machines involved in vesicular fusion

[32–35]. SNAREs are localized both on the vesicle and

target membrane (v- and t-SNARES). They work in a

bundle comprising of four SNARE motifs that are

contributed by each of the v- and t-SNARES in the

bundle. SNAREs are additionally classified into Qa,b,

c- and R-SNAREs based on the amino acid in the 0-

layer, or center, of the SNARE motifs [33,36,37]. It

was proposed that the energy provided by formation

of the SNARE complex brings the membranes close

together [32,34,38], leading to fusion of the vesicle with

the target membrane [39,40].

SM (Sly1/Munc18) proteins assist in vesicle fusion

in conjunction with SNAREs. SM proteins can bind

to individual Qa-SNAREs in a closed formation, or

assist in zippering of the SNARE bundle by binding

to, or ‘clamping’, the trans-SNARE complex, which

likely further facilitates membrane fusion. This regula-

tory role of SM proteins is believed to give more speci-

ficity to the SNARE fusion reaction by promoting

correct SNARE pairing while inhibiting incorrect

SNARE pairing [35,41–43]. After the vesicle has

merged with the target membrane N-ethylmaleimide

sensitive factor (NSF) and soluble NSF attachment

proteins (SNAPs) disassemble the cis-SNARE complex

to recycle the SNAREs for another round of fusion

(for review see Refs [44,45]).

Protein and lipid modifications at the
Golgi

While proteins and lipids traverse the Golgi, numerous

post-translational modifications occur including the

further processing of N-glycosylation (which is initi-

ated in the ER), the beginning of mucin-type O-glyco-

sylation, and the synthesis of glycolipids [46,47].

Glycosylation employs up to 2% of the proteome,

Fig. 2. Vesicle formation and fusion events. (a) The coat forms around the budding vesicle and the vesicle eventually buds off the donor

compartment. The vesicle is then transported to the acceptor compartment; vesicle is partially uncoated. (b) The Rab protein and remaining

coat elements on the vesicle make first contact with the acceptor membrane through tethering proteins; vesicle uncoating is completed. (c)

The uncoated vesicle is brought into close proximity to the acceptor membrane where the t- and v-SNAREs form a trans-SNARE complex to

provide the energy needed for membrane fusion to occur.
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meaning cells expend a large amount of energy ensur-

ing that this crucial process occurs smoothly [48]. Gly-

cosylation is dependent upon membrane trafficking

not only to bring substrates to the glycosylation

machinery for processing but also for the proper local-

ization of glycosylation machinery. Glycosylation

results in more diverse protein and lipid structures and

aids in folding and function [46].

Glycosphingolipids (GSLs) are the most common

type of glycolipids in mammalian cells. Gangliosides,

GSLs with sialic acid residues, are enriched in neurons

and are important for signaling, cell to cell recogni-

tion, and neuronal development and function [49,50].

The Golgi is also an important site for sphingomyelin

and phosphatidylinositol 4-phosphate (PI4P) synthesis

[51].

COG complex function in Golgi
trafficking and glycosylation

COG complex structure and partners

There is a sophisticated membrane trafficking machin-

ery at each cisterna of the Golgi, which helps to facili-

tate all the processes described above. One particular

protein complex that appears to interact with nearly

all types of trafficking facilitators throughout the

Golgi is the conserved oligomeric Golgi (COG) com-

plex. The COG complex is the major CATCHR vesicle

tethering complex at the Golgi. It is a hetero-octameric

complex, with subunits named COG1-COG8 [52] that

are subdivided into two subcomplexes (called lobes)

named lobe A (COG1-4) and lobe B (COG5-8). These

lobes exist alone as tetramers in addition to the com-

plete octameric complex [53]. COG1 and COG8 form

the major bridging interaction between the two sub-

complexes and are sometimes viewed as a separate

subcomplex [53–55]. The subunits of the COG com-

plex are predicted to form alpha-helical bundles, which

allow for structural flexibility and for dynamic interac-

tions with the trafficking machinery introduced above

[56].

Through electron microscopy (EM) studies two

main conformations of the COG complex have been

uncovered, one after mild fixation with paraformalde-

hyde and the other unfixed. The unfixed COG complex

has an extended and seemingly flexible structure with

multiple elongated, curved arms with globular or

‘hook like’ ends. This extended structure is approxi-

mately 50–75 nm long [56–58]. The fixed COG com-

plex has a more globular appearance (� 37 nm in

length) with rod-like connections between the two

main lobes [52]. While immuno-EM experiments

revealed that several COG subunits are preferentially

localized on the tips of Golgi cisternae [59,60], recent

live cell super-resolution microscopy studies showed

important differences in the localization of COG sub-

complexes. Lobe A was found to be preferentially

Golgi bound, while lobe B was preferentially localized

on vesicles [53].

The COG complex is highly evolutionarily con-

served with homologous subunits present in every

eukaryotic species [61,62]. COG is most closely related

to the exocyst complex, another CATCHR complex

Fig. 3. Multisubunit tethering complexes

control every step of anterograde and

retrograde vesicle delivery in eukaryotic

cell.
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that is also composed of eight different subunits

[23,25,56,58,63–66]. Interestingly, COG4 and several

exocyst’s subunits (EXOC3, EXOC6, and EXOC7)

have a homology to the MUN domain of Munc13

[67], one of the major priming factors for tethering

and fusion of synaptic vesicles [68].

The subunits of COG complex form various interac-

tion ‘hubs’ where they specialize in interacting with

certain classes of trafficking machinery (i.e., COG4, 5,

and 6 interact with several Rab proteins) [69]. The

COG complex can interact with proteins on the vesicle

and the target membrane making it ideal for aligning

the two membranes together to allow for SNARE

complex formation and vesicle fusion. The COG com-

plex’s known interactions are listed in Table 2, though

the chronological sequence of these interactions and

how they promote vesicular trafficking remain unclear

[69]. A hypothetical model depicting a functional inter-

action of the COG complex with a subset of its part-

ners during vesicle tethering is presented in Fig. 4.

Conserved oligomeric Golgi deficient yeast and

mammalian cells accumulate Golgi-derived, ~ 60 nm

vesicles called COG complex dependent (CCD) vesi-

cles, presumably due to less efficient tethering

[14,53,70,71]. Prominently, a massive appearance of

CCD vesicles occurs prior to Golgi fragmentation [14],

indicating that the accumulation of nontethered Golgi-

derived trafficking intermediates marks the onset

of COG complex dysfunction. Moreover, isolated

CCD vesicles contain recycling Golgi enzymes and

v-SNARE GS15 and can be tethered in vitro in a

COG-dependent reaction [71,72] confirming COG

complex’s role as a vesicle-tethering factor.

COG-deficient model systems

The COG complex has been studied in many organ-

isms, from single-celled Saccharomyces cerevisiae to

more complex model organisms including Arabidop-

sis thaliana, Drosophila melanogaster, and Caenorhab-

ditis elegans. Below and in Table 1 we have compiled

key findings from all COG deficient organisms

described in the literature to compare how COG dys-

function affects different types of eukaryotes both at

the cellular and organismal level. These defects are

grouped into three categories: altered glycosylation,

trafficking abnormalities and protein instability, and

morphological aberrations.

Misglycosylation

Underglycosylation (or hypoglycosylation) is one of

the most widely noted defects associated with COG

dysfunction. In fact, the COG complex was first dis-

covered when studying the underlying cause of LDLR

underglycosylation in mutant Chinese hamster ovary

(CHO) cells (these cells were later found to be lacking

COG1 (cog1/LDLB cells) and COG2 (cog2/LDLC

cells). These two mutants showed nearly identical

hypoglycosylation patterns to one another (immature

N-, O-, and lipid-linked glycosylation and reduced sia-

lic acid residues in all glycan structures) [73,74].

Underglycosylation is also present in COG deficient

S. cerevisiae, D. melanogaster, and C. elegans. Yeast

COG mutants were identified in several independent

screens for novel temperature-sensitive (ts) mutants

with defects in trafficking and glycosylation. At the

restrictive temperature, sec34-1 (cog3), sec35-1 (cog2)

[70], tfi1/cod3 (cog1), tfi2/cod2 (cog6), and tfi3/cod1

(cog4) accumulated multiple 60-nm vesicles and exhib-

ited N- and O-protein glycosylation defects[66,75–77].

Additionally, some of these mutants accumulated mul-

tiple membrane structures (sec36 (cog1) [76]) and

secreted vacuolar protease [77], indicating severe traf-

ficking and sorting defects.

In D. melanogaster cog7 mutants, the cellular level

of glycolipid GM1 and sialylated proteins was dramat-

ically reduced [78]. N-glycan mass spectrometry (MS)

analysis confirmed hyposialylation of N-glycans, simi-

lar to CHO-COG mutants and COG-CDG patients

(discussed in the next section). Fly COG mutants also

displayed increased high-mannose, paucimannose, and
Fig. 4. Putative interactions of COG complex with other

components of vesicle fusion machinery during vesicle tethering.
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difucosylated structures—indicative of erroneous and

incomplete glycosylation at the Golgi [79].

In C. elegans, mutants cog1 and cog3 [80] were ana-

lyzed for N-glycosylation defects. N-glycan MS

showed that the cog1 mutant had no tetrafucose struc-

tures and less terminal fucosylation, the equivalent of

sialylation in C. elegans. Additionally, like in the Dro-

sophila mutants, there was an increase in high-man-

nose and paucimannose structures [81].

Conserved oligomeric Golgi deficient plants

[60,82,83] were not specifically characterized for altered

glycosylation, but had impaired cell wall function

which could be due to COG-related glycosylation

defects affecting cell wall integrity.

Protein destabilization and trafficking abnormalities

The misglycosylation observed in COG mutants is

likely secondary to membrane trafficking defects, since

the fidelity of Golgi glycosylation relies greatly on

proper localization and efficient membrane trafficking

of glycosylation machinery. Indeed, trafficking abnor-

malities and protein instability (likely due to abnormal

trafficking and/or misglycosylation) are present in all

COG deficient organisms.

In CHO cells, several proteins were found to be

destabilized upon COG depletion. These proteins were

called GEARs and include SNAREs (GS28 and

GS15), Golgins (CASP, Giantin, and Golgin-84), a

glycosylation enzyme MAN2A1, and Golgi phospho-

protein GPP130. The sensitivity of these was linked to

altered COPI trafficking as COG depletion was found

to destabilize COPI and COPI depletion caused similar

instability in the GEARs [84]. Other proteins sensitive

to COG subunit depletion include enzymes (SMS1 and

CERT) involved in sphingomyelin synthesis [85,86]

linking COG function to lipid homeostasis.

In yeast, COG mutations result in trafficking defects

leading to: altered secretion [70,77]; mislocalization of

v-SNAREs (Snc1 [66], Sec22p [77], and Bos1p [77]);

and defective protein sorting (carboxypeptidase Y and

Kar2p) [70]. Interestingly, overexpression of several

trafficking machinery components including a Rab

(Ypt1p), an SM protein (Sly1pE532K [77,87]), SNARES

(Ykt6p, Bet1p, and Sec22p), and a CCT (Uso1p [87])

partially suppress mutant COG phenotypes. This sug-

gested that, in yeast, the COG complex is primarily

needed for the efficiency of intra-Golgi vesicular traf-

ficking and/or some sort of proofreading step and that

mass overproduction of other tethering and fusion

components can overcome the COG-dependency of

Golgi trafficking. In agreement to this hypothesis,

combining COG mutations with mutations in COPI

subunits [76,77], an aSNAP (SEC17) [76], an SM pro-

tein (SLY1) [76], or a t-SNARE (SED5) [77]) resulted

in synthetic lethality.

In D. melanogaster cog mutants, several Golgi and

endosomal proteins including Giotto, ATP7a, Rab1,

Rab11, and STX16 are mislocalized [78,88,89]. Inter-

estingly, Cog7 and golph3 (a COPI-interacting protein

that may facilitate packaging of glycosylation enzymes

[90,91]) double mutants are synthetic lethal, indicating

tight functional connections between COG and recy-

cling COPI machinery.

In C. elegans COG mutants, altered trafficking led

to mislocalization and degradation of glycosylation

enzyme MIG-23 [80]. The effects of cog mutations

were further exacerbated by mutations in other traf-

ficking components (the GARP complex and the

SNARE GS28) [92,93].

In A. thaliana, cog7 mutation perturbed trafficking

resulting in the mislocalization of COPI subunits,

ERD2 (KDEL receptor homolog), EMP12 (a COPI

cargo protein), GAUT14 (a glycosylation enzyme

involved in pectin synthesis), and pectin [60]. In addi-

tion, cog7 plants have stunted growth, which could be

the result of altered secretion. Similarly, impaired pro-

tein secretion was observed in cog barley mutants [83].

Morphological and growth abnormalities

There are additional defects seen in COG deficient

organisms that are more ‘structural’ both at the cellu-

lar and organismal level. This section details several

observations in COG deficient organisms spanning

from abnormal membrane accumulation to altered

neuronal function, infertility, and lethality that could

not be directly tied to trafficking or glycosylation

defects. In yeast, deletions of lobe A subunits COG2,

3, and 4 were lethal, while COG1 KO had a severe

growth defect. Lobe B mutants lacked visible growth

defects and had fairly normal intracellular morphology

in contrast to COG1 KOs and cog-2-ts mutants which

accumulated abnormal internal membranes [66]. COG

deficient male flies were sterile [78,94] due to abnormal

spermatogenesis resulting from defective cytokinesis

[78,94]. Spermatids had a fragmented Golgi and acrob-

last (a Golgi-related organelle), and defects in flagellar

formation. The life span of cog7 mutants was reduced

compared to wild-type animals, and neuromotor

defects were observed. Additionally, the neuromuscu-

lar junctions in these animals were altered, showing a

reduced number of boutons [79]. Similar neuronal

defects were found in cog1 mutants, indicating that

both lobes of the COG complex are needed for the

optimal development and function of the neuronal
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system [89]. In worms, COG deficiency affects gonadal

formation resulting in reduced proliferation [80]. In

plants, COG dysfunction causes a number of dysmor-

phic phenotypes ranging from alterations in the shoot

apical meristem and dwarfed cog7 organisms to male

sterility and defects in cell wall components in cog3

and cog8 mutants [60,82]. The Golgi in the pollen of

these plants was dilated and/or fragmented into mini

stacks.

Collectively, and irrespective of the organism, these

studies highlight the importance of the COG complex

for proper glycosylation, Golgi integrity, proper local-

ization, and stability of selected group of Golgi pro-

teins. Globally, COG also appears to play a role in

fertility, neuronal function, and viability.

Conserved oligomeric Golgi-congenital disorders

of glycosylations

Conserved oligomeric Golgi-related disorders are also

present in humans, though these mutations are rela-

tively rare and give rise to complex pathologies. In

humans, COG mutations result in a COG specific,

type-II Congenital Disorders of Glycosylation (or a

COG-CDG for short) [95]. Mutations in seven of the

eight COG subunits (COG3 being the exception) have

been identified as CDG causing [95–108]. CDGs are a

very heterogeneous group of disorders, caused by a

wide variety of altered gene products, and can result in

defects in N- glycosylation alone or N-, O-, and lipid-

linked glycosylation [106]. COG-CDG patients have

misglycosylation of N- and O-linked glycoproteins and

glycolipids, which are categorized as CDG-multiple

pathway disorders. The COG complex is different

from most proteins whose mutations cause CDGs

because COG is primarily a vesicle-trafficking regula-

tor and not a glycosylation enzyme or sugar trans-

porter, making its impact on glycosylation a secondary

effect [95,109].

The first COG-CDG patients demonstrated hypoto-

nia, hepatomegaly, microcephaly, loose wrinkled skin,

and progressive jaundice that presented soon after

birth [96]. To date, nearly 70 COG-CDG patients have

been identified [95,96,98,99,102,106,109–111] (Table 1).

COG-CDG patients share many of the same symp-

toms, ‘irrespective of the affected subunit’, although

some mutations have a milder phenotype than others

[106]. COG-CDG patients suffer from severe, multisys-

temic symptoms that primarily affect the nervous sys-

tem and liver, perhaps because these organs rely more

heavily on secretory traffic and/or glycosylation

[112,113] Other noted defects include: lack of eye mus-

cle control, heart defects, spleen enlargement, skeletal

abnormalities, and issues with recurrent infections

[106,109,112,114].

Conserved oligomeric Golgi-CDG mutations are

quite heterogeneous in their effect on the disrupted

protein, with some patients having no detectable

mutant protein, while others have truncations or

reductions of the mutant protein. This heterogeneity

makes comparisons of different subunit contributions

to overall function in human cells difficult.

Interestingly, a new and distinct COG-related disor-

der was recently identified involving a heterozygous

mutation for COG4. These patients have Saul-Wilson

syndrome (a rare skeletal dysplasia), caused by a

de novo amino acid mutation in COG4. This mutation

does not decrease COG4 protein amount, so it is not a

deficiency per se, though COG function is distorted.

This mutation gives rise to an increase in traffic from

the Golgi to the ER and a decrease in ER to Golgi

traffic resulting in altered Golgi size and morphology,

though glycosylation, surprisingly, remains normal

aside from misglycosylation of the proteoglycan dec-

orin [115].

COG deficiency in human cells

In order to better understand the complex effects of

COG loss in humans at the cellular level and to

understand the contribution of different subunits to

overall COG function, immortalized cell lines have

proven useful, as they are readily available and easy

to propagate and genetically manipulate. Here, we

describe efforts to better understand the role of the

COG complex in humans through studies using

knockdown (KD), knock-sideways, and knockout

(KO) approaches in HeLa and human embryonic kid-

ney (HEK) cells.

HeLa cells

Glycosylation

Efforts to better understand how the COG complex

affects glycosylation gained impetus as more and more

COG-CDG patients were identified (Table 1) [95–

102,104,107,109,111]. HeLa KDs were used to comple-

ment studies in patient fibroblasts. To better character-

ize COG’s role in glycosylation as a whole complex

and as the contribution of the two subcomplexes, KDs

of COG3, COG5, and COG7 in HeLa cells were cre-

ated. All KDs resulted in glycosylation defects [55,71],

implicating both lobes of the COG complex in main-

taining glycosylation fidelity. A combination of lectin

binding and N-glycan MS analysis was then employed
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to further study COG malfunction-induced misglycosy-

lation in four separate COG subunit KDs (two from

each lobe). These assays showed defects in medial and

trans-Golgi enzymes [116,117], N-glycan MS showed

no major differences in high-mannose N-glycans, but

did reveal variations in sialylation depending on the

depleted subunit (decreased sialylation in COG3 and

COG4 KDs; minor increase in COG6 and COG8

KDs). Another study assessing COG3 and COG7 KDs

in HeLa cells found terminal sialyation to be affected

in both [116,118].

Glycosylation enzymes MAN2A1, MGAT1, and

GalNAcT2 [14,55,71,119] were rapidly mislocalized in

COG3 KDs, suggesting that mislocalization of the

Golgi glycosylation machinery is the main reason for

faulty glycosylation in COG deficient cells. Prolonged

COG3 KD led to degradation of MAN2A1, indicating

that mislocalization to vesicles precedes degradation of

COG sensitive proteins [71]. MAN2A1 and B4GALT1

stability was reduced in COGKDs. All COG sensitive

enzymes were mislocalized to vesicle-like structures

3 days after KD of either lobe A or lobe B subunits

[116].

Trafficking and Golgi abnormalities

The mislocalization of enzymes suggests that all COG

KDs in HeLa cells likely result in impaired retrograde

trafficking that affects retention of Golgi enzymes.

This notion was supported by the resistance of the

Golgi glycosylation enzymes to be relocalized to the

ER upon Brefeldin A and Sar1 DN mediated collapse

of the Golgi into the ER (an assay used to indirectly

test retrograde Golgi-ER trafficking efficiency) with

the greatest delay being for the medial/trans-Golgi-lo-

calized enzymes [116]. Retrograde PM–Golgi–ER traf-

ficking of Shiga and SubAB toxins was also

dramatically impaired in COG3 KD cells [14,120].

Several studies to determine a complete set of COG

protein partners [119–128] revealed that the COG com-

plex interacts with all classes of Golgi trafficking pro-

teins, supporting the notion for the central role of the

COG complex in regulation of intra-Golgi retrograde

trafficking (for the summary of these interactions see

Table 2 and review [69]).

Intracomplex interactions

COG subunit KDs in HeLa cells showed that the

COG complex’s intralobe subunits are codependent on

each other for their stability, with the exception of

COG8 being tolerant of lobe B subunits loss

[55,71,127–129]. Upon COG3 or COG4 KD, lobe B

subunits are no longer Golgi localized but can still

associate with membranes showing that lobe A con-

tributes to but is not solely responsible for membrane

localization of the other COG subunits. In COG7 KD

cells, COG8 was displaced from the Golgi region, but

lobe A stayed on the Golgi membrane, indicating that

lobe B is not responsible for lobe A’s association with

the Golgi, or membrane attachment [128]. In knock-

sideways assays, mitochondria relocalized lobe A could

recruit newly synthetized lobe B subunits away from

the Golgi, but not vice-versa. This was not true in an

inducible knock-sideways model wherein the complex

was already assembled on the Golgi before mitochon-

drial relocalization was attempted, showing that once

in the complex, the COG subunits have a tight associ-

ation with the Golgi [128].

HEK239T knockouts

To better ascertain the contribution of each lobe to

overall COG function without dealing with variations

in KD efficiencies, COG KOs were created for each

subunit using CRISPR/Cas9 approach. Surprisingly,

all COG KO cells had similar glycosylation, traffick-

ing, and morphological defects irrespective of the lobe

or subunit affected [130,131]. All KO cell lines were

uniformly deficient in a subset of cis/medial/trans-

Golgi glycosylation enzymes and each had nearly abol-

ished binding of Cholera toxin to the PM, likely as a

result of defects in lipid glycosylation. Further charac-

terization of each KO cell line revealed defects in

Golgi morphology, retrograde trafficking and sorting,

and decreased sialylation and fucosylation, but severi-

ties of these defects varied according to the affected

subunit. Lobe A and Cog6 subunit KOs displayed a

more severely distorted Golgi structure, while COG2,

3, 4, 5, and 7 KOs had the most hypoglycosylated

form of Lamp2, a heavily N- and O-glycosylated pro-

tein whose shift in electrophoretic mobility is used as a

readout for hypoglycosylation. These results led to the

conclusion that every subunit is essential for mam-

malian COG complex function in Golgi trafficking,

though to varying extents, perhaps due to different

interaction ‘hubs’. COG KO cells also had altered

sorting and secretion of Cathepsin D as well as mor-

phological changes to the endosomal/lysosomal

system.

Conserved oligomeric Golgi KOs from each lobe

were then compared to other glycosylation mutants

[MGAT1 KO, GALE KO, and GALE/MGAT1 dou-

ble knockouts (DKO)] to decipher which of the COG

KO phenotypes were the result of misglycosylation

and which were not [132]. The KO of MGAT1 and
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GALE created early and late blocks in N-glycosyla-

tion, respectively. GALE KO also prevented O-glyco-

sylation by removing available GalNAc. The results

were that only a subset of COG KO phenotypes were

mimicked by hypoglycosylation alone. Phenotypes not

copied by MGAT1 KOs, GALE KOs, or GALE/

MGAT1 DKOs include: a severely fragmented Golgi

structure, delayed PM–Golgi–ER retrograde traffick-

ing, altered TGN sorting and increased secretion, and

accumulation of enlarged endolysosomal structures

(EELSs) [133](Fig. 5).

Alterations to the endolysosomal system were further

explored to reveal more about the nature of the EELSs.

These vacuoles were found to mimic some properties of

normal late endosomes/lysosomes such as having an

acidic lumen and a mix of endolysosomal membrane

proteins (CD63, Lamp2, Vamp7, Rab7, Rab9, and

Rab39), but lacking active lysosomal proteases. Lipid

homeostasis was perturbed in COG KO cells and some

key Golgi lipids, including cholesterol and PI4P, were

mislocalized to the EELS’s membrane. Furthermore,

tested Golgi resident proteins were found to undergo

degradation in EELSs. Intriguingly, the maintenance of

the EELSs was dependent on GARP activity showing

interplay between the two complexes to regulate Golgi

and endosomal homeostasis [134].

Table 2. COG partners in mammalian cells.

Partner (interacting region) COG subunit or assembly (interacting regions) Evidence for interaction Reference

Vesicular coat

b-COP COG complex, COG2, COG5, COG8 Co-IP [14,128,135]

Rabs

Rab1a COG4, COG6 Y2H, in vitro [135]

Rab1b COG6 Y2H [135]

Rab2a COG5 Y2H [135]

Rab4a COG4, COG6 Y2H, in vitro [135]

Rab6a COG6 Y2H, in vitro [135]

Rab10 COG6 Y2H [135]

Rab14 COG6 Y2H [135]

Rab30 COG4 (aa 1–186) Y2H, co-IP, in vitro [135,144]

Rab39 COG5 Y2H [135]

Rab43 COG6 Y2H [135]

CCTs

USO1/P115(HR2) COG2 (aa 613–669) Co-IP, Y2H [53,121,124,128]

GOLGA5/Golgin-84 (aa 340–456) COG2, COG7 Co-IP, in vitro [124,135]

GOLGA2/GM130 COG complex, COG2, COG3, COG5 Co-IP, Y2H [121,124]

GOLGB1/Giantin COG complex, Co-IP [121]

CUX1/CASP COG2, COG8 Y2H [135]

TMF1 (aa 801–1091) COG1, COG6 Y2H [135]

Trafficking complexes

RINT1 COG1 (aa 1–93) Co-IP [126]

BLOC1S1 COG Co-IP [182]

SNAREs

STX5 COG complexCOG4 (aa

84–153), COG6 (aa 76–150)COG8

Y2H, co-IP [119,123,124,127–129]

GOSR1/GS28 COG4, COG7 Co-IP, in vitro [14,124,140]

BETL1/GS15 COG complex Co-IP, in vitro [53]

STX6 (aa 161–234) COG6 (aa 76–150) Co-IP, GST pull-down, Y2H [125,127]

GOSR2/GS27 COG6 (aa 76–150)COG8 Co-IP, Y2H [127,129]

SNAP29 COG6 (aa 76–150) Co-IP, Y2H [127]

VTI1 (aa 121–193) COG4 (aa 1–231, 232–785)COG8 Co-IP, in vitro [129,140]

STX16 (aa 227–302) COG4 (aa 1–231), COG7 Co-IP, in vitro [140]

SM proteins

SCFD1/SLY1(aa 1–81) COG4 (aa 1–84) Co-IP, in vitro [123]

VPS45 COG4 (aa 1–231), COG7 Co-IP, in vitro [140]

Others

ATP7A COG complex Co-IP [89]

PI(4,5)P2 COG1, COG4, COG6 Liposome flotation [183]
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Models for COG complex structure and function

A few different models for the COG complex function

during vesicle tethering have been proposed

[56,57,59,60,128,135]. In each of these models, the

COG complex has a central role in orchestrating mem-

brane trafficking but the stage at which the COG com-

plex is involved differs.

The first model proposed was the docking model that

utilizes the entire assembled COG complex. In this

model, transport vesicles are initially loosely tethered

by long CCTs and then by the COG complex to ensure

firm docking. This model is supported by in vitro recon-

stitution experiments [52,72,136] in which purified

assembled COG complex showed twofold stimulation

of vesicle fusion reaction. It is also in agreement with

recent models proposed for the HOPS tethering com-

plex [137,138], but fails to explain the existence of mem-

brane-attached COG subcomplexes [53,139] and the

dispensability of lobe B subunits in yeast cells.

The second model proposed was the ‘SNARE stabi-

lization’ model. This model was derived from evidence

of SNARE protein instability in COG depletion studies

[103,119,123,125,140] (See COG deficiency in human

cells), which led to the interpretation that the COG com-

plex’s interaction with v- and t-SNAREs may not only

contribute to increased SNARE stability but also help

SNARE complex assembly. In this model, the COG

complex does not directly tether incoming vesicles, but

mostly serves to stabilize, catalyze, and possibly proof-

read the vesicle fusion machinery. The model accounts

for the MUN-like domain in COG4 [67] but does not

explain extended structural features of the COG complex

and multipronged interactions between COG complex

subunits with all classes of Golgi trafficking regulators.

The third model, the ‘assembly/disassembly’ model,

tries to reconcile the first two models and other recent

findings (Fig. 6). Willett et al. [53] proposed that lobe A

and lobe B of the COG complex only transiently work

together in vesicle tethering and fusion. In this model,

lobe A is initially situated on Golgi membranes and

interacts with t-SNAREs, Golgi Rabs, and CCTs, while

lobe B is localized on vesicles and interacts with the v-

SNARE and vesicle Rabs. Lobe A and lobe B contact

each other when the vesicle is brought to the Golgi

membrane through the long-distance tethering by

CCTs. The COG1-COG8 interaction forms the octa-

meric COG complex, which in turn activates SM protein

to align v- and t-SNAREs, facilitating trans-SNARE

complex formation. The octameric COG complex is

then displaced and disassembled, allowing for vesicle

fusion to occur. This model predicts that both COG

subcomplexes are needed for proper vesicle docking and

fusion. Evidence for this model came from observations

that COG subcomplexes synthesized in reticulocyte cell

lysate in vitro [57] or coexpressed in HEK293T cells

[141] are stable protein assemblies. Membrane-bound

COG subunits in HeLa cells are found in subcomplexes

in vivo [53]. Moreover, yeast membrane-associated

COG subunits formed a variety of small subcomplexes,

whereas cytosolic COG subunits existed as octamers

[139]. Additionally, isolated COG subcomplexes show

lobe-specific pattern of interaction with different protein

Fig. 5. Alterations in secretory/endocytic

compartments and intracellular trafficking

pathways in a COG depleted cell.
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partners including b-COP, p115, and STX5 [128]. The

COG complex assembly/disassembly model is in good

agreement with several models proposed for the mam-

malian exocyst [142,143].

Notably, in this COG model, other vesicle-localized

CATCHR tethers, for instance, the GARP complex,

could functionally substitute the lobe B subcomplex.

This potential flexibility would explain the nonessential

nature of yeast lobe B and a synthetic lethality observed

between mutants of COG and GARP tethering com-

plexes. The assembly/disassembly model would also pre-

dict that the octameric soluble COG represents an inert

pool of the tether that could be initially activated by

some ‘COG disassembly’ activity that would dissociate

COG into individual lobes. Alternatively, interaction of

soluble COG with preassembled Golgi ‘docking stations’

may be sufficient for COG disassembly. In favor of this

prediction, it was shown that the N-terminal parts of

COG subunits play a major role in COG assembly and

that the N-terminal region of COG4 is the major hub for

protein-protein interactions with Golgi-localized STX5,

SLY1, and Rab30 meaning these interactions could com-

pete with one another [119,123,125,135,144].

Further questions and perspectives

The experimental efforts and results detailed above

have provided an insight into detailed COG mediated

trafficking at the Golgi and placed emphasis on the

role of the COG complex as the master regulator of

retrograde Golgi trafficking and proper organismal

function but these studies have also raised a new set of

question on the specifics of COG complex function.

Here, we pose a few of these questions that will be

important to answer in the future.

What is primarily responsible for COG’s

association with membranes?

Multiple interactions between COG and its Golgi part-

ners predict the existence of a pool of the COG complex

that is permanently attached (‘glued’) to the Golgi

periphery via a subset of its protein–protein interactions.

This COG pool remains primed for a new round of vesi-

cle docking/fusion, activated by a specific ‘trigger’ on

approaching vesicles. Supporting this idea, recent fluo-

rescence recovery after photobleaching (FRAP) data

indicates that the on/off Golgi kinetic of tested COG

subunits is very slow, similar to the FRAP kinetic of

transmembrane SNAREs [53] and that both lobe A and

lobe B COG subunits remain functional even after their

permanent attachment to membranes via a Golgi speci-

fic transmembrane linker [145]. Interestingly, the exo-

cyst when permanently attached to the membrane also

remains functional, suggesting that CATCHRs have

similar modes of action [146]. However, what actually

dictates COG’s membrane attachment is still unclear.

The COG complex, like a majority of CATCHR com-

plexes, interacts with small GTPases, and it has been

proposed that transient interactions with GTP-loaded

Rabs actively recruit COG to the acceptor (Golgi rim)

and the donor (recycling intra-Golgi vesicle) membranes

[53,128,135]. However, depletion of individual Golgi-

localized Rabs has failed to abolish COG localization

Fig. 6. The assembly/disassembly model for COG-dependent vesicle tethering. (1) COG subcomplexes, lobe A and lobe B, are associated

with the Golgi and vesicular membranes, respectively. CCTs mediate initial tethering and bring the vesicle close to the target (Golgi)

membrane. COG interacts with the coat that is partially present on the vesicle. (2, 3) The interaction between lobe A and lobe B results in

the formation of the entire COG complex and brings the vesicle even closer to the Golgi rim. During this step, the vesicle also gets

completely uncoated. (4) COG facilitates alignment of v- and t- SNAREs leading to the formation of trans-SNARE complex. (5) The COG

complex detaches and the vesicle docking on the target membrane is driven by stable SNARE complex formation. (6) Finally, the vesicle

fuses with the Golgi membrane and cargo is delivered.
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on the Golgi (VL. unpublished), indicating that no indi-

vidual Rab is likely responsible for COGs membrane

recruitment. Thus, the exact molecular players responsi-

ble for COG’s membrane recruitment remain unknown.

In addition to Rabs, other COG protein membrane

partners (SNAREs or other unknown TM proteins) or

specific lipids (such as PI4P) could be responsible for

COG association with membranes.

Do COG subunits interact with their partners

sequentially or simultaneously and is there a

conformational change in the subunits?

COG subunits interact with multiple protein and lipid

partners, but the exact nature and sequence of these

interactions is still an enigma. One possibility is a

sequential mode of interaction between an individual

COG subunit and components of tethering/docking/fu-

sion machinery. Supporting this, the same N-terminal

region of COG4 interacts with Rab30, SLY1, and

STX5, making simultaneous interaction with all of these

partners unlikely. COG could first bind to Rab30 to sta-

bilize vesicle tethering, then switch from Rab30 to SLY1

to activate SM-SNARE interactions, and finally, bind

to STX5 to protect the trans-SNARE complex from

premature SNAP-NSF-mediated disassembly.

Another possibility is that at the very first step of a

vesicle tethering cycle, COG binds to subunits of COPI

coat remaining on the incoming vesicle [77,135]. This

COG–COPI interaction may then stimulate COG-

SNARE and COG-SM interactions, which in turn pro-

mote SNARE formation and vesicle fusion. In support

to these predictions, another tether, the ER-localized

Dsl1 complex, can bind to COPI, suggesting functional

significance for this conserved tether/coat interaction

[13,147–149]. Alternatively, the initial Rab-COG mem-

brane association could change the conformation of

flexible ‘arms’ of COG subunits, allowing them to estab-

lish interactions with CCTs, SNAREs, and SM proteins

leading to productive vesicle tethering and fusion.

To assist in elucidating the first and following steps

of COG-assisted membrane tethering and fusion, it

would be abundantly helpful to reconstitute the COG

complex’s function in vitro using purified components

of tethering/fusion machinery.

How do cells adapt to COG complex

malfunction?

The COG complex is evolutionary conserved [62], pre-

sent in all eukaryotic cells, and lobe A subunits are

essential for cell viability in yeast [66]. Surprisingly,

cultured mammalian cells can tolerate complete KO of

any individual COG subunit [130,133], indicating that

higher eukaryotic cells can successfully adapt to COG

complex malfunction. What is the mechanism of this

adaptation? Does it rely on redundancy of CATCHR

tethering complexes or on the flexibility of intracellular

trafficking pathways? Does this adaptation involve

transcriptional upregulation of specific membrane traf-

ficking components?

Do heterogeneous/abnormal glycan structures

play an additional role in COG KO phenotypes?

Recently, it was questioned whether a severe block in

Golgi glycosylation can completely phenocopy the

COG KOs [133]. Indeed, complete depletion of Golgi

enzymes only recapitulated COG KO induced hypogly-

cosylation, but no other COG KO phenotypes. It is

important to note that glycoproteins produced in COG

KOs have very heterogeneous glycan structures [130],

which could more deleterious to the cell than the com-

plete glycosylation block created in MGAT1/GALE

KOs. It is possible that the altered glycan structures

found in COG KO cells result in new signaling/struc-

tural functions of glycoproteins and/or glycolipids. An

example of these abnormal glycans can be seen in the

COG KOs unusual affinity for the lectin Helix pomatia

agglutinin (HPA). HPA binding has been seen in vari-

ous types of metastatic cancer, and is often correlated

with a poorer prognosis, though it is not clear if this is

causative or merely correlative [150]. Are these altered

glycans promoting COG KO cell survival?

How does COG complex malfunction/depletion

affect protein and lipid sorting at the TGN?

The most striking protein and lipid sorting defects in

COG KO cells are at the Golgi and post-Golgi. The

trans-Golgi is a major sorting center for the cell and

several factors play a crucial role in this process. COG

KO-related trans-Golgi/TGN/endolysosomal malfunc-

tion could be a result of changes in ion concentrations

(H+, Ca2+, and Mn2+), lipid composition (sphin-

gomyelin, PI4P, cholesterol), mislocalized cargo recep-

tors (SorLA and cab45), or a combination of all three.

Further investigation of how these factors are affected

in COG KOs could reveal more about the COG com-

plex’s role in maintaining Golgi homeostasis.

How does COG subunit depletion affect

endolysosomal homeostasis?

What is the underlying cause of EELS formation in

COG KO cells? Is there an altered interplay between
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COG-directed intra-Golgi traffic and lysosomal deliv-

ery? The EELS phenotype is rescued upon knocking

out either VPS54 or VPS53 subunits of the GARP

complex in COG KO cells, which suggests functional

cross-talk between the two MTCs. It is possible that

the GARP complex functioning in the absence of

COG causes retrograde trafficked Golgi cargo to accu-

mulate at the TGN where it cannot be transported to

earlier cisternae of the Golgi resulting in an enlarge-

ment of the TGN, which manifests into EELSs [134].

Are there potential moonlighting roles of COG

subunits?

Does the COG complex interact with any other

CATCHRs or perform other functions secondary to

its primary role in Golgi trafficking? There is some evi-

dence that COG subunits could directly interact with

GARP and Exocyst components [60,82,83]. Addition-

ally, the COG complex shares SNARE partners with

the GARP complex [125,151]. Another potential pro-

cess the COG complex may participate in is autop-

hagy. It has been reported that, in yeast, COG

subunits are required for the cytoplasm-to-vacuole tar-

geting pathway and for autophagosome formation

[152,153]. It will be important to understand the exact

role of COG in this process and to investigate if COG

plays a role in autophagy in other organisms.

How and why is the COG complex exploited by

pathogens?

Recently the COG has been implicated in allowing for

the entrance/survival of multiple intracellular patho-

gens. Chlamydia sp. inclusions recruit both COG and

the COG-interacting SNARE GS15 [154]. Bacterial

growth is reduced in COG KO cells, indicating that

hijacking of COG is necessary for continued intracellu-

lar survival. The exact mechanism of the COG-

Chlamydia relationship is still an enigma. Another

intracellular pathogen, Brucella abortus, also interacts

with the COG complex via BspB protein, likely redi-

recting Golgi-derived vesicles to Brucella-containing

vacuoles [155]. Additionally, the infectivity and/or life

cycle of numerous viruses (HIV, Chikungunya Virus,

Hepatitis C, Dengue) and toxins (typhoid toxin[156],

SubAB, Cholera toxin, Shiga toxin) somehow depends

on COG complex’s activity [157–160]. How have these

diverse groups of pathogens evolved to rely on COG

function? Which functions of COG do they rely on

most heavily (i.e., properly glycosylated proteins for

binding and entry into the cell, or retrograde traffick-

ing via COG to get to their desired location)?

With the wealth of data on the COG complex

acquired over the last 35 years we have learned that it

is highly conserved and essential for proper glycosyla-

tion and membrane trafficking. The COG is responsi-

ble for orchestrating a host of partners at the Golgi to

harmoniously process, sort and traffic the secretory

cargo. Underscoring its significance, mutations in this

complex dramatically affect all model species and cells

studied. Additionally, in humans, COG mutations

result in severe multisystemic CDGs. Yet, we still

know little about the specifics of how the COG com-

plex functions, what dictates its localization, or why its

depletion affects some organ systems more severely

than others. Through technological and scientific

advances, we hope these mechanistic questions will be

possible to answer in the years ahead.
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