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COVID-19
Molecular mechanisms and epidemiology of
COVID-19 from an allergist’s perspective
Koa Hosoki, MD, PhD, Abhijit Chakraborty, PhD, and Sanjiv Sur, MD Houston, Tex
The global pandemic caused by the newly described severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
caused worldwide suffering and death of unimaginable
magnitude from coronavirus disease 2019 (COVID-19). The
virus is transmitted through aerosol droplets, and causes severe
acute respiratory syndrome. SARS-CoV-2 uses the receptor-
binding domain of its spike protein S1 to attach to the host
angiotensin-converting enzyme 2 receptor in lung and airway
cells. Binding requires the help of another host protein,
transmembrane protease serine S1 member 2. Several factors
likely contribute to the efficient transmission of SARS-CoV-2.
The receptor-binding domain of SARS-CoV-2 has a 10- to 20-
fold higher receptor-binding capacity compared with previous
pandemic coronaviruses. In addition, because asymptomatic
persons infected with SARS-CoV-2 have high viral loads in their
nasal secretions, they can silently and efficiently spread the
disease. PCR-based tests have emerged as the criterion standard
for the diagnosis of infection. Caution must be exercised in
interpreting antibody-based tests because they have not yet been
validated, and may give a false sense of security of being
‘‘immune’’ to SARS-CoV-2. We discuss how the development of
some symptoms in allergic rhinitis can serve as clues for new-
onset COVID-19. There are mixed reports that asthma is a risk
factor for severe COVID-19, possibly due to differences in
asthma endotypes. The rapid spread of COVID-19 has focused
the efforts of scientists on repurposing existing Food and Drug
Administration–approved drugs that inhibit viral entry,
endocytosis, genome assembly, translation, and replication.
Numerous clinical trials have been launched to identify effective
treatments for COVID-19. Initial data from a placebo-
controlled study suggest faster time to recovery in patients on
remdesivir; it is now being evaluated in additional controlled
studies. As discussed in this review, till effective vaccines and
treatments emerge, it is important to understand the scientific
rationale of pandemic-mitigation strategies such as wearing
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facemasks and social distancing, and implement them. (J
Allergy Clin Immunol 2020;146:285-99.)
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In December 2019, a distinct coronavirus (CoV), severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), was identi-
fied as the cause of an outbreak of severe acute respiratory
syndrome (SARS) associated with atypical pneumonia (corona-
virus disease 2019 [COVID-19]).1,2 The index cases had visited
or worked in the Huanan Wholesale Seafood Market in Wuhan,
China.1,2 COVID-19 spread rapidly to mainland China. Out-
breaks were subsequently reported in cruise ships such as Dia-
mond Princess, where it infected 712 (19%) of the 3700
passengers and crew.3 In January 2020, SARS-CoV-2 spread to
Europe,4 with most confirmed cases reported from Italy, Spain,
Germany, France, and the United Kingdom. In the United States,
the first case was detected in Washington on January 19, 2020,5

and had a travel history to Wuhan. Genome sequences of
SARS-CoV-2 were uploaded from around the globe into the
Global Initiative on Sharing All Influenza Data.6 Genome epide-
miologists performed big data analysis of the Global Initiative on
Sharing All Influenza Data, and suggested a pattern of spread of
the virus from Wuhan to Europe, then the United States and the
rest of the world.7 They determined that COVID-19 spread coast
to coast across the United States.8 On March 11, 2020, the World
Health Organization (WHO) declared COVID-19 as a global
pandemic. As of June 26, there have been over 2,422,312
confirmed cases in the US and 9.635 million cases worldwide
that have contributed to more than 124,415 deaths in the US
and 489,922 deaths worldwide (Table I).3,9-12 The WHO esti-
mates that COVID-19 is fatal in about 3.4% of reported cases.13

The number of people infected and its associated death toll
make the COVID-19 pandemic one of the worst pandemics in
recent history, and certainly worse than previous CoV pan-
demics—SARS and Middle East respiratory syndrome
(MERS).14,15

Rarely in human history have hospitals, clinicians, epidemiol-
ogists, scientists, and pharmaceutical companies worked so
rapidly toward a common goal like we are seeing today—to fight
the COVID-19 pandemic. This vast scientific and clinical effort
has generated awealth of information at an unbelievable pace.We
navigated through this scientific literature, and here we summa-
rize the major developments in this rapidly changing field. We
examine the scientific basis and big data aspects of the spread of
SARS-CoV-2 and transmission-mitigation strategies such as
social distancing and wearing facemasks. We discuss how the
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TABLE I. Confirmed COVID-19 cases and death, and ICU bed
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availability by country
Abbreviations used
Total confirmed Total Total ICU beds per

ACE2: A
ngiotensin-converting enzyme 2
Country cases deaths 100,000 capita
ARDS: A
cute respiratory distress syndrome
CDC: C
enters for Disease Control and Prevention

World 9,635,935 489,922 NA
CoV: C
oronavirus

United States 2,422,312 124,415 34.7
COVID-19: C
oronavirus disease 2019

New York 389,085 24,766 NA
FDA: F
ood and Drug Administration

Spain 247,486 28,330 9.7
IDO: I
ndoleamine 2,3-dioxygenase

Italy 239,706 34,678 12.5
JAK: J
anus kinase

France 197,885 29,775 11.6
MERS: M
iddle East respiratory syndrome

Germany 193,790 8,962 29.2
MERS-CoV: M
iddle East respiratory syndrome coronavirus

United Kingdom 309,456 43,314 6.6
MMWR: M
orbidity and Mortality Weekly Report
ICU, Intensive care unit; NA, not available.
MX1: M
X dynamin-like GTPase 1
COVID-19 cases and death: data for New York from the New York State Department
NIH: N
ational Institutes of Health
of Health9,10; for others, from Johns Hopkins University.3
RBD: R
eceptor-binding domain

ICU beds data for the United States are from Wallace et al11 and for Europe are from

12

RSV: R
espiratory syncytial virus
Rhodes et al.
RV: R
hinovirus
SARS: S
evere acute respiratory syndrome
SARS-CoV: S
evere acute respiratory syndrome coronavirus

TABLE II. Prevalence of clinical symptoms of COVID-19 and AR
SARS-CoV-2: S
evere acute respiratory syndrome coronavirus 2
Symptom, n (%) COVID-19* ARy
S protein: S
pike glycoprotein
TMPRSS2: T
ransmembrane protease serine S1 member 2

Shortness of breath 18.7 0
WHO: W
orld Health Organization

Fever 88.7 0

Cough 67.8 30

Headache 13.6 54

Conjunctival congestion 0.8 64

Sneezing NA 64

Rhinorrhea 4� 64

Nasal congestion 4.8 76

AR, Allergic rhinitis.

*Guan et al.16

�Schatz.29 The 0s for shortness of breath and fever are not real numbers because these

symptoms were not discussed in the article, likely because they are not common

clinical features of AR.
development of some symptoms in people suffering from allergic
rhinitis can serve as a clue for new-onset COVID-19.We examine
how patients with asthma can be at a higher risk for severe
COVID-19.We review themolecular pathogenesis of COVID-19,
and examine how this knowledge has been critical in
providing the scientific rationale for identifying novel and
Food and Drug Administration (FDA)-approved repurposed
therapeutic targets.
�Chen et al.22
DISTINGUISHING MILD COVID-19 SYMPTOMS

FROM THOSE SEEN IN ALLERGIC DISEASES
The median incubation period for COVID-19 has been

estimated to be 4 to 5 days,16,17 and 98% of the subjects develop
the symptoms within 12 days of infection.17 The clinical
presentation and current recommendations in the management
of COVID-19 are described in considerable detail on the
American College of Physicians18 and National Institutes of
Health (NIH)19 Web sites. There are some differences in
symptoms observed in SARS-CoV-2–infected individuals
from those observed in seasonal allergies. SARS-CoV-2–
infected individuals usually develop symptoms such as dry
cough, sore throat, nasal congestion, shortness of breath,
myalgia, fatigue, fever,16,20-24 and rarely (about 1%)
conjunctival congestion,16 and most recover spontaneously. In
contrast, seasonal allergies almost universally present with a
seasonally reproducible constellation of allergic rhinitis
symptoms consisting of runny itchy nose, itchy eyes, sneezing,
postnasal drip, and conjunctival congestion.25-29 From an
allergist’s perspective, a shift from these allergic rhinitis
symptoms to those observed in COVID-19 with fever, cough,
and shortness of breath (Table II)16,22,29 may suggest the
possibility of new-onset COVID-19 in allergic individuals.
Taste or olfactory dysfunctions such as anosmia and dysgeusia
can occur in about 35% to 90% of patients who reported
olfactory and gustatory dysfunction,30,31 which is similar to
higher to that seen in allergic rhinitis (taste dysfunction
20%,32,33 olfactory dysfunction 20%-40%33,34). Wheezing, a
common feature of asthma exacerbation, rarely occurs in pa-
tients hospitalized with COVID-19.35-39 However, both asthma
and COVID-19 are often associated with cough and shortness of
breath,16,20-24,40 and testing for SARS-CoV-2 may be required
to exclude the possibility of new-onset COVID-19 in individ-
uals with asthma. The mechanisms underlying the lack of a
strong association between asthma and COVID-19 are dis-
cussed in greater detail later in this article. Because about a fifth
of hospitalized patients with COVID-19 develop cutaneous
manifestations such as erythematous rash, urticaria, and
chickenpox-like vesicles,41 if a patient with recurrent urticaria
has new-onset urticarial rash together with fever, cough, or
shortness of breath, it may suggest new-onset COVID-19.
SARS-CoV-2 infection can induce severe Kawasaki-like dis-
ease,42,43 a multisystem vasculitis characterized by persistent
fever, conjunctival injection, exanthema, lymphadenopathy,
inflammation of the tongue and pharyngeal mucosa, and edema
in peripheral extremities.44 Because its diagnosis is established
by the presence of 5 or 6 principal symptoms, Kawasaki disease
is not difficult to distinguish from allergic conjunctivitis or skin
eruption. Because Kawasaki disease is a risk factor for
subsequent allergic diseases,45,46 children who develop this
disease during SARS-CoV-2 infection should be followed
longitudinally for the development of allergic diseases.



TABLE III. Prevalence of clinical symptoms of COVID-19 reported from China and the United States (New York)

Symptom

China* New Yorky
Nonsevere Severe Noninvasive MV Invasive MV

Sex: male (%) 58.2 57.8 55.5 70.8

Median age (y) 45 52 61.5 64.5

Cough (%) 67.3 70.5 77.6 83.1

Fever (%) 89.8 91.4 77.2 76.9

Shortness of breath (dyspnea) (%) 15.1 37.6 51.7 66.2

Myalgia, arthralgia, and/or fatigue (%) 14.5 17.3 28.9 23.8

Diarrhea (%) 3.5 5.8 25.1 20.8

Nausea and/or vomiting (%) 4.6 6.9 20.2 16.9

MV, Mechanical ventilation.

*Guan et al.16

�Goyal et al.23
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CLINICAL FEATURES OF SEVERE COVID-19
One of the reasons COVID-19 has developed into such a feared

pandemic is that a subset of SARS-CoV-2– infected persons
develop severe life-threatening complications such as pulmonary
edema, severe pneumonia, and acute respiratory distress syn-
drome (ARDS), heart failure and other organ failures, and septic
shock.15,20-22 A comparison of clinical features of PCR-
confirmed patients with COVID-19 hospitalized in China versus
those hospitalized in New York suggests that the patients in
New York had 4- to 5-fold higher gastrointestinal symptoms
such as nausea, vomiting, and diarrhea, and a higher incidence
of shortness of breath (Table III).16,23 These differences could
reflect a more severe cohort of patients being included in the
report from New York, or suggest racial or other differences.

Risk factors for severe or fatal COVID-19 include age above 60
years, presence of comorbid conditions such as diabetes mellitus,
hypertension, chronic obstructive lung disease, asthma, coronary
artery disease, cerebrovascular disease, chronic renal disease,
history of cigarette smoking, obesity, high Sequential Organ
Failure Assessment score, and d-dimer level more than 1 mg/
mL.16,20,37,47 The presence of shortness of breath as an early
symptom is associated with more severe COVID-19.16 Although
myocardial injury from SARS-CoV-2 occurs rarely in about 5%
of patients hospitalized for COVID-19, its presence has been
identified as a risk factor for death.48,49 The availability of inten-
sive care unit beds to manage patients with severe COVID-19 can
be a problem50,51 because the number of available intensive care
unit beds varies widely in the United States11 or other countries12

(Table I).
DIAGNOSTIC TESTS FOR DETECTING AND

MONITORING COVID-19 AND IMMUNE RESPONSE
The criterion standard test for COVID-19 is a RT-PCR– based

test.52 Nasopharyngeal, oropharyngeal, middle turbinate, anterior
nares specimens or swabs collected by health care professionals,
and other Centers for Disease Control and Prevention (CDC)-rec-
ommended specimens are placed into a virus preservation
solution,53 lysed to extract SARS-CoV-2 genes N, E, S, and
RNA-dependent RNA polymerase, and amplified by real-time
RT-PCR.54 COVID-19 point-of-care testing involves qualitative
detection of nucleic acid from SARS-CoV-2 in nasopharyngeal
swab and/or nasal wash/aspirate specimens. Some in-home
testing kits for COVID-19 are now FDA-approved.55 Virus isola-
tion and culture is not recommended as a routine diagnostic pro-
cedure. Seroconversion occurs in 7 days in 50% and 14 days in all
patients.56 Even though many antibody-based tests have flooded
the market, it is important to remember that they have not yet
been validated, and ‘‘positive’’ test results may give a false sense
of security of being ‘‘immune’’ to SARS-CoV-2.57,58
SCIENTIFIC BASIS OF USING SOCIAL DISTANCING,

QUARANTINE, AND FACEMASKS TO REDUCE

SPREAD OF SARS-CoV-2
SARS-CoV-2 infection is transmitted through aerosol and

droplets during coughing.59 Virus-laden small (<5 mm) aerosol-
ized droplets can remain in the air and travel long distances (>1
m, and sometimes even 4 m),60,61 thus providing a scientific ratio-
nale for the CDC guidelines of social distancing of 6 ft (about 2
m). These droplets can spread and deposit on surfaces, where
the virus remains viable for a few days.62 SARS-CoV-2 is more
stable on plastic and stainless steel than on copper and cardboard,
and viable virus can be detected up to 72 hours after application to
the former surfaces.63 SARS-CoV-2 remains viable in aerosols
for 3 hours, which is similar to that for SARS-CoV.63 The soles
of shoes of medical staff can serve as carriers of SARS-CoV-
2.61 Shedding of SARS-CoV-2 is high even before the onset of
symptom,64 during the first week of symptoms, and continues
till the end of symptoms.56 In one study, fecal samples were
positive for SARS-CoV-2 in 52% of hospitalized patients with
gastrointestinal symptoms and 39% of the subjects without
gastrointestinal symptoms.65 However, the main mode of trans-
mission appears to be through aerosol, droplets, and contact
with surfaces that have deposits of the active virus.56,63,66

A big data study of infections in China estimated that 86%of all
COVID-19 infections were undocumented.67 Their modeling
studies estimated that because of their greater numbers, undocu-
mented infections were the source for about 80% of infections,
and facilitated the rapid dissemination of SARS-CoV2.67 Howev-
er, because this report analyzed data from only the first few weeks
of January, when local authorities were overwhelmed and under-
reporting cases, and did not include the data from the huge surge
of cases in February, the 86% estimate should be treated with
caution. During the previous SARS-CoV pandemic, the impor-
tance of social distancing, isolation of patients, contact tracing,
and quarantine of exposed persons were identified as effective
measures of mitigating the transmission of the virus.68 These
measures were also effective in mitigating the human-to-human
transmission of COVID-19 in China.69 Modeling studies suggest
that the travel quarantine of Wuhan delayed the overall epidemic
progression by 3 to 5 days in mainland China, but had a more



J ALLERGY CLIN IMMUNOL

AUGUST 2020

288 HOSOKI, CHAKRABORTY, AND SUR
marked effect at the international scale, where case importations
were reduced by nearly 80% until mid-February.70 Recent studies
have similarly shown the utility of facemask in mitigating trans-
mission of COVID-19.71-73 However, some data suggest that sur-
gical or cotton masks may not be enough to filter SARS-CoV-2.74

For these reasons, other CDC guidelines such as washing hands,
not touching the face, and social distancing should also be fol-
lowed to reduce the spread of this virus.
CoVs THAT HAVE CAUSED HUMAN DISEASES
CoVs are positive single-strand enveloped RNA viruses that

belong to the family Coronoviridae. These viruses are character-
ized by club-like spikes that project from their surface, a large
RNA genome, and a unique replication strategy. Before SARS-
CoV-2 appeared, 6 human CoVs have been known to have
contributed to human diseases: alpha CoVs HCoV-229E and
HCoV-NL63, and beta CoVs HCoV-OC43, HCoV-HKU1, severe
acute respiratory syndrome coronavirus (SARS-CoV), and Mid-
dle East respiratory syndrome coronavirus (MERS-CoV).75 The
seasonal CoVs HCoV-229E, HCoV-NL63, HCoV-OC43, and
HCoV-HKU1 usually cause mild upper respiratory tract
illness.76-78 However, pandemic CoVs SARS-CoV, SARS-CoV-
2, and MERS-CoV behave differently, and have caused stag-
gering illness and death. The lower respiratory tract symptoms
such as severe acute respiratory illness, shortness of breath, and
chest computed tomography findings of SARS-CoV2 infection
are similar to symptoms of SARS-CoV and MERS-CoV infec-
tions.21 Similar to SARS andMERS,79,80 older age is a risk factor
for adverse clinical outcomes in SARS-CoV-2. Although the
3.4% case-fatality rate of SARS-CoV213 appears to be lower
than that reported for SARS (10%) orMERS (34%),81 the number
of people who tested positive for SARS-CoV-2 (about 9.64
million) is many times greater than the number of people who
tested positive for SARS-CoV (about 8500) or MERS-CoV
(about 2500).82 Thus, the overall health effects of COVID-19
have greatly exceeded those observed in previous CoV
pandemics.
GENOME SIMILARITIES, RESERVOIR, AND

INTERMEDIATE MAMMALIAN HOST OF PANDEMIC

CoVs
The genome size of SARS-CoV-2 (29.9 kb) is similar to the

genome size of SARS-CoV (27.9 kb) and MERS-CoV (30.1
kb).83-85 SARS-CoV-2 and SARS-CoV have about 80% genome
sequence similarity.1,86 The SARS-CoV-2 and bat SARS-CoV-
like CoVs share approximately 96% sequence similarities.86

Likewise, CoVs in Malayan pangolins (Manis javanica) have a
high degree of similarity in all 6 residues of the receptor-
binding domain (RBD) site of SARS-CoV-2.87,88 Because scien-
tific data suggest that civets and camels served as reservoirs for
maintenance of SARS-CoV and MERS-CoV,89 it has been pro-
posed that bat CoV could have been transmitted to humans
through pangolin reservoir to cause COVID-19.88
RECEPTORS AND LUNG CELLS THAT BIND

SARS-CoV-2
Angiotensin-converting enzyme 2 (ACE2) is a well-defined

receptor for SARS-CoV.90 This receptor is expressed in most
human respiratory cells,91,92 explaining its propensity to replicate
in these cells. Like SARS-CoV, SARS-CoV-2 binds to the respi-
ratory mucosa through the same ACE2 receptor.93 The spike
glycoprotein (S protein) on SARS-CoV-2 plays a critical role in
binding host ACE2 receptor and in membrane fusion.94,95 Struc-
tural studies have elucidated the conformational aspects of the
interaction of the RBD of S protein with ACE2 (Fig 1,
A).37,94-97 This binding induces conformational changes in amino
acids that help create salt bridges, increase van der Waals interac-
tions, and facilitate binding with ACE2 with much greater affinity
than SARS-CoV.98 The S protein contains subunit S1 with the
RBD that binds ACE2, the membrane-fusion subunit S2, the
transmembrane anchor, and the intracellular tail (Fig 1, B).
Attachment of the RBD of S1 to host ACE2 receptor requires
the help of the cellular transmembrane protease serine S1member
2 (TMPRSS2)99 to cleave S2 protein from S1, and help in mem-
brane fusion100,101 (Fig 1, B). Some unique features of the S1 pro-
tein of SARS-CoV-214,56 account for its 10- to 20-fold higher
receptor-binding capacity compared with SARS-CoV and
MERS-CoV.99 Structural analysis also suggests that some varia-
tions of ACE2 can strengthen the interactions between the RBD
of SARS-CoV-2 and ACE2.98 A neutralizing antibody CR3022
that recognizes the conserved epitope RBD of SARS-CoV102

also targets the RBD of SARS-CoV-2103 only when 2 RBDs on
the trimeric S protein are changed to the ‘‘up’’ position conforma-
tionally.104 A careful study of this conformationally dependent
interaction of this neutralizing antibody with RBD of SARS-
CoV-2 may provide critical information required for developing
additional high-potency neutralizing antibodies.

The cells in the lungs and airways that are likely to be infected
by SARS-CoV-2 have been investigated by single-nuclei and
single-cell RNAseq analysis of human lung tissues. ACE2 and
TMPRSS2 are expressed in transient secretory cells in the
segmental bronchial branches and cells derived from lung
tissues.105 Because SARS-CoV-2 has a furin-cleavage site in its
S protein, a feature missing in SARS-CoV, it can use the serine
endoprotease furin in host cells to streamline its internaliza-
tion.94,105 The binding of SARS-CoV-2 to ACE2 increases the
expression of ACE2, which further damages the alveolar cells.
After fusion with the host cell, the viral genome RNA is released
into the cytoplasm. The uncoated RNA translates the replicase-
transcriptase polyproteins pp1a and pp1ab encoded in open-
reading frame 1a and 1ab located at the 5’-terminus of the
genome, and the replication-transcription complex106 replicates
RNA for assembly and virus release.107-109
RESPIRATORY VIRUSES, CoVs, SARS-CoV-2, AND

ASTHMA
Many respiratory viruses have been associated with asthma

exacerbations, including respiratory syncytial virus (RSV),
rhinoviruses (RVs), influenza virus, CoV, enterovirus, parain-
fluenza, adenovirus, bocavirus, and metapneumovirus.77,110-116

Atopy and asthma are risk factors for lower respiratory tract infec-
tion, more severe virus-induced wheezing, and asthma exacerba-
tion.117-119 The contribution of RV or RSV to the initiation of
asthma and asthma exacerbation has been investigated for many
years. Positive family history of asthma, history of atopy, and
wheezing are risk factors for RSV-induced lower respiratory tract
infection,118 and hospitalizations due to RV infection.119 RSV-
induced bronchiolitis is the most common cough, wheezing,



FIG 1. A, Structure of RBD of spike protein S1 of SARS-CoV-2 bound to ACE2. Structure of ACE2 bound to

the RBD of the S1 spike protein of SARS-CoV-2.94-96 The chimeric RBD is in orange, and human ACE2 is in

green. The figure was created with Research Collaboratory for Structural Bioinformatics Protein Data Bank

(https://www.rcsb.org/). RBD, RBD of S1 spike protein of SARS-CoV-2.B, Cartoon showing howSARS-CoV-2

binds to the lung epithelial cells. SARS-CoV-2 has a spike protein with transmembrane (TM), S1 and S2 part.

S1 part has an RBD. The virion uses the spike protein S1 to attach with RBD of the host ACE2 receptor on the

cell membrane with the help of the cellular TMPRSS2. Following attachment of S1 to ACE2, the host serine

protease TMPRSS2 cleaves the S2 protein from S1, and plays a role in membrane fusion of CoVs. The figure

was created using BioRender (https://biorender.com/). C, The prevalence of asthma in patients hospitalized

for COVID-19 in United States. Data were extracted from April 8, 2020, MMWR report37 and Centers for Dis-

ease Control and Prevention.97 The total length of each bar represents the prevalence rates of COVID-19 in

each age group. The length of the blue part of this bar is the expected prevalence rate of asthma in each age

group. The orange part represents the prevalence rate of COVID-19 in excess of the expected prevalence rate

of asthma in each age group.
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and respiratory distress, and requires hospitalization in infants.120

Many prospective long-term follow-up studies demonstrated that
the history of wheezing illnesses caused by RVor RSV infections
is a predictor of the subsequent development of asthma.113,121-125

From these studies, 2 hypotheses have emerged; RSV- or
RV-induced wheezing initiates the development of asthma, or,
these viruses trigger wheezing and exacerbation of asthma. The
validity of these 2 schools of thought has been debated for
decades.

Like other respiratory viruses that infect the airway epithelial
cells and pneumocytes through their receptors and induce asthma
exacerbations,110,111,126-131 seasonal human CoVs HCoV-229E,
HCoV-NL63, HCoV-OC43, and HCoV-HKU1 can also cause
common cold and induce asthma exacerbations.110,131-133 Inocu-
lation of SARS-CoV-2 or MERS-CoV pandemic CoVs into cyn-
omolgusmacaques infects airway cells with subtle differences.134

SARS-CoV-2 infects type I and II pneumocytes in ciliated airway
mucosal epithelial cells and damages alveolar cells, whereas
MERS-CoV infects predominantly type II pneumocytes, and
causes less lung damage.134 Investigators have proposed a hy-
pothesis to explain the mechanism by which respiratory viruses
trigger asthma exacerbations—patients with asthma have an
attenuated IFN-I and IFN-III response to these infections, and
the resultant unopposed TH2 responses contribute to asthma exac-
erbation.135-137 Because infection of lung and airway cells with
SARS-CoV-2 induces an attenuated IFN-I and INF-III

https://www.rcsb.org/
https://biorender.com/
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signature138,139 similar to that observed in patients with asthma,
COVID-19 would be expected to frequently trigger asthma exac-
erbations. Furthermore, the high levels of proinflammatory cyto-
kines and their receptors such as CXCL1, CXCL2, CXCL8,
CXCL17, CCL2, CCL3, CCL4, CCR1, CXCR2, IL5RA, IL-6,
IL-1b, and IL-1R2 observed in the bronchoalveolar lavage and
lungs of patients with COVID-19138,139 also suggests that
SARS-CoV-2 infection should frequently induce asthma exacer-
bations. Yet, quite surprisingly, in the April 8, 2020, Morbidity
and Mortality Weekly Report (MMWR)37 report of 1482 patients
hospitalized for COVID-19 in the United States in March 2020, it
was mentioned that wheezing was present in only about 7% of the
178 patients in whom data were available on underlying condi-
tions, which is less than the prevalence rate of about 10% of
asthma in the general population.140 These reports suggest that
SARS-CoV-2 rarely induces asthma exacerbations during hospi-
talization for COVID-19.37,140

Could host immune-response factors contribute to the reduced
ability of SARS-CoV-2–infected airway and lung cells from
inducing asthma exacerbations? SARS-CoV-2 entry–associated
genes ACE2 and TMPRSS2 are highly expressed in human nasal
and lower airway epithelial cells, and cells that express these
genes often coexpress innate immune genes such as indoleamine
2,3-dioxygenase (IDO) 1 and MX dynamin-like GTPase 1
(MX1).141 IDO is a rate-limiting enzyme in tryptophan catabo-
lism that increases the synthesis of tryptophan metabolites such
as kynurenine, 3-hydroxykynurenine, and xanthurenic acid that
induce immune tolerance and suppress experimental allergic
inflammation.142,143 Thus, increased expression of IDO in
ACE2 and TMPRSS2-expressing cells could reduce asthma exac-
erbations in COVID-19. MX1 is an IFN-inducible GTPase with
antiviral activities against a broad range of RNA viruses.144 The
data from the Childhood Origins of Asthma study and Copenha-
gen Prospective Study on Asthma in Childhood suggest that poly-
morphisms of the MX1 gene are associated with asthma
exacerbations.145 Thus, similar to IDO, increased expression of
MX1 in ACE2 and TMPRSS2-expressing cells could reduce
asthma exacerbations in COVID-19. IL-33, an alarmin that nor-
mally resides dormant exclusively in the nucleus, becomes a
proallergic cytokine when it is secreted extracellularly and in-
duces allergic inflammation and contributes to asthma exacerba-
tion.146-148 Infection with respiratory viruses that trigger asthma
exacerbation, such as influenza and rhinovirus, induce IL-33
secretion from bronchial epithelial cells and alveolar cells in
the airways.146,148,149 Yet, our search of databases such as
PubMed and Google Scholar did not find peer-reviewed publica-
tions that show that SARS-CoV-2 induces IL-33 secretion in the
airways. Taken together, the unique host immune response to
SARS-CoV-2 could explain why it does not frequently trigger
asthma exacerbations.

If SARS-CoV-2 does not induce asthma exacerbations, can
asthma be a risk factor for severe COVID-19 infection as
suggested on the CDC Web site150? The comorbid diseases data
in the April 8, 2020, MMWR report show that in 18- to 49-
year-old patients hospitalized for COVID-19, 27% had a history
of asthma.37 The COVID-19 task force of the American Academy
of Allergy, Asthma & Immunology suggests that given the 10%
prevalence of asthma in the United States, the higher 27% of pa-
tients with COVID-19 who were hospitalized in this age group
suggests that they may be at increased risk of hospitalization
due to COVID-19 (Fig 1, C).37,151 The same MMWR report sug-
gests that African Americans have a disproportionally higher hos-
pitalization for COVID-19, accounting for 33% of the US
hospitalizations,37 just as they have a higher propensity for severe
asthma.152-154 In contrast to these MMWR data, a retrospective
analysis of 140 hospitalized patients with COVID-19 in China
with confirmed results of SARS-CoV-2 viral infection reported
that none of them had asthma.35 Another study performed in
China involving 548 patients with COVID-19 revealed that
0.9% of patients with COVID-19 had asthma, which is lower
than the prevalence rate of asthma in the general population in
China.36 The discrepancy between the US MMWR report and
these studies from China could reflect racial differences in the
role of asthma in the severity of COVID-19.35,37,151 However,
in a very large study of 5700 patients in New York City hospital-
ized for COVID-19, only 9% of the patients had underlying
asthma,155 similar to the prevalence rates of asthma in the general
population. That presence of asthma does not contribute to the
severity of COVID-19 is also evident from another study per-
formed in New York City that showed no increase in asthma in
invasive compared with noninvasive mechanically ventilated
patients with COVID-19.23

What could be the explanation for the paucity of patients with
asthma in patients with COVID-19 in studies performed in
China?35,36 Because the expression of airway levels of ACE2 is
lower in atopic subjects compared with nonatopic subjects,156

TH2-high endotype of asthma may be at a lower risk for severe
COVID-19 because their airways would have fewer receptors
for entry of SARS-CoV-2. Likewise, because exposure of the air-
ways of allergic patients with asthma to environmental allergens
reduces ACE2 expression levels,156 seasonal exposure to aeroal-
lergens may protect them from COVID-19. As discussed later, ci-
clesonide and formoterol are commonly used inhalers in asthma,
and their antiviral properties could protect patients with asthma
from COVID-19.

On the basis of MMWR data,37 if one assumes that asthma is a
risk factor for severe COVID-19 particularly in the 18- to 49-year
age group (Fig 1, C), what could be the mechanisms of this
increased propensity toward severity of COVID-19? Because
obesity is a known risk factor for severe COVID-19,37 obesity-
related endotype of asthma157,158 could be a higher risk for severe
COVID-19. The expression of ACE2 and TMPRSS2 in sputum
cells is higher in males, in African Americans, and in patients
with asthma with a history of diabetes, all risk factors for severe
COVID-19.159 Persons with ACE D/D genotypes have higher
immunoreactive ACE concentration in serum and a higher risk
of asthma than those with other genotypes.160-162 Because
SARS-CoV-2 uses ACE2 to infect cells, future studies should
evaluate whether the ACE D/D genotype is a risk factor for
COVID-19. TMPRSS2 is expressed in human airway epithe-
lium163 and thought to contribute to the severity of SARS-CoV
and MERS-CoV lung infection.164 Because subjects with atopic
asthma have higher nasal levels of TMPRSS2 compared with
healthy volunteers,165 these increased levels could be a risk factor
for the severity of COVID-19 in asthma. Treatment of mice with
ACE2 activator or angiotensin (1-7) reduces airway inflammation
in experimental asthma.166,167 In addition, loss of ACE2 in the an-
imal model study has been shown to aggravate severe acute lung
injury, and the administration of recombinant human ACE2 alle-
viates lung injury.168 Taken together, these studies suggest that
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signaling through ACE2 provides protection against both allergic
airway inflammation and acute lung injury. Because attachment
of S1 part of the S protein to ACE2 can stimulate splicing of
ACE2 by TMPRSS2,169 it is possible that this spliced ACE2 is
less effective in providing protection against acute lung injury
and asthma. Future studies will have to determine whether the
administration of human recombinant ACE2 could be a treatment
option for COVID-19 in patients with asthma.
SCIENTIFIC STRATEGIES BEHINDMAJOR CLINICAL

TRIALS FOR COVID-19
Many clinical trials such as seen in NIH ClinicalTrials.gov170

or EU Clinical Trials Register171 are being performed worldwide
for COVID-19 (Table IV),172-176 but as of today there are no
proven effective treatments. On March 20, 2020, WHO
announced the launch of SOLIDARITY,177 an unprecedented, co-
ordinated push to collect robust scientific data rapidly during a
pandemic.178 Properly designed large clinical trials are required
for assessing drugs in each category of the following mechanistic
categories (Fig 2), and are being performed.
Inhibiting viral entry: Decoy receptor, mAbs,

convalescent plasma, camostat
Some data suggest that this strategy may be effective in

COVID-19 (Fig 2, A). Acting as a decoy, human recombinant sol-
uble ACE2 treatments dramatically inhibited the growth of
SARS-CoV-2–infected Vero cells by more than 1000-fold,179

and suppressed SARS-CoV-2 infection with engineered human
blood vessel and kidney organoids.179 These results suggest that
human recombinant soluble ACE2 could block early stages of
SARS-CoV-2 infections, and is a potential drug for use in
COVID-19. In another study, transfusion of convalescent plasma
containing neutralizing antibodies collected from the donors who
had recovered from SARS-CoV-2 infection to 5 patients with
COVID-19 and ARDS receiving mechanical ventilation
improved their clinical status.180 Likewise, the administration
of convalescent plasma had a beneficial effect on 10 patients
with severe COVID-19.181 Human neutralizing mAbs from
convalescent patients with COVID-19, B38 and H4, inhibit the
binding of SARS-CoV-2 S protein RBD to ACE2182 (Fig 2, A).
These antibodies reduced virus titers in the lungs and ameliorated
the lung inflammation in an animal model developed to test the
efficacy of drugs—human ACE transgenic mice infected with
SARS-CoV-2.182 Treatment with serine protease inhibitor camo-
stat inhibited entry of SARS-S and SARS-2-S protein into pri-
mary human lung cells.100 Likewise, nafamostat inhibits
membrane fusion of S protein of MERS-CoV183 and SARS-2-
S.184 Well-designed clinical trials are required to assess the role
of human recombinant soluble ACE2, mAbs, convalescent sera,
and camostat in COVID-19.
Inhibiting endocytosis and initial assembly of the

virus genome
Chloroquine and hydroxychloroquine may inhibit SARS-CoV-

2 by inhibiting pH-dependent viral fusion/replication and pre-
vention of viral envelope glycoprotein as well as host receptor
protein glycosylation, and virion assembly in endoplasmic
reticulum-Golgi intermediate compartment–like structures185
(Fig 2, B). In addition to its suppressive effects on viral replica-
tion, hydroxychloroquine inhibits Toll-like receptor 7/9–depen-
dent inflammatory responses.186 In a small study, azithromycin
added to hydroxychloroquine was significantly more efficient
for virus elimination than hydroxychloroquine alone or either
drug given orally.175 The low cost and vast availability of chloro-
quine and hydroxychloroquine is one of the reasons it is being
evaluated as part of SOLIDARITY trials. However, a parallel,
double-masked, randomized clinical trial in hospitalized patients
with COVID-19 revealed that the mortality rate until day 13 was
higher in the high-dosage chloroquine diphosphate group than in
the low-dosage group.187 The high-dosage group of chloroquine
showed more often increased QTc interval than the low-dosage
group.187 Likewise, another report suggests that neither hydroxy-
chloroquine alone nor in combination with azithromycin had
beneficial clinical effects in hospitalized patients with COVID-
19.188,189 Furthermore, the administration of hydroxychloroquine
may contribute to increased mortality180 and prolongation of QTc
interval in electrocardiogram.19 These studies suggest that chlo-
roquine and hydroxychloroquine may not have significant effi-
cacy in COVID-19, and their excessive use may contribute to
electrocardiogram changes and even death.
Inhibiting translation of the viral genome and

replication of virus
Lopinavir-ritonavir is a boosted protease inhibitor used for

treating HIV type 1 infection that had favorable effects on
SARS190 and MERS191 in small studies. However, a randomized
trial of lopinavir-ritonavir treatment demonstrated no beneficial
effect in hospitalized adult patients with severe COVID-19.184

Remdesivir is an adenosine analog that incorporates into nascent
viral RNA chains, and causes its early termination192 (Fig 2,B). In
a case report, treatment with intravenous remdesivir was initiated
on the evening of day 7 in a patient hospitalized for severe
COVID-19, and on hospital day 8, the patient’s clinical condition
improved.5 The administration of remdesivir on a compassionate-
use basis to patients hospitalized with COVID-19 showed a bene-
ficial effect in about 70% of patients.193 The preliminary results
from the Adaptive COVID-19 Treatment Trial indicate that pa-
tients who received remdesivir had a 31% faster time (11
days) to recovery than those who received placebo (15 days;
P < .001).194 However, a randomized, double-blind, placebo-
controlled, multicenter trial from China demonstrated that reme-
desivir has no beneficial impact on hospitalized patients with
COVID-19 compared with the placebo group.195 A study
comparing the effect of favipiravir and umifenovir in the patients
with moderate COVID-19 showed statistical superiority of favi-
piravir over umifenovir.173
INHIBITION OF THE CYTOKINE STORM
SARS-CoV-2 triggers a cytokine storm with secretion of IL-6

and other proinflammatory cytokines that has been suggested as
one of the mechanisms for organ damage and ARDS.21,196,197

Ameta-analysis of 6 studies suggested that themean IL-6 concen-
trations were about 3-fold higher in patients with complicated
COVID-19 compared with uncomplicated disease.198 IL-6 binds
to the IL-6 receptor on the cell surface and Janus kinase (JAK) is
phosphorylated and the subsequent inflammatory cascade initi-
ates.199 Inhibitor for IL-6 signaling and JAK1/2 are being

http://ClinicalTrials.gov


TABLE IV. Clinical trials completed or are being performed worldwide for COVID-19 (listed in clinicaltrials.gov)

Intervention Category

Suggested

mechanism

of action Design of trial Status Key outcome Reference or ID

Lopinavir-ritonavir Anti-HIV drug Inhibition of protease Open-label,

randomized,

and controlled trial

Completed No benefit on the

hospitalized adult patients

with severe COVID-19

172

Favipiravir vs

umifenovir

Anti-influenza

virus drug

Inhibition of viral

RNA polymerase

Open-label

randomized

Completed Preferred clinical outcome

in the favipiravir group

than in the umifenovir

group

173

Chloroquine Immunosuppressive

drug and

antiparasite drug

Inhibition of

virus entry

Clinical study NA Beneficial effect, but details

have not been published

174

Hydroxychloroquine-

azithromycin

Antimalarial drug,

antibiotics

Inhibition of

virus entry

Open-label

nonrandomized

Completed Combination drug reduced

viral load in

nasopharyngeal swabs

175

Hydroxychloroquine

vs azithromycin

Antimalarial drug,

antibiotics

Inhibition of

virus entry

Open-label

randomized

Recruiting

Phase 2

NA clinicaltrials.gov

(NCT04329832)

Lopinavir/ritonavir,

ribavirin and

IFN-b combination

Antivirus drug Prodrug metabolized

into nucleoside

analogs that blocks

and caps viral RNA

Open-label

randomized

Completed Preferred clinical outcome

in the triple antiviral

therapy group than in

the lopinavir-ritonavir

group

176

IFN-A2B Antivirus drug Activate multiple

immunomodulatory

and antiviral proteins

Open-label

randomized,

blank-controlled

Not yet recruiting

Early phase 1

NA clinicaltrials.gov

(NCT04293887)

Remdesivir Antiebola drug Inhibition of viral

RNA polymerase

Open-label,

randomized

Recruiting

Phase 3

NA clinicaltrials.gov

(NCT04292899)

Tocilizumab Anti–IL-6 receptor

antibody

Anti-inflammation Open-label,

single-group

assignment

Recruiting

Phase 2

NA clinicaltrials.gov

(NCT04317092)

Ciclesonide vs

ciclesonide plus

hydroxychloroquine,

vs no intervention

Inhaled

corticosteroids

Anti-inflammation Open-label

randomized

Not yet recruiting

Phase 2

NA clinicaltrials.gov

(NCT04330586)

Camostat mesilate Antiproteinuric drug Serine protease

inhibitors

Randomized

placebo-controlled

Recruiting

Phases 1 and 2

NA clinicaltrials.gov

(NCT04321096)

Recombinant

human ACE2

Monocarboxypeptidase

that leads to

degradation of

angiotensin II

Antihypertensive Double-blind

randomized

Not yet recruiting

Phase 2

NA clinicaltrials.gov

(NCT04335136)

NA, Not applicable/available.
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evaluated to suppress the cytokine storm in COVID-19.197

Compared with patients with COVID-19 without ARDS, patients
with COVID-19 with ARDS had increased level of IL-6 in serum,
and the serum levels of IL-6 in patients with COVID-19 with
ARDS who died were higher compared with levels in patients
with COVID-19 with ARDS who survived.47 Thus, suppression
of the IL-6 signaling pathway could be a therapeutic strategy
against COVID-19. The FDA-approved drug tocilizumab is pre-
scribed by rheumatologists, and has been administered to patients
with COVID-19. A systematic review and meta-analysis of IL-6
and COVID-19 revealed that serum level of IL-6 was elevated
among patients with COVID-19 with adverse clinical outcomes,
and the administration of humanized monoclonal anti–IL-6 re-
ceptor antibody tocilizumab to these patients was efficacious
and safe.198 Baricitinib is an oral JAK1/JAK2 inhibitor that binds
to AP2-associated protein kinase 1,200 and has been used for the
treatment of rheumatoid arthritis. Because AP2-associated pro-
tein kinase 1 is a regulator of endocytosis,201 baricitinib may
inhibit SARS-CoV-2 replication and suppress IFN-controlled
gene expression.202 A recent small study suggested that bariciti-
nib therapy combined with lopinavir-ritonavir in moderate
COVID-19 pneumonia is clinically more effective than the con-
trol treatment (lopinavir-ritonavir plus hydroxychloroquine)
(intensive care unit transfer 0% vs 33%, discharge at week 2
8% vs 58%, respectively).203 Additional well-designed
large-scale clinical trials are being performed to assess the role
of tocilizumab and baricitinib in COVID-19.
INHALED CICLESONIDE STEROID AND LONG-

ACTING b-ADRENERGIC RECEPTOR FORMOTEROL
Ciclesonide is prescribed by allergists as an intranasal or

inhaled corticosteroid for treating allergic rhinitis and asthma, but
recent studies suggest that it has antiviral properties (Fig 2, B). In
one study, 48 FDA-approved drugs were screened for their anti-
viral properties against SARS-CoV2 using Vero cells.204 From

http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov


FIG 2. Treatment strategies for COVID-19. A, Drugs that are designed to block entry of SARS-CoV into the

cells. B, Drugs that act at different steps of virus replication inside the cell. The figure shows 8 steps from

viral entry to virus release in airway epithelial cells. After fusion to the host cell, the viral genome RNA is

released into the cytoplasm. The uncoated RNA translates pp1a and pp1ab polyproteins, and the

replication-transcription complex replicates RNA for assembly and virus release. The figure was created us-

ing BioRender (https://biorender.com/). ERGIC, Reticulum-Golgi intermediate compartment; MDA5, mela-

noma differentiation-associated protein 5; NSP, nonstructural protein; OAS, 2’-5’ oligoadenylate

synthetase; PKR, protein kinase R; pp1a, polyprotein1a; pp1ab, polyprotein1ab; TLR9, Toll-like receptor 9.
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this screening, ciclesonide was identified as one of the very few
drugs that had significant antiviral properties against SARS-
CoV-2, but had no toxicity.204 Likewise, in another study that
involved screening of FDA-approved drugs for their antiviral
properties, ciclesonide demonstrated antiviral effects against
MERS-CoV.205 Nonstructural protein 15 produced by CoVs
impair the ability of retinoic acid–inducible gene–I–like receptors
such as retinoic acid–inducible gene–I and melanoma
differentiation–associated protein (MDA-5) to detect viral RNA
in the cytosol, thereby facilitating replication of the virus in
host macrophages.206 Ciclesonide targets nonstructural protein
15 (Fig 2, B), thereby facilitating retinoic acid–inducible gene–I
and MDA-5–mediated inhibition of MERS-CoV and SARS-
CoV-2 replication.206,207 Lung imaging studies have shown that
the small particle size of ciclesonide (1 mm) facilitates wide-
spread lung deposition, including small airways.208,209 Thus,
inhaled ciclesonide should be able to penetrate deep into the lungs
and suppress SARS-CoV-2 infection. Indeed, inhaled ciclesonide
clinically improved 3 patients with pneumonia caused by SARS-
CoV-2 who required oxygen support.210 Likewise, formoterol, a
long-acting selective b-adrenergic receptor agonist that is often
prescribed by allergists as a combination drug for treatment of pa-
tients with persistent asthma, can suppress replication of HCoV-
229E.211 Thus, well-designed large-scale clinical trials are
required to assess the role of intranasal/nebulized ciclesonide
and inhaled beta-adrenergic receptor agonists in treatment or pre-
vention of COVID-19.
STRUCTURE-ASSISTED DRUG SCREENING FOR

COMPOUNDS THAT INHIBIT SARS-CoV-2 MAIN

PROTEASE ACTIVITY
The SARS-CoV-2 main protease mediates viral replication and

transcription.212 A study using structure-assisted drug design, vir-
tual drug screening, and high-throughput screening identified 6
compounds, disulfiram, carmofur, ebselen, shikonin, tideglusib,
and PX-12, that inhibited main protease activity.212 Additional
studies will be required to assess the clinical efficacy of these
compounds in COVID-19.
VACCINES TO PREVENT COVID-19
The NIH launched a clinical trial of investigational vaccine for

NIH-funded candidate mRNAvaccines for COVID-19 on March
16, 2020.213,214 Several clinical trials are in progress, and the
WHO announced and updated a DRAFT landscape of COVID-
19 candidate vaccines.215 As of today, there is no clinically avail-
able vaccine against SARS-CoV-2.
Conclusions
COVID-19 has become a feared pandemic because it has

infected more than 200-fold greater number of people in the
population than SARS-CoVor MERS-CoV pandemic, has spread
at an unbelievable pace, and caused severe life-threatening
complications in a significant subset of these infected persons.
Here, we reviewed the molecular pathogenesis of COVID-19, and
examined how this knowledge has been critical in providing the
scientific rationale for identifying novel and FDA-approved
repurposed therapeutic targets. From an allergists’ perspective,
we discussed how the development of some symptoms in allergic
rhinitis may serve as a clue for new-onset COVID-19 in subjects
with allergy, and examined how asthma could be a risk factor for
severe COVID-19. Till effective vaccines or treatments emerge,
it is important to understand the scientific rationale discussed in
this article that underlie pandemic-mitigation strategies such as
wearing facemasks and social distancing. The knowledge gained
from this review will give the readers a broad-based knowledge
required to understand and correctly interpret current and future
publications and developments in this rapidly changing field of
COVID-19 pandemic.
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