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Abstract

Anthropogenic activities accompanied by heavy metal waste threaten the environment.

Heavy metal pollution alters the soil microbial community composition, and the microor-

ganisms that adapt to this stress increase in abundance. The remediation process of con-

taminated soil not only reduces the concentration of heavy metals but also alters the

bacterial communities. High-throughput 16S rDNA sequencing techniques were applied to

understand the changes in soil microbial communities. Using the remediation approach of

the soil mixing, the concentrations of heavy metals in the contaminated areas were diluted

and the soil environment was changed. The change of soil environment as a disturbance

contributed to the alteration of microbial diversity of the remediated areas. The pH and

heavy metals (Cr, Cu, Ni, and Zn) were the most influential factors driving the changes in

community structure. The bacterial community structure was significantly different among

sample areas. The decrease of heavy metals in soil may be the important factors that

changed the microbial composition. This study provides the better understanding of the

changes in composition of microbial communities affected by the remediation process in

heavy metal-contaminated soil.

Introduction

The rapid development of civilization poses a great threat to the environment. Wastewater

irrigation, sludge applications, solid waste disposal, automobile exhaust and industrial waste

dumping lead to highly contaminated areas worldwide. The presence of environmental pollu-

tion may be lethal or toxic to living things in contaminated areas [1]. When areas are contami-

nated with heavy metals, soil microorganisms are highly sensitive to the impacts of heavy

metals [2, 3]. The number of soil microorganisms decreases by direct killing or biochemical

deactivation [4, 5]. Soil microorganisms, which are integral components in ecosystems, play

important roles in cycling nutrients, maintaining soil structure, regulating plant growth,

and combating harmful pathogens [6]. Heavy metal pollution will alter the soil microbial
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community composition, and the microorganisms that can adapt to these stress increase in

abundance [7]. The change in soil microbial community composition that may affect the abil-

ity of organic degradation causes the loss of soil fertility [8].

In Taiwan, rapid industrial development has resulted in soil pollution on farmland [9, 10]

and terrestrial biota [11]. The industrial wastewater with heavy metals was discharged directly

into the farmland irrigation in past decades [12, 13]. Irrigation become a significant source of

heavy metal-contaminated farmland, especially when the water used comes from rivers that

have received high pollutant loads. A serious agricultural issue appeared that about 2.6% farm-

land were contaminated by heavy metals according to Environmental Protection Administra-

tion Executive Yuan, R. O. C. (Taiwan) (hereinafter referred to as the Taiwan EPA, https://

www.epa.gov.tw/ENG/). According to Taiwan EPA, the main heavy metal pollutants in soil

include arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), mer-

cury (Hg), and nickel (Ni). Cu and Zn are essential elements for plant growth and are referred

to as micronutrients. At high concentrations, however, these elements are toxic to plants. As,

Cd, Cr, Pb, Hg, and Ni have toxic effects on living organisms [14]. Most heavy metals in soil

can accumulate in crops and can be transferred to other media through the food chain. Crops

polluted by heavy metals could be harmful to humans Food crops may be contaminated by

heavy metals and accumulate high concentrations of heavy metals. By the biological magnifica-

tion effect, these crops have threatened human health [15, 16]. The ingestion of contaminated

crops causes serious human health issues, such as gastrointestinal cancer, fragile immunologi-

cal mechanisms, mental growth retardation, and malnutrition. Through dietary intake, the

accumulation of heavy metals in the human body also leads to the depletion in essential nutri-

ents and reduction in immunological defenses [17].

A number of studies have shown that heavy metals impact soil bacteria at varying degrees.

Long-term exposure to heavy metals (Cu, Ni and Zn) could alter the microbial structure of soil

[7]. Xiao et al. [12] revealed that the bacterial community structure is mainly altered by soil

organic matter, Cr and pH. The diversity and species richness were decreased by Zn, and the

core microbiome of contaminated soil contained Holospora and Sphingomonas [13]. The

study of Li et al. [14] showed that bacterial responses to heavy metals vary. Some bacteria, e.g.,

Acidobacteria_Gp and Proteobacteria_thiobacillus, were positively correlated with Cd, while

other bacteria, e.g., Longilinea, Gp2 and Gp4, were negatively correlated with Cd. The effects of

heavy metals on microbes may be different at varying concentrations. A high concentration of

Hg caused severe losses of diversity and shifted the microbial community structures, whereas a

low concentration of Hg increased microbial diversity [17, 18]. The soil mixing is an applica-

tion that removes contaminants from source media. The contaminated soil was mixed with

uncontaminated soil to reduce the concentrations of heavy metals in the soil. This application

aimed to dilute the concentration of heavy metals in soil and allow the metals to degrade natu-

rally. Although numerous studies have examined the changes in microbial compositions

under the effects of heavy metals [13, 14, 19], few studies have focused on the changes in

microbes under artificial remediation. However, traditional microbiological methods based on

culture-based techniques and molecular fingerprinting often underestimates the number and

diversity of soil microorganisms. Understanding the change in the diversity of soil microbial

populations in contained soil will help clarify the ecological role of soil microorganisms. High-

throughput sequencing techniques such as Illumina sequencing of 16S rDNA amplicons pro-

vide not only higher resolution approaches for studying the phylogenetic composition of

microbial communities [16] but also a more detailed understanding of the components of soil

microbial communities in heavy metal-contaminated environments [14]. The application of

this method may provide better insight into the structure of soil microbial communities that

were influenced by heavy metals. The study aimed to elucidate the following questions: First,
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what are the bacterial diversity after soil remediation? Second, are the bacterial compositions

different after soil remediation? Third, are the changes of heavy metals concentrations associ-

ated with the compositions of soil microorganisms? Finally, are there any microbes associated

with the heavy metals? If yes, what are their roles?

Materials and methods

Study areas

The study was conducted in Nantou (23˚54’ N, 120˚41’ E) and Changhua (24˚05’ N, 120˚31’

E) counties in central Taiwan. The web sites of soil and groundwater pollution remediation

funds present the information about the Taiwan soil and groundwater pollution (https://sgw.

epa.gov.tw/). In Nantou County, the mean annual temperature is 22˚C, with a mean rainfall

of 2400 mm. The elevation of the sample areas were about 200 m. The sample areas were

described as As- and Pb-contaminated areas since 2002. In Changhua County, the mean

annual temperature is 24˚C, with a mean rainfall of 1300 mm. The elevation of the sample

areas were about 20 m. Because of the high concentrations of Cr, Cu, Ni, and Zn, the sample

areas were described as contaminated areas in 2013. The industrial plants near the sample

areas may be the main sources of pollution. These farmlands were contaminated via irrigation

water. The agricultural activities were prohibited since these farmlands were described as

heavy-metals contaminated areas, these idle farmlands were overgrown with weeds.

Sample collection and environmental factors

Three samples of the polluted areas of Nantou (PN) and Changhua (PC) were collected in

October 2017, respectively. To dilute the heavy metal concentrations in soil, the soil mixing

was applied to remediate the sample areas during December 2017 to Jane 2018. An excavator

was used to remove 0–30 cm of the surface soil and plow the maximum turning depth of 40

cm. Three replicated samples from the remediated areas of Nantou (RN) and Changhua (RC)

were further collected in December 2018. The soil samples were collected under the license

with permission granted by the Environmental Protection Bureau of Nantou County Govern-

ment (permit number 1070025486) and Changhua County Government (permit number

1060114612), respectively. The mean values of temperature (Temp) and precipitation (Precp),

which ranged from September 2016 to October 2017 for polluted areas and from November

2017 to December 2018 for remediated areas, were collected from the website of the central

weather bureau (https://www.cwb.gov.tw/V8/C/). The ICP-AES was used to analyze heavy

metal elements in the soil samples collected at depths of 10–20 cm as described by Tao et al.

[20].

DNA extraction and 16S rDNA gene amplification

DNA was also extracted from the same soil samples which were collected for heavy metal ana-

lyzes. The total genomic DNA from the soil samples was extracted using the DNeasy PowerSoil

Kit (Qiagen). For each sample, the DNA quality was evaluated by a Nanodrop Spectrophotom-

eter (ND-1000) and agarose gel electrophoresis. For metagenomic analysis, 10 ng of DNA

was used to amplify the 16S rDNA gene, and two universal microbial primers, 341 F

(CCTACGGGNGGCWGCAG) and 805R (GACTACHVGGGTATCTAATCC), were used to target

the variable V3-V4 region [21]. The sequencing libraries were generated using the TruSeq

nano-DNA Library Prep Kit (Illumina, USA) following the manufacturer’s recommendations,

and index codes were added. The prepared library quality was quantified on a Qubit@ 2.0

Fluorometer (Thermo Scientific) and validated by an instrument (Bioanalyzer 2100, Agilent).
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The library was sequenced on an Illumina MiSeq platform with paired-end reads (2 x 300 bp);

image analysis and base calling were conducted by Illumina MiSeq Control Software

(MCS).16S rDNA sequences have been submitted to Sequence Read Archive (SRA) at NCBI

metagenome resources. The following accession numbers were BioProject PRJNA681435.

Analyses of microbial community composition and diversity

The sequences were preprocessed with the FastQC tool (Andrews et al. 2015). The remaining

sequence data were then processed using two software programs, mothur 1.39.5 [22] and

QIIME 1.9.0 [23], according to the mothur SOP. In QIIME, forward and reverse reads were

joined with join_paired_ends.py. Chimeras were identified and filtered with the VSEARCH

algorithm [24]. Finally, the tool was used to pick closed-reference OTUs from the SILVA data-

base (SILVA version 132) [25] and representative sequences with 99% similarity. The pipeline

for mothur was also started by joining the forward and reverse reads. Sequences were then pre-

clustered and classified using a Bayesian classifier (Classify.seqs) with the same cut-off for

sequence identity and reference databases. The OTUs were summarized by a mothur-format-

ted training set provided by the Schloss lab based on the Ribosomal Database Project [26] ref-

erence taxonomy. The results are deposited into the NCBI sequence read archive (SRA)

database under accession number: SAMN16953900 –SAMN16953911.

Statistical analyses

Rarefaction, alpha diversity (Chao1, Shannon, and Simpson diversity indexes), nonmetric

multidimensional scaling (NMDS) and heatmap figures were generated in Vegan packages in

R (http://www.r-project.org). To investigate the relationships between soil bacterial commu-

nity composition and environmental factors, the OTUs from all soil samples were analyzed by

redundancy analysis (RDA) using Vegan packages in R 4.0.2. Differences in the environmental

factors of sample areas were tested by one-way analysis of variance (ANOVA). P < 0.05 was

considered significant. Differences in community structure were tested using PERMANOVA,

which was performed using adonis with 999 permutations from Vegan packages in R 4.0.2

[27].

Results

Environmental factors in the soil samples

The Temp, Precp and soil pH from the sample areas presented in Table 1. The mean Temp,

Precp and pH were 24.9, 23.0, 23.5, and 21.7˚C, 191.9, 123.8, 119.2, and 91.0 mm, and 6.0, 7.4,

5.3, and 6.3 in PN, PC, RN, and RC, respectively. Higher values of Temp, Precp and pH were

detected in PN and PC compared to RN and RC, respectively.

Table 1. The environmental factors of soil samples.

Temp (˚C) Precp (mm) pH As (mgKg-1) Cd (mgKg-1) Cr (mgKg-1) Cu (mgKg-1) Ni (mgKg-1) Pb (mgKg-1) Zn (mgKg-1)

PN 24.9 ± 4.2 191.9 ± 300.0 6.0 253.0 ± 146.1 4.3 ± 3.7 31.3 ± 5.0 82.7 ± 32.7 34.0 ± 6.4 2048.0 ± 1571 105.7 ± 8.4

PC 23.0 ± 4.3 123.8 ± 187.6 7.4 66.3 ± 0.5 11.7 ± 15.8 307.7 ± 169.0 330.0 ± 77.1 378.7 ± 206.6 37.7 ± 5.9 499.3 ± 264

RN 23.5 ± 4.3 119.2 ± 154.1 5.3 150.3 ± 46.3 12.7 ± 13.9 24.7 ± 8.3 0.0 ± 0.0 27.0 ± 5.4 945.3 ± 498.6 91.7 ± 5.3

RC 21.7 ± 4.5 91.0 ± 145.52 6.3 64.0 ± 0.8 4.0 ± 2.8 34.3 ± 8.7 8.0 ± 11.3 60.3 ± 4.8 12.7 ± 5.4 107.7 ± 12.5

Data are the means ± standard deviation. Temp, annual mean temperature; Precp, annual mean precipitation. PN, Nantou polluted area; PC, Changhua polluted area;

RN, Nantou remediated area; RC, Changhua remediated area.

https://doi.org/10.1371/journal.pone.0255137.t001

PLOS ONE Shift of bacterial communities in heavy metal-contaminated land during a remediation process

PLOS ONE | https://doi.org/10.1371/journal.pone.0255137 July 23, 2021 4 / 17

http://www.r-project.org
https://doi.org/10.1371/journal.pone.0255137.t001
https://doi.org/10.1371/journal.pone.0255137


The concentrations of heavy metals in the soil samples collected from the sample areas are

presented in Table 1. According to the farm soil pollution control standards of Taiwan (As, 60

mg kg-1; Cd, 5 mg kg-1; Cr, 250 mg kg-1; Cu, 200 mg kg-1; Ni, 200 mg kg-1; Pb, 500 mg kg-1;

and Zn, 600 mg kg-1), the average concentrations of heavy metals except for Zn in the sample

areas exceeded those in the control standards. Excess concentrations of As (253.0 ± 146.1 mg

kg-1) and Pb (2048.0 ± 1571.9 mg kg-1) were detected in PN. Excess concentrations of As

(66.3 ± 0.5 mg kg-1), Cd (11.7 ± 15.8 mg kg-1), Cr (330.0 ± 77.1 mg kg-1), Cu (307.7 ± 169.0 mg

kg-1) and Ni (378.7 ± 206.6 mg kg-1) were detected in PC. Excess concentrations of As

(150.3 ± 46.3 mg kg-1), Cd (12.7 ± 13.9 mg kg-1), and Pb (945.3 ± 498.6 mg kg-1) were detected

in RN. Excess concentrations of As (64.0 ± 0.8 mg kg-1) was detected in RC. The concentra-

tions of Cu, Cr, Ni, and Zn were highest in PC, whereas the concentrations of As and Pb were

highest in PN. Except for Cd, the average concentrations of the other heavy metals were lower

in remediated samples than in polluted samples. The concentrations of As, Cr, Cu, Ni, Pb and

Zn in RC were significantly different (P < 0.05) compared to PC. The concentration of Cr in

RN was significantly different (P < 0.05) compared to PN.

Soil microbial community composition and diversity

The 16S rDNA sequencing analyses generated 677,680 raw reads, with 622,970 quality reads

across all analyzed samples. The number of quality reads per sample ranged from 40,045 to

69,749, with an average of 56,473. In total, 55,824 OTUs were identified. The shape of the rare-

faction analysis tended to approach the saturation plateau, indicating the sequencing depths

were reasonable for further analysis (S1 Fig). The soil microbial communities were predomi-

nantly composed of bacteria, which accounted for 99.4% of the classifiable 16S rDNA

sequences, whereas only a low proportion of the sequences (0.5%) were assigned to archaea.

Proteobacteria (21.7%–35.6%), Acidobacteria (13.2%–22.4%), and Planctomycetes (8.9%–

16.1%) dominated the classified bacterial phyla and accounted for approximately 28.9%,

18.4%, and 13.4% of all the sequences, respectively. The relative abundance of each bacterial

phylum varied among the different areas (Fig 1).

Proteobacteria, Acidobacteria and Planctomycetes were the dominant phyla in the sample

areas. Six phyla (11.8%) were only detected in the polluted areas, while 1 phylum (1.9%) was

only detected in the remediated areas (S2A Fig). One way ANOVA was applied to test the dif-

ferences between polluted and remediated areas in Changhua and Nantou, respectively. In

Changhua, the relative abundances of OTUs of Actinobacteria (18.4% in PC, 6.7% in RC),

Chloroflexi (14.2% in PC, 5.2% in RC) and Patescibacteria (5.4% in PC, 1.8% in RC) were

higher in PC and significantly different from those in RC (P< 0.05), and those of Planctomy-

cetes (8.9% in PC, 14.4% in RC), Proteobacteria (21.9% in PC, 29.2% in RC) and Verrucomi-

crobia (4.0% in PC, 7.7% in RC) were higher in RC and significantly different from those in

PC (P < 0.05). In Nantou, the relative abundances of OTUs of Chlamydiae (1.0% in PN, 0.2%

in RN), Chloroflexi (10.9% in PN, 4.1% in RN), and Dependentiae (1.6% in PN, 0.5% in RN)

were higher in PN and significantly different from those in RN (P< 0.05), and those of Acido-

bacteria (13.2% in PN, 22.4% in RN) was higher in RN and significantly different from those

in PN (P< 0.05).

At the genus level, an average abundance of > 1% was defined as dominant except for the

unknown genus (Fig 2). 548 genera (33.6%) were only detected in the polluted areas, and 312

genera (22.4%) were only detected in the remediated areas (S2B Fig). One way ANOVA was

applied to test the differences between polluted and remediated areas in Changhua and Nan-

tou, respectively. In Changhua, the relative abundance of OTUs of Conexibacter (1.2% in PC,

0.1% in RC) was higher in PC and significantly different from those in RC (P < 0.05), and
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those of Ellin6067 (0.7% in PC, 2.0% in RC), Noviherbaspirillum (0.1% in PC, 1.6% in RC) and

Ramlibacter (0.1% in PC, 2.9% in RC) were higher in RC and significantly different from those

in PC (P< 0.05). In Nantou, the relative abundance of OTUs of Haliangium (4.0% in PN,

1.6% in RN) was higher in PN and significantly different from those in RN (P< 0.05), and

those of Lysobacter (0.2% in PN, 1.3% in RN) and Ramlibacter (0.4% in PN, 1.7% in RN) was

higher in RN and significantly different from those in PN (P < 0.05).

Fig 1. Relative abundance (%) of the dominant bacteria at the phylum level. PN, Nantou polluted area; PC, Changhua polluted

area; RN, Nantou remediated area; RC, Changhua remediated area. The taxa of low abundance are pooled as “others”.

https://doi.org/10.1371/journal.pone.0255137.g001

Fig 2. Relative abundance (>1%) of the dominant bacteria at the genus level. PN, Nantou polluted area; PC, Changhua polluted

area; RN, Nantou remediated area; RC, Changhua remediated area.

https://doi.org/10.1371/journal.pone.0255137.g002

PLOS ONE Shift of bacterial communities in heavy metal-contaminated land during a remediation process

PLOS ONE | https://doi.org/10.1371/journal.pone.0255137 July 23, 2021 6 / 17

https://doi.org/10.1371/journal.pone.0255137.g001
https://doi.org/10.1371/journal.pone.0255137.g002
https://doi.org/10.1371/journal.pone.0255137


The alpha diversity of the 16S rDNA sequencing results were used to evaluate the microbial

richness and diversity (Table 2). The OTUs ranged from 1314–1846. The chao1, shannon and

simpson indices ranged from 782–1006, 5.494–5.811, and 0.982–0.992, respectively. Higher

OTUs and alpha diversity indices in PN were higher than those in RN. Higher OTUs and

Chao1 and lower Shannon and Simpson indices were detected in PC compared to RC. How-

ever, no significant differences in bacterial diversity and abundance were detected among the

sample areas (PN, PC, RN, and RC).

Relative influences of physical properties and heavy metals on microbial

compositions

At the phylum level, the ADONIS results indicated that the significantly differences of micro-

bial community composition were detected among the sample areas (PN, PC, RN, and RC).

The nonmetric multidimensional scaling (NMDS) ordination (Fig 3A) was performed that PC

was separated from the other areas. The RDA analyses showed that the environmental factors

explained 78.5% (RDA1 explained 62.1% and RDA2 explained 16.5%) of the variances of bac-

terial community structures (Fig 3B). The soil pH (RDA1 = -92.0%, r2 = 0.70, P = 0.007) signif-

icantly negatively correlated with RDA1 and the Cu (RDA1 = 96.1%, r2 = 0.55, P = 0.002), Cr

(RDA1 = 98.3%, r2 = 0.82, P = 0.005), Ni (RDA1 = 95.7%, r2 = 0.56, P = 0.01), and Zn

(RDA1 = 96.0%, r2 = 0.54, P = 0.01) significantly positively correlated with RDA1, indicating

that these factors were critical for explaining the variations in the bacterial community struc-

ture. A Mantel test was performed to analyze the correlation between soil microbial commu-

nity structure and environmental factors. The Mantel test results showed that significant

correlation was detected between soil bacteria and pH (mantel r = 0.44, P = 0.004). Soil bacte-

ria were significantly correlated with Cu (mantel r = 0.275, P = 0.01), Cr (mantel r = 0.663,

P = 0.01), Ni (mantel r = 0.414, P = 0.01) and Zn (mantel r = 0.509, P = 0.001).

At OTU level, the ADONIS results indicated that the microbial community composition

was significantly different among the sample areas (PN, PC, RN, and RC). The soil pH (RDA1

= -78.5%, r2 = 0.60, P = 0.07) was significantly negatively correlated with RDA1 and the

Cu (RDA1 = 31.6%, r2 = 0.74, P = 0.01), Cr (RDA1 = 66.7%, r2 = 0.41, P = 0.05), Ni

(RDA1 = 40.8%, r2 = 0.85, P = 0.001), and Zn (RDA1 = 37.4%, r2 = 0.72, P = 0.004) signifi-

cantly positively correlated with RDA2. The Mantel test results showed that significant correla-

tion was detected between soil bacteria pH (mantel r = 0.417, P = 0.005). Soil bacteria were

significantly correlated with Cu (mantel r = 0.395, P = 0.02), Cr (mantel r = 0.575, P = 0.02),

Ni (mantel r = 0.583, P = 0.01) and Zn (mantel r = 0.427, P = 0.01).

To determine the degree of similarity among the samples, UPGMA was performed based

on Bray-Curtis distances at phylum (Fig 4A) and genus levels (Fig 4B). The UPGMA results

showed the similar patterns that PC was distantly related with the other areas, while the RC

and RN were closely related.

Table 2. 16S rDNA sequencing results and diversity estimates for each sampling site.

Sequence results Diversity estimates

Sequences OTUs Chao1 Shannon Simpson

PN 174045 1846 1006 ± 92 5.811 ± 0.169 0.992 ± 0.002

PC 155502 1416 782 ± 31 5.494 ± 0.095 0.990 ± 0.002

RN 159532 1634 896 ± 219 5.500 ± 0.337 0.982 ± 0.011

RC 130288 1314 727 ± 42 5.591 ± 0.029 0.992 ± 0

PN, Nantou polluted area; PC, Changhua polluted area; RN, Nantou remediated area; RC, Changhua remediated area.

https://doi.org/10.1371/journal.pone.0255137.t002
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Spearman correlation analysis revealed that the soil communities have different response to

the environmental factors (Fig 5). This analysis divided the properties into two groups at phy-

lum and genus levels. One group contains Cd, Cr, Cu, Ni, and Zn, the other group contains

As, Pb, Precp, pH and Temp. Two clusters were detected at phylum and genus levels, respec-

tively. At phylum levels, cluster 1 was significantly positively related with Cr, Cu, Ni, and Zn.

Cluster 2 was significantly negatively related with Cr, Cu, Ni, and Zn. Similar pattern was

Fig 3. (A) Nonmetric multidimensional scaling (NMDS) ordination of the soil samples and (B) redundancy analysis (RDA)

show the correlation among bacterial community and a subset of seven heavy metals at the phylum level. PN, Nantou polluted

area; PC, Changhua polluted area; RN, Nantou remediated area; RC, Changhua remediated area.

https://doi.org/10.1371/journal.pone.0255137.g003
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detected at genus level. Cluster 1 was significantly positively related with Cr, Cu, Ni, and Zn,

while cluster 2 was significantly negatively related with Cr, Cu, Ni, and Zn.

Discussion

Sequencing diversity of sample areas

Human activity may lead to variations in microbial composition and diversity [19]. Hong,

et al. [20] showed that the diversity of polluted areas was significantly higher than that of

unpolluted areas. However, the other authors have shown that heavy metal polluted areas had

severely less diversity, and the bacterial and fungal community structure and composition

were shifted [28, 29]. The microbial community may potentially survive in polluted areas by

Fig 4. The dendrogram using the unweighted pair group method with arithmetic mean (UPGMA) method at (A) phylum level

and (B) genus level. PN, Nantou polluted area; PC, Changhua polluted area; RN, Nantou remediated area; RC, Changhua

remediated area.

https://doi.org/10.1371/journal.pone.0255137.g004
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tolerating pollutants by detoxification mechanisms [30, 31]. In this study, PC and PN were

contaminated by heavy metals for approximately 4 and 15 years, respectively. After remedia-

tion by soil mixing, the change of alpha diversity (Table 2) suggested that soil mixing as a dis-

turbance affect not only the concentrations of heavy metals but also the alpha diversities of

microorganisms. Berga et al., [3] found that disturbances that cause changes in resources or in

the physical environment influenced the bacterial community structure. Ager et al., [32]

Fig 5. Spearman correlation analyses show that the bacterial phyla are significantly positively/negatively correlated with

physical properties and heavy metals at (A) phylum level and (B) genus level. The x-axis and y-axis of the heatmap are

environmental factors and phyla/genera, respectively. The r-value is shown in different colors in the graph. The values marked �

indicate a significance test at P< 0.05.

https://doi.org/10.1371/journal.pone.0255137.g005
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showed that the anthropogenic disturbance affect the bacterial community structure and it

took longer time to recover pre-disturbance level under stronger intensity of disturbance. The

environmental changes, such as acidification and wildfire, can cause a sudden disturbance that

results in the loss of diversity [33]. The change of environmental resource can lead to the

change in biodiversity [34]. Human disturbance may result in short-term unstable communi-

ties, as revealed by reduction of soil microbial diversity and shift of composition. The remedi-

ated processes of soil mixing were composed of three steps, the removal of contaminated soil,

the exchange of surface and deeper soil, and the addition of improved soil. Hence, the remedi-

ated processes substantially decreased the concentrations of heavy metals and changed the soil

environment (Table 1). The change of soil environment as a disturbance may contribute to the

alteration of microbial diversity of the remediated areas.

Taxonomy composition of sample areas

The most dominant phyla of soil microorganisms across the globe are Proteobacteria, Acido-

bacteria, Actinobacteria and Planctomycetes [35, 36]. The results of this study revealed that

Proteobacteria, Acidobacteria, Planctomycetes, Actinobacteria and Chloroflexi were the top

five dominant phyla (76.7%–80.5%) in the sample areas (Fig 1). The disturbance of remedia-

tion and dilution of heavy metals have resulted in the changes the soil environment and the

microorganism compositions. For the phyla with relative abundance > 1%, four phyla and six

phyla in Nantou and Changhua were significantly different, respectively. Wu et al., [37]

revealed that proportion of the Proteobacteria and Actinobacteria were remarkably higher in

revegetated tailings, while Chloroflexi performed reversely. The change of relative abundance

indicated that each bacterial phylum responded differently after the soil remediation. Chloro-

flexi was the only phylum showing significantly decrease in both Nantou and Changhua. Pro-

teobacteria and Acidobacteria were the phyla displaying significantly increase in Nantou and

Changhua, respectively. Zeng et al., [38] suggested that heavy metals increase the abundance of

Chloroflexi, whereas decreased the abundance of Proteobacteria and Acidobacteria. Azarbad

et al., [39] and Spain, Krumholz, and Elshahed [40] reported that Chloroflexi can adapt to the

heavy-metal polluted environments. The remediated process through the excavation the pol-

luted soil and the mix with unpolluted soil decreased the concentrations of heavy metals in soil

and disturbed the bacterial compositions, as shown by the shift of relative abundance of OTUs

in bacteria.

Correlation between environmental factors and community structure

Soil pH and heavy metals were the most important factors that affect the microbial composi-

tions in soil [38, 41]. Xiao et al., [42] showed that the soil organic matter, Cr, and pH are the

factors altering the bacterial community structure. Wu et al., [19] showed that available phos-

phorus, soil moisture, and mercury are the three major drivers affecting the microbial assem-

blages. Das et al., [43] showed that the bacterial composition of high As-contaminated soils

differs significantly from that of low As-contaminated soils. Fatimawali et al. [44] showed that

the high level of mercury in the soil reduced the richness and diversity of bacterial phyla. In

other words, the change of environmental factors in soil inevitably affected the bacterial com-

munity structure. In this study, the concentrations of heavy metals in soil were decreased by

the soil remediation. The ADONIS results also showed that the microbial compositions were

significantly different among sample areas (PC, PN, RC, and RN). The differentiation may be

attributable to three possible reasons. First, the Temp, Precp and soil pH may have critical

roles in changing the microbial composition [45–47]. Tran et al., [47] showed that the abun-

dance of Firmicutes were influenced by temperature and precipitation across seasons. In this
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study, the microbial compositions had no significant correlations with Temp and Precp,

implying that the alteration of Temp and Precp were not related with the microbial composi-

tions. In contrast, soil pH was significantly negatively correlated with the soil bacteria commu-

nity structures (P < 0.05). This result was in accordance with previous studies [42, 48, 49] that

indicate microbial communities were affected by soil pH. Second, the heavy metal may cause a

shift in the bacteria composition [44, 50, 51]. Song et al., [52] suggested that the heavy metals

(Cd, Cu and Zn) change the microbial biomass and the bacterial community. The concentra-

tions of As, Cr, Cu, Ni, Pb, and Zn in RC and that of Cr in RN were significant different com-

pared to PC and PN, respectively. Significant positive correlation were detected between heavy

metals (Cr, Cu, Ni, and Zn) and microbial communities. Such result may indicate that the

decrease of heavy metals drove changes occurring in the community structure. Third, the

comprehensive effects of the alteration of soil pH and heavy metals changed the bacterial com-

munities. The mobility of heavy metals were affected by soil pH, which could transform inac-

tive forms of heavy metals into active forms [53, 54]. Violante et al., [55] showed that pH has a

strong influence on the dynamics of metal ions which are more mobile at lower pH. This study

showed that both soil pH and heavy metals affect the soil microbial communities. The bacterial

phyla or genera that are significantly positively related to heavy metals are always significantly

negatively related to pH, and vice versa, the bacterial phyla or genera that are significantly neg-

atively related to heavy metals are always significantly positively related to pH (Fig 5). The

change of pH may influence the dynamics of heavy metals, resulting in the differentiation of

bacterial community. RN and RC with lower values of pH and heavy metals had significantly

different bacterial communities compared to PN and PC, respectively. These results suggested

that pH and heavy metals have comprehensive effects on the bacterial communities.

Comparison of bacterial community structures among areas

At the phylum level, the ADONIS results showed that the bacterial communities among sam-

ple areas were significantly different (P< 0.05). The UPGMA tree revealed that the PC sam-

ples were separated from the other areas (Fig 4A). The PN samples were clustered with

remediated sample areas (RC and RN). The NMDS results showed that the PC samples were

separated from the other areas. The RC samples closely related with the PN and RN samples.

Similar results were observed at the genus level (Fig 4B). Gołebiewski et al., [13] showed that

the specific effects of heavy metals can be seen even at a lower level. The analysis at the phylum

and genus level represented the same patterns of community structure. Li et al. [14] found that

soil microbes adapt to long-term heavy metal pollution through changes in microbial commu-

nity composition and structure rather than changes in their diversity and evenness. These

results demonstrated that the microbial communities of the remediated sample areas had sig-

nificant differences compared to those of the polluted sample areas. Furthermore, the RN and

RC that are in geographic separation showed that the bacterial communities of remediated

areas have similar compositions (Fig 4). Xiong et al. [56, 57] showed that spatial distance con-

tributes more to bacterial community variation. In contrast, the geographically distant sites

had similar community compositions, suggesting that the compositions of bacterial communi-

ties have similar trends after the soil remediation.

Differences of the bacterial genera among areas

Taxonomic classification revealed the differences in microbial composition among sample

areas at the genus level. On the basis of the relative abundance of the genera, the genera with

an average abundance of>1% in at least one group were defined as dominant. The genera

Pseudomonas, Candidatus Solibacter and Bryobacter were more abundant in RN than in PN.
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The genera Candidatus Solibacter, Gemmata and Ramlibacter were more prevalent in RC than

in PC (Fig 2). The genus Pseudomonas is ubiquitous in soil ecosystems and capable of metabo-

lizing a wide range of organic and inorganic compounds [1]. Candidatus Solibacter was the

abundant genus in the uncontaminated site [58]. The abundance of Bryobacter was negatively

correlated with concentrations of Cr [12]. One way ANOVA was applied to test the differences

between polluted and remediated areas in Changhua and Nantou, respectively. The decrease

of abundance of Conexibacter and the increase of abundance of Ellin6067, Noviherbaspirillum
and Ramlibacter in RC were detected compared to PC. The decrease of abundance of Halian-
gium and the increase of abundance of Lysobacter and Ramlibacter in RC were detected com-

pared to PC. The remediated areas had alteration in microbial compositions. Although little is

known about the effects of the specific bacteria on soil remediation, our results may be coin-

cided with previous studies [59–61]. Khudur et al., [59] showed that Conexibacter was present

in most co-contaminated soil. Song et al., [60] showed that the proportions of Haliangium
were elevated at Cd polluted site. Remenar et al., [61] showed that lower abundance of Halian-
gium and Ramlibacter was found in Ni-contaminated soil. The concentrations of heavy metals

that were related to the microbial communities were significant decrease in the remediate

areas (Cr, Cu, Ni, and Zn in RC; Cr in RN). In spite of the residual heavy metals in the remedi-

ated areas, the drastic decrease of heavy metals in soil may be the key factors that contributed

to the change of microbial composition.

Conclusions

The remediation of polluted soil not only reduced the concentration of heavy metals but also

altered the bacterial community structures. By the remediation, the concentrations of heavy

metals in the polluted areas were diluted and the soil environment were changed. The change

of soil environment as a disturbance may contribute to the alteration of microbial diversity of

the remediated areas. The soil pH and heavy metals (Cr, Cu, Ni, and Zn) were the most influ-

ential factors driving the changes in community structure in this study. The bacterial commu-

nity structures were significantly different among sample areas. The compositions of bacterial

communities showed similar trends after the soil remediation. This study provides the better

understanding of the changes in composition of microbial communities affected by the reme-

diation process in the soil with heavy metal contamination.
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24. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metage-

nomics. PeerJ. 2016; 2016. https://doi.org/10.7717/peerj.2584 PMID: 27781170

25. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-

checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;

72: 5069–5072. https://doi.org/10.1128/AEM.03006-05 PMID: 16820507

26. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and

tools for high throughput rRNA analysis. Nucleic Acids Res. 2014; 42. https://doi.org/10.1093/nar/

gkt1244 PMID: 24288368

27. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;

26: 32–46.

28. Hemme CL, Deng Y, Gentry TJ, Fields MW, Wu L, Barua S, et al. Metagenomic insights into evolution

of a heavy metal-contaminated groundwater microbial community. ISME J. 2010; 4: 660–672. https://

doi.org/10.1038/ismej.2009.154 PMID: 20182523

29. Frossard A, Hartmann M, Frey B. Tolerance of the forest soil microbiome to increasing mercury concen-

trations. Soil Biol Biochem. 2017; 105: 162–176. https://doi.org/10.1016/j.soilbio.2016.11.016

30. Sandrin TR, Maier RM. Impact of metals on the biodegradation of organic pollutants. Environ Health

Perspect. 2003; 111: 1093–1101. https://doi.org/10.1289/ehp.5840 PMID: 12826480
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