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Abstract: 3′,5′-Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger which
plays critical roles in cardiac function and disease. In adult mouse ventricular myocytes (AMVMs),
several distinct functionally relevant microdomains with tightly compartmentalized cAMP signaling
have been described. At least two types of microdomains reside in AMVM plasma membrane which
are associated with caveolin-rich raft and non-raft sarcolemma, each with distinct cAMP dynamics
and their differential regulation by receptors and cAMP degrading enzymes phosphodiesterases
(PDEs). However, it is still unclear how cardiac disease such as hypertrophy leading to heart failure
affects cAMP signals specifically in the non-raft membrane microdomains. To answer this question,
we generated a novel transgenic mouse line expressing a highly sensitive Förster resonance energy
transfer (FRET)-based biosensor E1-CAAX targeted to non-lipid raft membrane microdomains of
AMVMs and subjected these mice to pressure overload induced cardiac hypertrophy. We could
detect specific changes in PDE3-dependent compartmentation of β-adrenergic receptor induced
cAMP in non-raft membrane microdomains which were clearly different from those occurring in
caveolin-rich sarcolemma. This indicates differential regulation and distinct responses of these
membrane microdomains to cardiac remodeling.

Keywords: cAMP; biosensor; cardiac hypertrophy; non-raft sarcolemma; compartmentation; fluores-
cence resonance energy transfer; microdomain; phosphodiesterase

1. Introduction

3′,5′-Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger
which plays a crucial role in heart function and disease. Multiple G-protein coupled
receptors including β-adrenergic receptors (β-ARs) and prostaglandin EP receptors can
stimulate cAMP production in cardiac myocytes, often leading to different functional
responses [1–4]. This phenomenon can be explained by tight compartmentation of receptor-
dependent cAMP signaling in spatially-confined subcellular micro- or nanodomains where
receptors, cAMP, and its downstream effector proteins trigger key functional effects [4,5].
Recently, the development of genetically encoded biosensors based on Förster resonance
energy transfer (FRET) have enabled cAMP measurements in intact living cells including
adult ventricular cardiomyocytes [6–10].

Generation of compartmentalized cAMP responses starts at the membrane of car-
diomyocytes, which contains at least two types of microdomains. One can be formed
by caveolae, a specific subset of lipid rafts associated with the scaffolding protein cave-
olin, and another one has been suggested to reside in non-raft microdomains, with clear
biochemical and functional evidence of their different roles in the regulation of receptor
mediated cAMP generation and downstream signaling [11–13]. Using newly developed
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FRET-based biosensors targeted to lipid raft and non-raft domains of the plasma membrane,
differences in basal and β-AR or prostaglandin stimulated cAMP levels associated with
these microdomains were initially detected in HEK293 cells [14], and later also in healthy
rat myocytes [15]. However, precious little is still known about the disease-driven changes
occurring in the non-raft sarcolemmal microdomains. This is in contrast to the caveolin-rich
membrane microdomain, for which we have previously developed transgenic mice with
AMVM expression of the specifically targeted biosensor pmEpac1. When subjected to a
pressure overload model of cardiac hypertrophy induced by transverse aortic constriction
(TAC), this mouse model uncovered a disease-associated redistribution of cAMP degrading
phosphodiesterases (PDEs), PDE2 and PDE3 between microdomains regulating β1- and
β2-AR induced cAMP generation and receptor-dependent contractile responses [16].

To study disease-driven alterations of cAMP signals in non-caveolar sarcolemma, here
we generated a novel transgenic mouse line expressing a highly sensitive FRET-based
biosensor E1-CAAX targeted to non-raft membrane microdomains and subjected them
to the same TAC model. We could detect specific changes in β-AR subtype responses
and PDE3-dependent compartmentation of β1- and β2-AR induced cAMP which indicate
differential regulation of local cAMP in caveolin-rich and non-raft membrane microdomains
in response to cardiac remodeling.

2. Materials and Methods
2.1. Cloning and Transgenic Mouse Generation

DNA encoding the CAAX box sequence (KKKKKSKTKCVIM) from Rho GTPase was
attached to the carboxyl terminus of Epac1-camps sensor [17] via BamHI restriction site
(Figure 1a), this sequence enables specific targeting of proteins to non-lipid raft domains
of the plasma membrane [14,18]. The resulting E1-CAAX sensor sequence was further
subcloned into the previously described vector containing the α-myosin heavy chain
(αMHC) promoter and simian virus (SV40) polyadenylation signal [9], which was then
linearized with SpeI, purified, and used for pronuclear injections to generate transgenic
mice as previously described [16]. Founder mice and their heterozygote offspring were
kept on FVB/N background and genotyped by a standard PCR using the primers 5′-
TGACAGACAGATCCCTCCTAT-3′ and 5′-CATGGCGGACTTGAAGAAGT-3′, resulting
in a ~340 b.p. fragment on a gel.

2.2. Transverse Aortic Constriction (TAC)

9–12-week-old female mice were randomized into sham or TAC group. Mice were
anesthetized using 1.5–2% isoflurane in 100% oxygen. A suprasternal incision was made,
and the aortic arch was visualized using a binocular microscope (Olympus, Hamburg,
Germany). TAC occurred by spacer defined (27-gauge) constriction using a 6–0 polyviolene
suture between the first and second trunk of the aortic arch [19]. For the sham group, the
aorta was exposed but not constricted. Three days after surgery, Doppler velocity was
measured by a 20 MHz probe to quantify the pressure gradient across the TAC region or
after sham procedure by transthoracic echocardiography (VisualSonics Vevo 3100; Toronto,
ON, Canada). Mice received intraperitoneal analgesic therapy with buprenorphine and
carprofen for three days post-surgery. Echocardiography was performed eight weeks after
surgery with subsequent heart and AMVM isolation.
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Figure 1. Generation and characterization of E1-CAAX transgenic mice. (a) The DNA encoding the CAAX box sequence (KKKKK-
SKTKCVIM) was attached to the C-terminus of Epac1-camps sensor and expressed under the control of the αMHC promoter fol-
lowed by simian virus (SV40) polyadenylation signal. (b) Confocal images of isolated E1-CAAX adult transgenic AMVMs im-
munostained with caveolin 3 (Cav-3) antibody. Scale bar, 10 µm. (c) Hematoxylin and eosin and (d) picrosirius red stainings of cross-
sections from three month old and six month old wild-type (WT) and transgenic (TG) mouse hearts. Scale bars, 1 mm. (e) Wheat 
germ agglutinin (WGA) staining of adult mouse ventricular cardiomyocytes in heart cross-sections. Scale bars, 50 µm. (f) Quantifi-
cation of cardiomyocyte area from WT and TG mice at three months and six months of age. 
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Figure 1. Generation and characterization of E1-CAAX transgenic mice. (a) The DNA encoding the CAAX box sequence
(KKKKKSKTKCVIM) was attached to the C-terminus of Epac1-camps sensor and expressed under the control of the
αMHC promoter followed by simian virus (SV40) polyadenylation signal. (b) Confocal images of isolated E1-CAAX adult
transgenic AMVMs immunostained with caveolin 3 (Cav-3) antibody. Scale bar, 10 µm. (c) Hematoxylin and eosin and
(d) picrosirius red stainings of cross-sections from three month old and six month old wild-type (WT) and transgenic (TG)
mouse hearts. Scale bars, 1 mm. (e) Wheat germ agglutinin (WGA) staining of adult mouse ventricular cardiomyocytes in
heart cross-sections. Scale bars, 50 µm. (f) Quantification of cardiomyocyte area from WT and TG mice at three months and
six months of age.

2.3. Adult Mouse Ventricular Myocyte Isolation and Live Cell Imaging

AMVMs were isolated from transgenic mice eight weeks after TAC or sham surgery
by retrograde perfusion of the aorta with an enzymatic digestion solution in a Langendorff
apparatus and plated on laminin-coated round glass cover slides for FRET measurements
on the same day as described [20]. For FRET measurements, cover slides with adherent
cells were mounted in an Attofluor microscopy chamber and maintained in FRET buffer
containing 144 mmol/L NaCl, 5.4 mmol/L KCl, 1 mmol/L MgCl2, 1 mmol/L CaCl2,
10 mmol/L HEPES, pH 7.3. Live cell imaging was performed using a custom-made
FRET microscopy system built around a Nikon Eclipse Ti microscope (Nikon, Düsseldorf,
Germany) equipped with 63×/1.40 oil-immersion objective [21]. The donor fluorophore
(CFP) was excited with a 440 nm light at 5 s interval using a CoolLED single-wavelength
light emitting diode. Emitted light was separated into CFP and YFP channels using a
DV2 DualView (Photometrics, Surrey, BC, Canada) and detected using an ORCA-03G
charge-coupled device camera (Hamamatsu, Herrsching am Ammersee, Germany). After
reaching a stable baseline, cells were treated with different compounds diluted in the FRET
buffer to stimulate cellular cAMP responses. AMVMs from each animal have been tested
on the same day with all drugs to better compare their effects. Offline data analysis was
performed using ImageJ, Microsoft Excel, and GraphPad Prism 6 software as described [20].
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To determine the E1-CAAX biosensor affinity, cells were first treated with 100 µmol/L
of the adenylyl cyclase inhibitor MDL-12330A followed by increasing concentrations of
the cell-permeable cAMP analogue 8-pCPT-2′-O-Me-cAMP-AM (BIOLOG Life Science
Institute, Bremen, Germany) and analyzed using a previously established protocol [19].

2.4. Confocal Microscopy

Imaging was performed using Zeiss LSM 800 microscope (Carl Zeiss MicroImaging,
Jena, Germany) equipped with a Plan-Apochromat 63×/1.40 oil-immersion objective. For
co-localization experiments, cells were fixed for 5 min with ROTI Histofix® 4% (Roth),
washed, and stained overnight with mouse monoclonal caveolin 3 (BD #610421) antibody,
followed by the secondary anti-mouse Alexa 633 Fluor® antibody (A-21063, Life Technolo-
gies). Images were acquired for E1-CAAX sensor (488 nm diode laser) and for caveolin 3
(633 nm diode laser excitation) and automatically analyzed using the ZEN 2019 software
(Zeiss, Jena, Germany).

2.5. Histology, Morphometric Analysis, and Echocardiography

Experiments were performed as previously described [22]. For cardiomyocyte di-
mension analysis, transverse heart sections were incubated with Wheat Germ Agglutinin
(WGA, 75 µg/mL) for 30 min in the dark, washed thrice for 5 min with phosphate-buffered
saline, mounted, and observed under a Keyence Fluorescence microscope Biozero BZ 8100.
Images were acquired using Keyence Biozero imaging software (Keyence, Neu-Isenburg,
Germany) and analyzed with ImageJ software. The cell area was measured in 50 cells from
three individual hearts per group.

2.6. Immunoblot Analysis

Heart tissues were shock frozen and homogenized in a buffer containing: 10 mmol/L
HEPES, 300 mmol/L sucrose, 150 mmol/L NaCl, 1 mmol/L EGTA, 2 mmol/L CaCl2 and
1% Triton-X. Proteins were quantified using Pierce BCA protein assay (Thermo Fischer
Scientific, Dreieich, Germany). Samples were boiled at 70 ◦C for 10 min, and 15 µg of
total protein per lane were subjected to 10% SDS-PAGE and to immunoblot analysis
using anti-PDE2A antibody (Fabgennix, Frisco, TX, USA), custom-made rabbit polyclonal
PDE3A antibody (kindly provided by Chen Yan, University of Rochester, Rochester, NY,
USA), rabbit monoclonal PDE4B and PDE4D antibodies (Abcam, Berlin, Germany), EP4
receptor antibody (Santa Cruz Biotechnology, Heidelberg, Germany), rabbit polyclonal
calsequestrin (Thermo Fischer Scientific, Dreieich, Germany), and mouse monoclonal anti-
α-tubulin antibody (Sigma, Taufkirchen, Germany). All blots were scanned and analyzed
densitometrically by ImageJ software for uncalibrated optical density.

2.7. Statistics

Normal distribution was tested by the Kolmogorov–Smirnov test, and differences
between the groups of echocardiographic or morphometric data obtained from individual
animals were analyzed using one-way ANOVA for simple two-group comparison or the
Mann–Whitney test, as appropriate. FRET imaging data obtained using multiple cells
isolated from several animals were analyzed using mixed ANOVA followed by Wald’s
chi-squared test.

3. Results
3.1. E1-CAAX Biosensor Mouse Generation and Characterization

To monitor cAMP dynamics specifically in non-raft membrane microdomains of
freshly isolated AMVMs, we generated a new transgenic mouse line expressing the E1-
CAAX biosensor under the control of the AMVM specific αMHC promoter (Figure 1a).
All isolated adult transgenic AMVMs expressed the sensor which was localized at the
cell membrane (Figure 1b) as recently demonstrated in rat myocytes transduced with
Epac2-CAAX biosensor adenovirus [15]. Additionally, as previously suggested, the affinity
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of the cAMP sensor was not significantly affected by the fusion of the CAAX box onto its
C-terminus (Supplementary Figure S1)

Transgenic mice at the age of three and six months had normal heart morphology and
AMVM size comparable with wild-type littermates (Figure 1c–f). Additionally, echocardio-
graphy did not show any differences between transgenic mice and their wild-type control
littermates in terms of morphometry and function (Table 1).

Table 1. Echocardiographic parameters of Epac1-CAAX mice compared to wild-type littermates.

Three Months Old Six Months Old

Parameter Wild-Type E1-CAAX Wild-Type E1-CAAX

IVDd (mm) 0.98 ± 0.04 1.00 ± 0.03 1.02 ± 0.04 1.03 ± 0.04
LVIDd (mm) 3.65 ± 0.06 3.60 ± 0.08 3.54 ± 0.11 3.50 ± 0.08
LVPWd (mm) 0.88 ± 0.04 0.96 ± 0.05 1.04 ± 0.08 1.10 ± 0.06

LV mass/BW (mg/g) 4.28 ± 0.18 4.39 ± 0.121 4.23 ± 0.18 4.19 ± 0.17
FS (%) 34.7 ± 0.8 36.7 ± 1.2 32.9 ± 1.9 36.0 ± 1.5
EF (%) 64.7 ± 1.1 67.3 ± 1.7 61.9 ± 2.9 66.5 ± 2.0

Stroke volume (µL) 37.3 ± 1.3 35.8 ± 1.7 33.7 ± 2.9 34.6 ± 2.3
Cardiac Output

(mL/min) 16.9 ± 0.8 15.5 ± 0.8 14.8 ± 1.4 15.7 ± 1.2

HR (bpm) 467.4 ± 8.5 455.6 ± 4.3 436.4 ± 9.7 454.5 ± 18.6
n (number of mice) 14 17 9 9

IVDd: intraventricular septum thickness in diastole, LVIDd: left ventricular internal diameter in diastole, LVPWd: left ventricular posterior
wall thickness in diastole, LV mass/BW: ratio of left ventricular mass to body weight, FS: fractional shortening, EF: ejection fraction, HR:
heart rate. Means ± SE.

Importantly, transgenic mice also did not differ from their wild-type littermates in
terms of the expression of major cardiac cAMP degrading PDEs—PDE2, PDE3, and PDE4,
which could be confirmed by immunoblot analysis (Supplementary Figure S2).

3.2. TAC Model

To study disease driven alterations in non-lipid raft membrane microdomains, we
subjected E1-CAAX mice to a pressure overload induced cardiac hypertrophy model. Eight
weeks after TAC, mice have developed a robust compensated cardiac hypertrophy phenotype
without major reduction in contractility (Table 2), which is well documented for mice on the
in FVB/N background [16,23–26]. In line with these previous studies, our compensated TAC
model has not largely affected the whole-cell protein levels of cardiac PDE2, PDE3, and PDE4,
as shown by immunoblots of heart lysates (Supplementary Figure S3).

Table 2. Echocardiographic parameters measured in E1-CAAX mice 8 weeks after Sham or TAC surgery.

Parameter Sham TAC

Pressure gradient (mmHg) 4.3 ± 0.4 63.7 ± 7.6 *
IVDd (mm) 1.01 ± 0.08 1.25 ± 0.04 *

LVIDd (mm) 3.10 ± 0.26 3.34 ± 0.16
LVPWd (mm) 1.20 ± 0.13 1.35 ± 0.10

LV mass/BW (mg/g) 4.89± 0.40 7.12 ± 0.43 *
FS (%) 43.4 ± 6.2 32.5 ± 2.7
EF (%) 73.6 ± 5.6 61.6 ± 4.0

Stroke volume (µL) 30.2 ± 5.6 29.1 ± 3.3
Cardiac Output (mL/min) 15.8 ± 2.1 13.6 ± 1.7

HR (bpm) 463.8 ± 21.8 466.5 ± 6.9
n (number of mice) 5 6

IVDd: intraventricular septum thickness in diastole, LVIDd: left ventricular internal diameter in diastole, LVPWd: left ventricular posterior
wall thickness in diastole, LV mass/BW: ratio of left ventricular mass to body weight, FS: fractional shortening, EF: ejection fraction, HR:
heart rate. Means ± SE. * Statistically significant differences at p < 0.05 by one-way ANOVA.



Cells 2021, 10, 535 6 of 15

Importantly, E1-CAAX biosensor membrane localization was not affected by TAC
(Figure 2a), despite hypertrophy, signs of fibrosis, and clear increase in cell size (Figure 2b–d).
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Figure 2. TAC model in E1-CAAX mice. (a) Confocal images of sham and TAC AMVMs taken as described in Figure 1b.
Scale bar, 10 µm. (b) Hematoxylin/eosin and picrosirius red stainings of cross-sections from sham and TAC hearts of
E1-CAAX mice. Scale bars, 1 mm. (c) WGA staining of sham and TAC heart tissues. Scale bars, 50 µm. (d) Quantification of
AMVM area. * p < 0.05 by one-way ANOVA.

Therefore, we could use this transgenic mouse model to study disease-driven alter-
ations in local cAMP signals in non-caveolar membrane microdomains.

3.3. Live Cell Imaging of cAMP in Non-Lipid Raft Membrane Domains

Next, we isolated AMVMs from sham and TAC hearts eight weeks after surgery
to perform live cells imaging of local microdomain-specific cAMP responses in freshly
isolated cells.

3.3.1. Responses to β-Adrenergic and Prostaglandin Receptor Stimulation

β-adrenergic receptor stimulation using the unselective β-agonist isoproterenol (ISO)
led to a rapid decrease of FRET monitored as an increase in CFP/YFP ratio which is indica-
tive of raising cAMP concentration in non-raft membrane microdomains. This response
was strongly augmented by additional subsequent treatment with the non-selective PDE
inhibitor 3-isobutyl-1-methylxanthine (IBMX), suggesting an important regulatory role
of cardiac PDEs in these membrane microdomains (Figure 3a). Therefore, we went on to
study the contribution of individual PDE families to the cAMP regulation in sham and TAC
myocytes. Since cAMP signals induced by individual PDE inhibitors applied alone were
negligible in E1-CAAX expressing cells (Supplementary Figure S4), we further analyzed
their effects after activation of individual cAMP stimulating receptor subtypes.
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nmol/L or maximal 100 nmol/L concentration of ISO in the presence of the selective β2-AR blocker ICI118551, 50 nmol/L), 
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sponses which were not affected by TAC. In contrast, β2-adrenergic receptors and prosta-

Figure 3. cAMP responses to β-adrenergic (β-AR) and prostaglandin receptor stimulation. (a) Representative single CFP
and YFP intensities as well as CFP/YFP ratio trace (n = 10) recorded form a single E1-CAAX AMVM upon stimulation
with isoproterenol (ISO, 100 nmol/L) and 3-isobutyl-1-methylxanthine (IBMX, 100 µmol/L). An increase in the FRET ratio
represents an increase in local cAMP. (b) Amplitudes of cAMP response upon stimulation of β1-ARs (with submaximal
3 nmol/L or maximal 100 nmol/L concentration of ISO in the presence of the selective β2-AR blocker ICI118551, 50 nmol/L),
β2-ARs (with 100 nmol/L ISO in the presence of the selective β1-AR blocker CGP20712A, 100 nmol/L) or prostaglandin
EP2/4 receptors (EPR) with PGE1, 100 nmol/L. Responses to individual receptor stimulation were calculated from FRET
ratio traces as a% of maximal response induced by forskolin (10 µmol/L) plus IBMX (100 µmol/L). Means ± SE. Number of
cells/mice are stated above the bars. * p < 0.05 by mixed ANOVA followed by Wald’s chi-squared test.

Selective stimulation ofβ1-adrenergic receptors generated the strongest cAMP responses
which were not affected by TAC. In contrast, β2-adrenergic receptors and prostaglandin
E2 receptors triggered much smaller cAMP signals which were significantly increased in
hypertrophied myocytes (Figure 3b), suggesting altered receptor expression or local PDE
dependent regulation.

3.3.2. PDE Dependent Regulation of β1-Adrenergic Receptor cAMP Responses

To study how local β1-AR/cAMP levels in non-raft microdomains are regulated by
PDEs in healthy and diseased AMVMs, we stimulated cells freshly isolated from sham and
TAC mice with either maximal (100 nmol/L) of submaximal (3 nmol/L) concentration of
ISO [15,27] in presence of the β2-AR antagonist followed by selective inhibitors of PDE2,
PDE3 and PDE4 families. Upon maximal receptor stimulation, all three PDE families were
involved in cAMP hydrolysis with PDE4 being the predominant one, followed by PDE3
and PDE2. However, both sham and TAC groups showed comparable responses to the
inhibition of PDE2 with BAY60-7550, PDE3 with cilostamide and PDE4 with rolipram
(Figure 4).
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TAC myocytes. Representative FRET ratio traces recorded from cells in response to β1-AR stimulation with 100 nmol/L 
ISO in the presence 50 nmol/L ICI118551 (ISO+ICI), followed by (a) 100 nmol/L of the PDE2 inhibitor BAY60-7550, (b) 10 
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Figure 4. cAMP responses to selective PDE2, PDE3 and PDE4 inhibition after maximal β1-AR stimulation in sham and TAC
myocytes. Representative FRET ratio traces recorded from cells in response to β1-AR stimulation with 100 nmol/L ISO in the
presence 50 nmol/L ICI118551 (ISO+ICI), followed by (a) 100 nmol/L of the PDE2 inhibitor BAY60-7550, (b) 10 µmol/L of
the PDE3 inhibitor cilostamide, and (c) 10 µmol/L of the PDE4 inhibitor rolipram. PDE inhibitor responses were calculated
as the % maximal PDE inhibition with the subsequently applied non-selective PDE inhibitor IBMX (100 µmol/L). Forskolin
(10 µmol/L) was applied at the end of each experiments to obtain the maximal possible FRET response. (d) Quantification
of PDE inhibitor responses in sham and TAC myocytes. Means ± SE. Number of cells/mice are stated above the bars.

Since maximal β1-adrenergic receptor stimulation can generate relatively high amounts
of cAMP which might override possible differences in PDE-dependent regulation, we next
treated the myocytes with a submaximal concentration of ISO to compare PDE inhibitor
responses. Interestingly, the submaximal receptor activation resulted in a smaller contribu-
tion of PDE4 and could unmask a significantly reduced PDE3 inhibitor effect in TAC vs.
sham myocytes (Figure 5).
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Figure 5. cAMP responses measured upon selective PDE2, PDE3, and PDE4 inhibition after submaximal β1-AR stimulation
in sham and TAC myocytes. Representative FRET ratio traces recorded from cells in response to β1-AR stimulation with
3 nmol/L ISO in the presence 50 nmol/L ICI118551 (ISO+ICI), followed by (a) 100 nmol/L of the PDE2 inhibitor BAY60-7550,
(b) 10 µmol/L of the PDE3 inhibitor cilostamide, and (c) 10 µmol/L of the PDE4 inhibitor rolipram. PDE inhibitor responses
were calculated as a% maximal PDE inhibition by IBMX (100 µmol/L). Forskolin (10 µmol/L) was applied at the end of
each experiments to obtain the maximal FRET response. (d) Quantification of PDE inhibitor responses in sham and TAC
myocytes. Means ± SE. Number of cells/mice are stated above the bars. * p < 0.05 by mixed ANOVA followed by Wald’s
chi-squared test.

3.3.3. Responses to PDE Inhibitors after β2-Adrenergic Receptor Stimulation

To further study how cAMP levels are regulated by PDEs after β2-AR stimulation, we
stimulated sham and TAC myocytes with 100 nmol/L of ISO in the presence of the β1-AR
blocker CGP-20712A followed by PDE inhibitors as described above. Interestingly, similar
to responses measured in caveolin-rich membrane microdomains [16], β2-AR/cAMP was
strongly regulated by PDE3 and this effect was significantly diminished after TAC, whereas
the response to other PDE inhibitors were not significantly changed in diseased cells
(Figure 6).
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taglandin receptor stimulation which is known to specifically regulate these microdo-
mains [14,15]. Although TAC led to somewhat higher PGE1 responses (see Figure 3b), we 
could not detect any significant changes in the contribution of individual PDE families in 
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Figure 6. cAMP responses to selective PDE2, PDE3 and PDE4 inhibition after β2-AR stimulation in sham and TAC myocytes.
Representative FRET ratio traces recorded from cells in response to β2-AR stimulation with 100 nmol/L ISO in the presence
100 nmol/L CGP20712A (ISO+CGP), followed by (a) 100 nmol/L of the PDE2 inhibitor BAY60-7550, (b) 10 µmol/L of the
PDE3 inhibitor cilostamide, and (c) 10 µmol/L of the PDE4 inhibitor rolipram. PDE inhibitor responses were calculated as
a% maximal PDE inhibition by IBMX (100 µmol/L). Forskolin (10 µmol/L) was applied at the end of each experiments to
obtain the maximal FRET response. (d) Quantification of PDE inhibitor responses in sham and TAC myocytes. Means ± SE.
Number of cells/mice are stated above the bars. * p < 0.05 by mixed ANOVA followed by Wald’s chi-squared test.

3.3.4. PDE Regulation of Prostaglandin Receptor Responses

Given the specific nature of the biosensor targeted to detect cAMP primarily in
non-lipid raft membrane microdomains, we also sought to assess cAMP regulation af-
ter prostaglandin receptor stimulation which is known to specifically regulate these mi-
crodomains [14,15]. Although TAC led to somewhat higher PGE1 responses (see Figure 3b),
we could not detect any significant changes in the contribution of individual PDE families
in the regulation of these signals in diseased myocytes (Figure 7). Possible explanation for
this results could be an increased expression of the relevant prostaglandin EP2/4 receptors
after TAC. Indeed, immunoblots analysis with a specific EP4 receptor antibody revealed its
clear upregulation in TAC heart lysates (Supplementary Figure S5).
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Figure 7. cAMP responses upon PDE inhibition after prostaglandin EP receptor stimulation in sham and TAC myocytes.
Representative FRET ratio traces recorded from cells in response to EPR stimulation with 100 nmol/L of PGE1, followed by
(a) 100 nmol/L of the PDE2 inhibitor BAY60-7550, (b) 10 µmol/L of the PDE3 inhibitor cilostamide, and (c) 10 µmol/L of
the PDE4 inhibitor rolipram. PDE inhibitor responses were calculated as a% maximal PDE inhibition by 100 µmol/L IBMX).
Forskolin (10 µmol/L) was applied at the end of each experiments to obtain the maximal FRET response. (d) Quantification
of PDE inhibitor responses in sham and TAC myocytes. Means ± SE. Number of cells/mice are stated above the bars.

4. Discussion

Myocytes have provided a paradigm of a cell type with highly compartmentalized
cAMP signaling [4,5,28]. Even within the plasma membrane itself there are at least two
differentially regulated types of cAMP microdomains associated with caveolin-rich and
non-raft sarcolemma. While specific disease-driven changes in cAMP compartmentation in
caveolin-rich membrane have previously been investigated [16], no studies have addressed
this issue for non-raft membrane microdomains.

To study real-time cAMP dynamics in non-raft microdomains of healthy and diseased
AMVMs, we generated a new transgenic mouse model expressing the E1-CAAX biosensor
in adult myocardium. This allows live cell imaging in freshly isolated AMVMs without the
need to introduce FRET biosensors using, e.g., adenoviral gene transfer during prolonged
ex vivo culture. Importantly, transgenic expression of the biosensor in mice did not lead to
any morphological or functional abnormalities in their hearts (Figure 1, Table 1).

Another clear advantage of transgenic biosensor mice is that this model enables studies
of pathological alterations in cAMP microdomains by subjecting these mice to experimen-
tal in vivo models of cardiac disease. In this work, we used a well-established model of
pressure overload induced cardiac hypertrophy following TAC. As previously shown for
wild-type and biosensor expressing mice on the on FVB/N genetic background [16,23–26],
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TAC in E1-CAAX mice led to a compensated state of cardiac hypertrophy without pro-
nounced reduction in contractile function (Table 2). This compensated state of cardiac
disease is especially interesting in terms of new therapeutic strategies acting already at
early stages because it is not accompanied by gross changes of β1-AR, adenylyl cyclase,
and PDE expression and activity at the whole cell level which is typical for chronic heart
failure [16] (Supplementary Figures S2 and S3). Instead, using transgenic mice expressing
the pmEpac1 biosensor specifically targeted to caveolin-rich membrane microdomains,
we could show that TAC leads to redistribution of PDE2 and PDE3 between different
microdomains which led to augmented β1-AR dependent and reduced β2-AR dependent
cAMP signals and contractility [16]. However, the question remained whether such PDE
redistribution takes place also in non-raft membrane domains.

In contrast to caveolin-rich membrane where TAC led to augmentation of local β1-AR
and reduction of β2-AR responses due to PDE redistribution [16], E1-CAAX responded to
TAC with augmented β2-AR/cAMP signals without significant alterations of β1-AR/cAMP
signals (see Figure 3b). This was accompanied by a reduction in the measured PDE3
inhibitor effects, which was the most prominent PDE associated with β2-AR/cAMP regula-
tion in both membrane microdomains and was recently implicated into the tight regulation
of β2-AR/cAMP in general [29]. This is in line with the redistribution of PDE3A away from
the sarcolemma after TAC which, at least in part due to isoform switch, has been shown
to relocate to sarcoplasmic reticulum fractions [16]. However, in contrast to pmEpac1
sensor measurements we did not observe any change in PDE2 dependent regulation of the
non-raft microdomain during cardiac hypertrophy (Figures 4–7). This suggests that this
PDE is more tightly associated with the adrenergic receptors located in the caveolin-rich
sarcolemma and with the regulation of their cAMP signals (Figure 8). Lack of changes
in PDE2 mediated response after TAC might be also a reason for an increase in β2-AR
responses in non-caveolar membrane microdomains of diseased myocytes following local
depletion of PDE3, which contrasts with a decrease of β2-AR/cAMP in caveolin-rich mem-
brane microdomains where decrease of local PDE3 is accompanied by an increase of PDE2
contribution. Interestingly, we did not observe strong effects of PDE inhibitors applied
alone, which is in contrast to the data obtained in rat cardiomyocytes using an adenoviraly-
expressed, slightly more sensitive Epac2-CAAX biosensor [15]. However, we could detect
a strong increase of local cAMP upon IBMX treatment (Supplementary Figure S4), sug-
gesting that multiple PDEs act in concert to control basal cAMP levels in non-caveolar
membrane microdomains of AMVMs. Additionally, we did not observe major changes in
PDE regulation of prostaglandin receptor signaling after TAC, apart from a slight increase
of the EPR/cAMP signal amplitude measured without PDE inhibition which is most likely
due to higher expression of these receptors after TAC (Figures 3b and 7; Supplementary
Figure S5). Since ERP system is known to be segregated from the pools of cAMP involved
in the regulation of cardiac contractility [2,30], this effect of disease on local cAMP levels
stimulated by prostaglandin E1 might convey the effects of inflammatory processes and
mediators on myocytes function. Future studies are needed to understand the underlying
molecular mechanisms including the substrates and macromolecular complexes of the
cAMP dependent protein kinase (PKA) type I which has been found to be activated specifi-
cally by EPR signaling as opposed to of β-AR axis which is linked to phosphorylation the
regulation of calcium handling and contractile proteins via PKA type II [31]. One possible
scenario is that caveolin-rich membrane microdomains are predominantly involved in
the regulation of disease-driven changes of contractile function [16], whereas non-raft
membrane microdomains are regulating functional responses to inflammatory mediators
and potential new functions linked to PKA type I and its molecular scaffolds.
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5. Conclusions

In conclusion, using a newly generated E1-CAAX biosensor expressing mouse model
subjected to pressure overload cardiac hypertrophy we could detect specific changes
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distinct from those occurring in caveolin-rich sarcolemma. This confirms the existence of at
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cardiac remodeling.
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