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1. INTRODUCTION

Recent technological advances have led to an unprecedented increase in the volume and detail
of neuroscientific data, creating significant challenges for their processing and interpretation. We
approach this challenge through a network-centric perspective, as we believe that brain function
is fundamentally determined by patterns of connectivity between neurons, and the resulting
dynamics. This is in contrast to traditional computational neuroscience techniques that focus on
models of individual neurons and compartments. Progress, in consequence, is essential on (at least)
threemajor fronts:measurement of neural activity, analysis of network structures deduced from this
activity, andmodeling of network function, leading to theoretical insights.

The measurement front spans the range from multi-electrode recordings to whole-brain
measurements using imaging. Several basic scientific questions arise: What do we need to measure
in brain networks? Are there theoretical constraints that would dictate this? How do we design
our experiments to generate the most meaningful data? How do we record from awake/behaving
animals, or even from multiple animals interacting socially?

The analysis front consists of creating networkmodels from themeasurements. Some promising
techniques explore the estimation of networks using causality. However, several open questions
remain: How do we define the fundamental units within the network? Are these units fixed or do
they evolve dynamically? How do we infer connectivity between network elements? How do we
identify functional clustering, based on the individual neuronal features? How do we quantify and
interpret the activity of multiple neurons via multi-unit recordings, especially when there is no
stimulus-response paradigm?

The modeling front can proceed in several directions. From the extracted network we can
identify topological regularities, such as motifs and cycles. An interesting research direction is to
analyze the relationship between the structure of the network, as represented by its motifs, and its
function. A growing body of work is examining the relationship between network structure and
phenomena such as stability and synchrony. For instance, neurons in the hippocampus could be
modeled as a network wherein hubs consisting of hub neurons promote synchrony, while cycles in
this network may cause instability. The theme of synchrony as an important network phenomenon
emerges in several articles in this research topic (Canavier et al., 2013; Latorre et al., 2013; Tibau
et al., 2013; Vardi et al., 2013; Cavallari et al., 2014; Chary and Kaplan, 2014; Konstantoudaki et al.,
2014; Ratnadurai-Giridharan et al., 2014).

We emphasize that the three fronts consisting of measurement, analysis and modeling are
interdependent, but must evolve synergistically. The model and theoretical understanding need to
be grounded in constraints produced by the measurement process. Insights derived frommodeling
can be used to drive novel experiments and measurement techniques. An emerging trend deploys
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active probing and network manipulation through viral vectors
and optogenetic methods.

We expect that by aligning existing and future research
along these fronts, we will be able to answer questions
at the system level. We can view this development as a
generalization of the Hubel-Wiesel approach which characterizes
feed-forward sensory coding to approaches that characterize
dynamic network-level interactions with the input signals.
We can derive value from our understanding of network
function by applying it to brain-related disorders, such
as schizophrenia, drug addiction, or autism. For instance,
differences between default mode networks of ASD (autism
spectrum disorder) subjects and normals have been reported,
among other psychiatric and neurodegenerative conditions.
Cortical network properties ultimately determine how different
network oscillation states are established and maintained and
defining these principles could explain why there is impaired
synchronization between different brain areas in schizophrenics
and Parkinson’s patients. Overall, network-based measures
capture better the dynamics of brain processes, and provide
features with greater discriminative power than point-based
measures.

The articles in this research topic cover these different aspects
of cortical networks. To guide the reader, we provide below a brief
summary of each article, and relate it to the overall theme of the
research topic.

2. MECHANISTIC MODELS OF NEURONAL

DYNAMICS

Rothganger et al. (2014) present a model design platform,
N2A, which has the potential to speed up the process of
designing and validating biologically realistic models. By utilizing
a hierarchical representation of neural information, N2A allows
models from different users to be combined. N2A natively
implements standard computations in sensitivity analysis and
uncertainty quantification, which allows users to validate models
easily. They demonstrate the versatility of N2A through several
examples.

Ratnadurai-Giridharan et al. (2014) develop a biophysically
relevant network model of the CA1 subfield, and investigate the
relationship between network properties and the susceptibility
of CA1 to exhibit interictal spikes (IIS). They investigate
the conditions under which synchronization of paroxysmal
depolarization shift (PDS) events evoked in CA1 pyramidal (Py)
cells can trigger an IIS. Like other papers in this research topic,
they explore the conditions necessary for and consequences of
synchrony, and find that spontaneous IISs closely depend on the
degree of the network’s intrinsic excitability.

Bhattacharya et al. (2014) present a study of a thalamo-
cortico-thalamic (TCT) implementation on SpiNNaker (Spiking
Neural Network architecture), a hardware platform inspired by
the processing parallelism, and energy efficiency of biological
neural networks. Their system presents similar dynamic and
spectral features to EEG in the sleep-wake transition, and could
lead to much larger TCT models.

3. DESCRIPTIVE AND MODEL-BASED

MEASUREMENTS OF EXPERIMENTAL

DATA

Dey et al. (2014) use Resting State fMRI functional connectivity
and a combination of topological and neuroanatomical features
to implement predictive modeling on a dataset of Attention
Deficit Hyperactive Disorder (ADHD) and control subjects, and
obtain a high predictive accuracy, over 70 for 50% chance. The
use of graph-theoretic and anatomical features emphasizes the
notion that different brain functions (and dysfunctions) are an
emergent property of the interaction between specific brain areas.

Alonso et al. (2014) test a specific hypothesis derived from
theorizing the brain as a system determined by emergent
properties, namely dynamical criticality. Studying ECoG
recordings of anesthesia induction in humans, they show that
depth of anesthesia is concomitant with increased dynamical
stability, as estimated by the eigenvalues of fitted moving-
window auto-regressive models. They further demonstrate that
this stabilization effect cannot be explained by the spectral
changes associated with anesthesia, which are typically used to
characterize the transition to unconsciousness.

Almeida-Filho et al. (2014) study multi-electrode recordings
in the hippocampus and early visual and sensory cortices
of rats during and after novel object exploration, as well as
during the sleep cycle. They identified cell assemblies as a
linear combination of the units’ activity, and determined phase
relationships between these assemblies. They computed a graph
whose nodes correspond to assemblies, and edges correspond
to phases. They use graph-theoretic features to perform high
accuracy predictive modeling with a simple classifier (Naive
Bayes).

Vardi et al. (2013) propose a mechanism that allows time-
lags among populations of spiking neurons to drop from
several tens of milliseconds to nearly zero-lag synchrony. The
mechanism allows sudden leaps out of synchrony, hence creating
short epochs of synchrony. They obtained results by enforcing
conditioned stimulations on neurons embedded within a large
cortical network in vitro. Their simulations support the proposed
underlying biological mechanisms: the increase of neuronal
response latency to ongoing stimulations and temporal or spatial
summation required to generate evoked spikes.

Tibau et al. (2013) monitored the development of neuronal
cultures, and recorded their activity using calcium fluorescence
imaging. They demonstrate that the power spectrum can be used
as a signature of the state of the network, for instance, when
inhibition is active or silent, as well as a measure of the network’s
connectivity strength. The power spectrum identifies prominent
developmental changes in the network, and reveals the existence
of communities of strongly connected, highly active neurons that
display synchronous oscillations. Using this approach, one could
distinguish healthy from diseased networks, or track the effects of
therapeutic interventions.

Riera et al. (2014) describe an “electro-physiological
microscope” with high spatial and temporal resolution. It
consists of a 3-dimensional array of micro-electrodes, and a
novel way of analyzing the current-source density data collected
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by the array. Their method can localize single whisker barrels
from event-related responses to a single whisker deflection, but
can also provide information about the spatiotemporal dynamics
of neuronal aggregates in several barrels, with the resolution of
single neurons. Their method constitutes a significant advance
over previous approaches, and could thus change the way the
activity of cortical neurons is analyzed in the future.

4. NETWORK FUNCTIONALITY

4.1. The Importance of Being Synchronized
For the past several decades, theoreticians and experimentalists
alike have focused on neuronal synchrony and on the important
roles that it might play in brain function, from “The Binding
Problem” in perception (Gray, 1999) to Consciousness (Crick
and Koch, 1990; Melloni et al., 2007). For a fuller discussion and
additional references, see Singer (2007). Several of the articles in
this research topic illuminate the issue of synchrony from both
physiological and computational perspectives.

Canavier et al. (2013) address the problem of how neurons
can synchronize their responses with minimal time lag. They
developed a graphical method for determining the effect of
the phase response curve (PRC) shape on synchronization
and illustrate it using type 1 PRCs, consisting of advances
(delays) in response to excitation (inhibition). They showed that
the skewness of the PRC affects synchrony. Their analysis of
pairwise synchronization tendencies form a useful framework
to understand the synchronization behavior of neurons within
larger networks.

Konstantoudaki et al. (2014) explore the role of interneurons
in the maintenance of a dynamic balance between excitation and
inhibition, since changes in this balance have been identified in
several neuropsychiatric diseases, such as schizophrenia. They
constructed a pre-frontal-cortex (PFC) microcircuit, consisting
of pyramidal neuron models and the three interneuron types
described in the literature. Their simulations showed that generic
somatic inhibition acts as a pacemaker of persistent activity, and
that fast-spiking specific inhibition modulates the amplitude and
synchrony of the pacemaker’s output.

Nie et al. (2014) make use of Information Geometry (IG),
which is based on the expansion of the joint probability
distribution of an N-neuron system. They used two measures,
the single-IG measure and the pairwise IG-measure to examine
the activity of simulated interconnected neurons that exhibit
oscillations. They considered two oscillatory mechanisms,
externally driven oscillations and internally induced oscillations.
For both mechanisms, they showed a linear relationship between
the single-IG measure and the external input magnitude and a
linear relationship between the pairwise-IG measure and the the
sum of connection strengths between two neurons.

Cavallari et al. (2014) investigate the effect of employing
current- or conductance-based synapses in models of neural
networks, both of which have been widely used. They create
comparable networks that use the two types of synapses, and
compare their dynamics. They report that these two types of
networks, which had comparable first-order statistics, showed

profound differences in their second-order statistics of neural
interactions, and in the modulation of these properties by
external inputs. Thus, the second order statistics of the network
dynamics depend strongly on the choice of synaptic model, a fact
that modelers of neural networks will find very useful.

Thivierge et al. (2014) investigate synaptic motifs created by a
relay network, where two populations of neurons communicating
via a third relay population achieve synchronization. By
employing models of neuronal dynamics, they demonstrate that
the use of relay networks leads to the creation of a global
attractor of activity that prevents neurons from being responsive
to input stimuli. They overcome this limitation by introducing
a selective gain inhibition mechanism which allows neurons to
respond effectively to external stimuli. They present results to
show that patterns of neural synchronization follow stimulus
presentation, and that synchronization disappears after the
stimulus is removed.

Chary and Kaplan (2014) investigate the role of synchrony
in the functioning of reward circuits in the brain. Their
computational study demonstrates that synchrony can have two
opposing effects in networks that are sensitive to the correlation
between stimulus and reward: weakly correlated inputs amplify
short-term recall, but suppress long-term recall. Their main
finding is that even weak stimulus-reward correlations can
facilitate the short-term repetition of a pattern of neural activity,
while blocking the long-term embedding of that pattern.

Latorre et al. (2013) implement a network model of the
Inferior Olive (IO) to study its synchronization behavior, using
electrically coupled conductance-based neurons. In the presence
of stimuli, different rhythms are encoded in the spiking activity
of the IO neurons that nevertheless remains constrained to a
commensurate value of the subthreshold frequency. Moreover,
the stimuli induced spatio-temporal patterns that reverberate
for long periods. These results have implications beyond IO
studies, and is related to tremor, migraine, and epilepsy where
these modeling techniques could have a potentially significant
impact.

4.2. Computation
Kaplan and Lansner (2014) address the issue of odor perception,
and investigate the processing of odors through multiple
processing stages within a hierarchical system. They use a large-
scale network model which spans olfactory receptor neurons
(ORNs), three types of cells in the olfactory bulb, and three types
of cortical cells in the piriform cortex. A competitive Hebbian–
Bayesian learning algorithm is used to adjusting synaptic weights.
Their model is able to perform robust concentration-invariant
odor recognition.

Eguchi et al. (2014) use a detailed computational model of the
early visual system in an attempt to bring our understanding of
cortical color processing to a level thought to exist for orientation
processing. They use information-theoretic measures, and train
their model using natural images, in trying to understand how
cells of similar color preference come to cluster together in the
cortex. Like several other papers in this research topic they also
explore the function of synchrony, and the role it might play in
deciding what color is used in the visual stimulus.
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