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Abstract

Dimerization of G protein-coupled receptors (GPCRs) represents a potential mechanism by which GPCR functions are
regulated. Several resonance energy transfer (RET)-based methods have revealed GPCR homo- and heterodimerization.
However, interpretation of an increase in FRET efficiency could be attributed to either dimerization/oligomerization events
or conformational changes within an already dimerized/oligomerized receptor complex. Furthermore, RET-based methods
can only measure pairwise dimerization, and cannot easily achieve multiplex detection. In this study, we applied proximity-
based biotinylation for detecting receptor dimerization by utilizing a specific enzyme-substrate pair that are fused to GPCRs.
The biotin ligase BirA is fused to CXCR4 and site-specifically biotinylates an acceptor peptide (AP) in the presence of biotin.
As a test case for our newly developed assay, we have characterized the homo-dimerization of chemokine receptor CXCR4
and heterodimerization of CXCR4 with CCR2 or CCR5. The degree of biotinylation varies with the amount of GPCR-AP as well
as biotinylation time. Using enzyme/substrate receptor pairs and measuring receptor biotinylation, we demonstrate that
CXCR4 can homo-dimerize and hetero-dimerize with CCR2 and CCR5. The effect of CXCL12, agonist for CXCR4, was found to
decrease surface biotinylation of CXCR4-AP. This effect is due to a combination of CXCR4 endocytosis and stabilization of
CXCR4 homodimers. Finally, when CXCR4-AP, CCR2-AP, and CCR5-AP were expressed together, we observed CXCR4-CXCR4
homodimers and CXCR4-CCR2 and CXCR4-CCR5 heterodimers. The newly developed assay opens new opportunity for
multiplex detection for GPCR homo- and heterodimerization within the same cellular context.
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Introduction

GPCRs mediate the majority of our physiological responses to

neurotransmitters, hormones, and environmental stimulants by

their capacity to engage in diverse signaling pathways [1].

Dimerization/oligomerization between GPCRs is recognized to

modulate the pharmacological characteristics of the receptors and

influence their coupling to G proteins [2]. Plasma membrane

receptors can interact with each other forming either homo- or

heterodimers, depending on the identity of the interacting

receptors. Recent studies have shown that GPCRs can exist as

dimers or as part of larger oligomeric complexes [3,4]; however

the functional significance of dimerization remains poorly

understood. Furthermore, there is increasing evidence that homo-

and heterodimerization of activated GPCRs represents a means to

control the specificity and increase the diversity of signaling events

[5]. While Class B GPCR are obligate dimers [6], most class A

GPCRs are capable of functioning as single units or form homo-

or heterodimers [7,8].

Co-immunoprecipitation is arguably the most utilized biochem-

ical technique for determining protein-protein interactions, and

one of the few techniques that does not require expression of

exogenous protein products. Although the technique is still

commonly used, it requires solubilization of membrane proteins,

thereby generally providing little information on the sub-cellular

localization of protein-protein interaction. These assays also

generally cannot distinguish between direct or indirect interac-

tions, and the equilibrium condition for immunoprecipitation will

identify the most abundant interactions, leaving out transiently

interacting binding proteins. Several sophisticated techniques have

been developed in recent years to complement traditional

biochemical techniques. Both fluorescence resonance energy

transfer (FRET) and bioluminescence resonance energy transfer

(BRET) technology have been widely used to authenticate the

proximity of proteins in living cells [9,10]. The approach is

typically based on the use of fusion proteins with resonance energy

transfer-compatible GFP variants as an acceptor while the energy

donor can be a fluorescent protein or bioluminescence from an

enzyme [11]. The efficiency of energy transfer is highly dependent

on the distance between the energy donor and the energy acceptor

and varies inversely with R6 where R is the distance between the

donor and acceptor. Because both FRET and BRET are
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proximity-based methods, an increase in energy transfer efficiency

(i.e. the ratio of emissions between donor and acceptor) can be

associated with receptor dimerization/oligomerization. A limita-

tion typically associated with resonance energy transfer techniques

is the small dynamic range [12]. Another limitation for the use of

resonance energy transfer techniques stems from more recent

application of FRET in reporting conformational changes in

GPCRs. Different FRET efficiencies reported in these experi-

ments were interpreted as different receptor conformations [13].

Relative affinity can be discerned from RET50 determination,

providing insight into protomer propensity to interact with one

another, whereas maximal RET signal reports conformational

changes [8]. However, when considering an increase in FRET

efficiency, it is difficult to discern between dimerization/oligomer-

ization events from a change of conformation within already

dimerized/oligomerized receptor complexes.

Presented by the challenges of interpreting FRET or BRET

data, we sought out to develop a technique based on proximity

biotinylation for detecting receptor homo- and heterodimeriza-

tion. Our method could uniquely measure dimerization on the

plasma membrane and also enables multiplex detection of homo-

and heterodimerization within the same cellular context. In this

study, we have applied our assay to investigate chemokine receptor

homo- and heterodimerization centering on CXCR4, CCR2, and

CCR5.

Materials and Methods

Cell culture and constructs
Recombinant adenoviruses encoding human transferrin recep-

tor (TfnR), beta 2 adrenergic receptor (b2AR), CXCR4, CCR2,

or CCR5 were generated by placing them using overlap PCR into

a tetracycline transactivator (tTA)-regulated adenoviral vector.

The acceptor peptide (AP) was fused at the N terminus to each of

the chemokine receptors and b2AR, and at the C terminus of the

TfnR. A separate CXCR4 expressing adenovirus was generated

with the biotin ligase BirA fused to the N terminus. All constructs

containing AP also has an HA tag preceding it, and the BirA-

CXCR4 construct has a FLAG tag preceding the BirA.

Retinal pigment epithelial wild type cells (RPE WT, ATCC

CRL-2302, gift from Dr. Sandra Schmid, UTSW) were

maintained in F-12/DMEM (Gibco) and supplemented with

10% fetal bovine serum (Sigma), 100 units/ml penicillin and

streptomycin, and 20 mM HEPES. When seeded for experiments,

cells were cultured in DMEM supplemented with 10% charcoal/

dextran treated fetal bovine serum (Thermo Scientific), 100 units/

ml penicillin and streptomycin, and 20 mM HEPES. Cells were

co-infected for 18 hours with tTA adenovirus and adenovirus

containing a tetracycline-regulatable promoter (Tet-off) and

encoding a protein of interest. In this current study, no tetracycline

was added.

Flow cytometry
RPE WT were cultured and infected as described above. After

18 hr infection, cells were incubated with a biotinylation media

consisting of DMEM, 100 mM biotin, 1 mM ATP, and 5 mM

MgCl2 for a designated time period (i.e. 5, 10, 15, or 30 minutes)

at 37 degrees. The cells were then rinsed with PBS, detached using

citric saline buffer, pelleted and resuspended in 1% BSA/PBS

solution. The remaining steps were all performed on ice. After

blocking in 1% BSA/PBS solution for 15 minutes, the cells were

dual labeled in 1% BSA/PBS solution with a primary anti-HA

antibody (Roche) for 30 minutes followed by secondary anti-mouse

Alexa Fluor 647 and streptavidin-phycoerythrin (PE) (Invitrogen)

for 30 minutes. Cells were rinsed using PBS and fixed in 4%

paraformaldehyde. Following fixation, cells were rinsed with PBS,

pelleted, and resuspended in 0.5% BSA/PBS. Permeabilized

samples were first fixed in 4% paraformaldehyde then incubated

with PBS containing 0.1% Triton X-100 for 15 minutes at room

temperature before proceeding with the labeling steps as

previously described.

Flow cytometry was performed on a Beckman-Coulter Cyan or

an Invitrogen Attune and accompanying Summit software or

Attune Cytometer Software. PE was excited by the 488 nm laser

and the emission was collected using the 575/24 filter. The Alexa

Fluor 647 was excited by the 635 nm laser and the emission was

collected using the 665/20 filter. Forward scatter, side scatter, and

emission were collected for a minimum of 10,000 cells for each

sample. Gating on the forward versus side scatter plot eliminated

debris and doublet cells. Positive fluorescence was determined by

gating compared to a negative control. The percent positive and

median were multiplied to calculate signal intensity.

On-cell Western
RPE WT were seeded in two rows of a 96-well plate at a density

of 20,000 cells/well; one row was designated for labeling of surface

receptors, the other row for labeling total receptors after

permeabilization. After 18 h of adenoviral infection, the cells

were rinsed with PBS and fixed with 4% paraformaldehyde. All

wells were washed three times with PBS. Additionally, the sample

wells to be permeabilized were washed four times with PBS

containing 0.1% Triton X-100 for 5 minutes with moderate

shaking. Cells in all wells were incubated in a 1% BSA/PBS

blocking solution at room temperature for 15 minutes. All cells

were incubated with primary mouse anti-HA antibody (1:5000,

Roche) in 1% BSA/PBS for 1 hour at room temperature. The 1%

BSA/PBS labeling solution for the permeabilized sample wells

contained 0.1% Tween 20. After washing the plate three times

with PBS, all cells were incubated with a secondary labeling

solution containing goat anti-mouse IRDye-800CW antibody (Li-

Cor) and TO-PRO-3 (Invitrogen) nuclear stain for 1 hour at room

temperature. Triplicate samples receiving no labeling solution

serve as background subtraction. Following this, the plate was

washed five times with PBS containing 0.1% Tween 20 for 5

minutes at room temperature with gentle shaking and then three

more times with PBS. Wash solution was completely removed by

inversion then the plate was centrifuged at 300 g for 15 seconds.

The plate was scanned using a Li-Cor Odyssey Sa Infrared Imager

at 200 mm resolution, 3 mm offset, and intensity 7 for channels

700 and 800. Analysis was performed using Li-Cor Image Studio

software. Anti-HA IRDye-800 signal was calculated after cell

number normalization using the TO-PRO-3 signal collected in

channel 700.

Immunofluorescence imaging
RPE WT were cultured on coverslips, infected with adenovi-

ruses for 18 hours and incubated in biotinylation media for 15

minutes at 37 degrees. Coverslips were washed with PBS and fixed

in 4% paraformaldehyde for 20 minutes. Cells were labeled with

streptavidin conjugated Alexa Fluor 568 (Invitrogen) for 1 hour.

Fixed samples were imaged on a fluorescence microscope (model

Eclipse Ti; Nikon) using a 60x objective with a sCMOS camera

(model C11446 Orca Flash 4.0; Hamamatsu) and equipped with

motorized excitation and emission filter wheels (Sutter Instrument

Co.). Image acquisition was performed using Micro-Manager.

Image processing was performed using ImageJ.

GPCR Dimerization by Proximity Biotinylation

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e93646



Western Blot
RPE WT were cultured in a 6-well plate, infected with

adenoviruses for 18 hr, and incubated in biotinylation media for

15 minutes at 37 degrees. Cells were washed with PBS and lysis

buffer was applied for 10 minutes on ice. A cell scraper was used to

dislodge cells and the lysates were transferred to microtubes on ice.

After cell debris was spun down using a microcentrifuge, the lysate

supernatants were combined with SDS loading buffer, treated with

1 mM DTT for 10 minutes at room temperature, and then loaded

in duplicate into a 10% SDS-PAGE gel for electrophoresis at 90 V

for 2 hours. The protein bands were transferred to a nitrocellulose

membrane and blocked with Odyssey Blocking Buffer for 1 hour

(Li-Cor). One set of samples was probed for protein expression

with primary mouse anti-HA antibody (1:5000, Roche) and rabbit

anti-actin (1:3000, Pierce) followed by secondary labeling solution

containing goat anti-mouse IRDye-800CW antibody and anti-

rabbit IRDye-680RD (Li-Cor). The second set of samples was

probed for biotinylation with Streptavidin Alexa Fluor 750

(1:10,000). The membranes were scanned using a Li-Cor Odyssey

Sa Infrared Imager at 200 mm resolution, 3 mm offset, and

intensity 7 for channels 700 and 800. For Figure 4C, band

intensity analysis was quantified using Li-Cor Image Studio

software. Streptavidin (SA) signal was calculated such that the

normalized SA signal was equal to the western blot SA band

intensity divided by the surface receptor percentage found by the

on cell western multiplied by the western blot HA band intensity.

Statistics
Analysis of variance (ANOVA) tests for fixed factors were

performed followed by Tukey multiple comparison procedures to

detect differences between group streptavidin signal means. When

homogeneity of variance was not met, a Kruskal Wallis test was

performed according to the method described by Zar followed by

a nonparametric Tukey-type multiple comparison procedure.

There were equal numbers of samples in each group. Statistical

significance was considered for a= 0.05. For the Kruskal Wallis

and Tukey multiple comparison tests, Hc and q values greater than

the critical value for the appropriate degrees of freedom and

a= 0.05 are considered significant.

Results

Characterization of proximity biotinylation assay for
chemokine receptor dimerization

To demonstrate the concept of using proximity biotinylation for

receptor dimerization, several receptors fusions were created in an

adenovirus vector (Figure 1). The use of adenovirus vectors offers

the advantage that infection efficiency is high. For biotinylation,

we have adopted the use of BirA, a biotin ligase from E. coli that

recognizes and biotinylates the lysine residue on a specific acceptor

peptide (AP) sequence (GLNDIFEAQKIE) [14,15]. The BirA and

AP were fused to the extracellular domains of our receptors with

short flexible linkers (GSGSTSGSGK) inserted to ensure high

probability of enzyme-substrate interaction (Figure 1A and B).

To measure receptor dimerization, it is important to use cells

that express low endogenous levels of receptors of interests. Using

flow cytometry and a cell line that expresses CXCR4 or CCR5 as

positive controls, we found that retinal pigment epithelial (RPE)

cells contain undetectable levels of CXCR4, CCR2, and CCR5

and are deemed suitable for the current study (Figure S1). The

fetal bovine serum (FBS) that is used for routine tissue culture

contains greater than 20 nM of biotin, according to the

manufacturer’s specification. Although this is a low level of biotin,

the presence of 10% FBS during the virus infection steps to express

the receptor constructs was sufficient to biotinylate the receptors

without exogenously added biotin. To circumvent this problem,

charcoal/dextran treated FBS that contains less than 2 nM of

biotin was used, and this yielded no detectable biotinylation

without addition of exogenous biotin (Figure S2). Charcoal/

dextran treated FBS was used in all experiments unless otherwise

noted.

To check the surface expression of our chemokine receptor

constructs, we developed an on-cell western (OCW) protocol for

96 well plate to be used with an infrared imaging system. Cells

were fixed and labeled with anti-HA either with or without

permeabilization to determine total and surfaced expressed

receptors, respectively. Fluorescence signals were scanned and

normalized to a nuclear staining dye to account to cell density

variability between wells. Between 35–40% of the chemokine

receptors were expressed on the cell surface (Figure S3). To

measure receptor dimerization, biotin and ATP were added to

cells infected with pairs of CXCR4-BirA and receptor-AP. Cells

expressing CXCR4-BirA and receptor-AP were verified by

Western blot (Figure 1C). To detect biotinylation, Alexa Fluor

568 labeled streptavidin (AF568 SA) was used to label biotinylated

receptors (Figure 1D). In cases where no virus was added or only

CXCR4-BirA virus was used, cells did not have specific staining.

As a negative control, we have used transferrin receptor-AP

(TfnR-AP) that is not expected to dimerize with CXCR4. Indeed,

TfnR was not biotinylated in cells expressing CXCR4-BirA/

TfnR-AP. For CXCR4-AP, CCR2-AP, and CCR5-AP following

biotinylation, immunofluorescence experiments showed that these

constructs were biotinylated. In addition, we also examined

possible heterodimerization between CXCR4 and a non-chemo-

kine GPCR, b2 adrenergic receptor (b2AR). Although not widely

studied, activated CXCR4 has been shown to physically interact

with b2AR and regulate its downstream signaling pathway in rat

cardiac myocytes [16]. This interaction has been shown previously

using co-immunoprecipitation, confocal microscopy, and BRET

and we have confirmed this interaction using our proximity

biotinylation assay (Figure S4).

Quantitative analysis of receptor dimerization by
proximity biotinylation

Next, different parameters that could affect the biotinylation

were systematically explored. First, the amount of biotinylation

should vary with the amount of biotinylation time of the expressed

receptor-AP. Using flow cytometry to detect surface labeled

biotinylation with streptavidin-phycoerythrin (SA-PE), we ob-

served the degree of labeling depends on biotinylation time since

biotinylated receptors would remain biotinylated even in the case

that the dimerized receptors would dissociate. Indeed, increasing

biotinylation time increased the amount of biotinylated CXCR4

(Figure 2A and 2B). It is unlikely that this increase in biotinylation

is due to the catalysis time for AP biotinylation since kcat is

,0.5 min21 [15]. Instead, this is likely to reflect the continuous

association and dissociation of receptors in monomer-dimer

dynamic equilibrium [17]. It is interesting that the biotinylation

increased linearly with time and does not seem to reach saturation

after 30 minutes, and this will be further discussed later. Akin to

changing the acceptor/donor ratio in BRET or FRET applica-

tions, we used different amount of adenoviruses to alter expression

level. We observed increased labeling of biotinylated CXCR4 with

increasing dosage of CXCR4-AP adenoviruses (Figure 2C and

2D). While there was an increase in the degree of biotinylation as

CXCR4-AP was increased, the dynamic range was quite small (8

fold increase in virus amount resulted in ,50% increase in

biotinylation). From our result that biotinylation increased with

GPCR Dimerization by Proximity Biotinylation
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time and that we held our biotinylation to 15 minutes, the degree

of labeling was limited by time, such that under the same BirA

expression, increasing CXCR4-AP had a smaller effect. Although

small, the degree of biotinylation depended on the expression of

GPCR-AP and since there was a variable expression among a cell

population, we performed dual label flow cytometry experiment

using SA-PE and surface immunolabeling of HA-tagged CXCR4-

AP. As we expected and confirming earlier results, cells expressing

more CXCR4-AP were more biotinylated across different amount

of virus added (Figure 2E).

CXCR4 homodimerization and CXCR4 heterodimerization
To evaluate the degree of CXCR4 homodimerization and

CXCR4 heterodimerization with CCR2 and CCR5, dual channel

flow cytometry measurements were performed for cells expressing

pairs of CXCR4-BirA and a GPCR-AP. SA-PE signals were

normalized by anti-HA signals to properly account varying

GPCR-AP expression between different conditions. Furthermore,

we used the product of percent positive and median signal of the

positive-gated cells as a metric for comparison. The rational is that

percent positive may not reveal the full detail of biotinylation as

the intensity distribution of the positive-gated cells is missing from

such commonly reported measurements. Similar to the immuno-

fluorescence data, expression with a control receptor TfnR both

Figure 1. Proximity biotinylation for detecting receptor dimerization. A) Schematic of biotinylation of CXCR4-AP by CXCR4-BirA. CXCR4-BirA
is akin of donor and CXCR4-AP is akin of acceptor as in FRET assays. B) Schematic of adenovirus constructs of CXCR4-BirA, CXCR4-AP, CCR2-AP, and
CCR5-AP. C) Western blot of CXCR4 from RPE cells infected with different adenoviruses used in this study. CXCR4-BirA was probed with anti-CXCR4
antibodies, and the AP receptors were probed with anti-HA antibodies. D) Fluorescence images of AlexaFluor 568 SA in RPE cells expressing CXCR4-
BirA and receptor-AP and treated with biotin for 15 minutes. Samples with no virus, CXCR4-BirA, CXCR4-BirA/TfnR-AP all have background staining
while samples with CXCR4-BirA and either of CXCR4-AP, CCR2-AP, or CCR5-AP all exhibited significant fluorescent labeling.
doi:10.1371/journal.pone.0093646.g001
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showed little biotinylation. By comparison, expression of CXCR4-

AP, CCR2-AP, or CCR5-AP together with CXCR4-BirA, all

showed substantial degree of biotinylation (Figure 3A). Interest-

ingly, our assay revealed CXCR4-CCR5 heterodimers, where

there has been inconsistent literature [18–20]. To ascertain that

the biotinylation of GPCR-AP represents bona fide receptor

heterodimerization, we generated CCR2 construct lacking fused

AP. We showed that CCR2-no AP could effectively compete with

CCR2-AP, leading to a marked decrease in CCR2 biotinylation

(Figure 3B). This is further confirmed by Western blot analysis

Figure 2. Characterization of proximity biotinylation of CXCR4 homodimerization. A) Intensity histogram of CXCR4 biotinylation with
increasing biotinylation time for a representative experiment. B) Fluorescence signal increases with the amount of time cells are incubated with biotin
before fixation and labeling. Intensity are computed as % positive x median intensity of % positive and normalized by value at 30 min (n = 5, mean 6
S.E.). C) Intensity histogram of CXCR4 biotinylation with increasing virus amount for a representative experiment. D) Percent positive cells labeled
with SA-PE increases with relative CXCR4-AP adenovirus load measured by flow cytometry after 15 minute of biotinylation. (n = 3, mean 6 S.E.,
p = 0.094) E) Scatter plots of anti-HA and SA-PE in cells expressing CXCR4-BirA and CXCR4-AP. The GPCR-AP constructs have HA epitope tags to
facilitate measurement of GPCR-AP expression. There is a positive correlation between CXCR4 biotinylation and CXCR4-AP expression within a
presumably heterogeneous cell population.
doi:10.1371/journal.pone.0093646.g002
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Figure 3. CXCR4 homodimerization vs. CXCR4 heterodimerization. A) Measurement of biotinylation of different chemokine receptor pairs
with a flow cytometer. Signal represents the product of percent positive cells and median intensity of positive cells. CXCR4 homodimers and CXCR4/
CCR2 and CXCR4/CCR5 heterodimers were observed after 5 minutes biotinylation. Negative controls included no virus and BirA virus only. No virus
condition was used to gate for the positive cells and BirA virus only had ,2% positive, which is subtracted off as background signal for all the
samples. (n = 8, mean 6 S.E.) When homogeneity of variance was not met, a Kruskal Wallis test was performed according to the method described by
Zar [6], in which a significant effect of receptor pair on biotinylation signal was found (Hc = 19.84) considered for the critical value X2(2) = 14.067
(p,0.05, n= 7). A nonparametric Tukey-type multiple comparison test showed significant differences (critical value q(1) = 2.218, p,0.05) between all
groups: TfnR-AP vs. CXCR4-AP (q = 51.5), TfnR-AP vs. CCR2-AP (q = 34.1), TfnR-AP vs. CCR5-AP (q = 30.2), CXCR4-AP vs. CCR2-AP (q = 17.4), CXCR4-AP
vs. CCR5-AP (q = 21.3), CCR2-AP vs. CCR5-AP (q = 3.9.) A q value greater than the critical value is significant. B) Expression of CCR2 decreased the
biotinylation of CCR2-AP in a flow cytometry experiment (p = 0.049). C) Western blot of biotinylation of CCR2-AP in the presence and absence of
competing CCR2-no AP. D) Effect of CXCL12 on CXCR4 homodimerization. CXCL12 tends to reduce the biotinylation of CXCR4-AP at 37 deg for all
time points in non-permeabilized cells (2 Factor ANOVA (Time x CXCL12 Treatment), p,0.001 for Time, p = 0.015 for CXCL12 Treatment, Interaction
p = 0.182). Signals are calculated as in A). (n = 6, mean 6 S.E.) E) Cells were biotinylated at 37 degrees or at room temperature for 15 minutes. Cells
were permeabilized and biotinylated receptors were measured by labeled streptavidin (n = 5, mean 6 S.E.). Signals are calculated as in A). 2 Factor

GPCR Dimerization by Proximity Biotinylation
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showing the reduction in CCR2 biotinylation in cells expressing

both CCR2-AP and CCR2-no AP compared to cells expressing

CCR2-AP (Figure 3C). Together, these experiments demonstrated

the specificity of the biotinylation towards only AP fused receptors.

To investigate whether CXCR4 agonist C-X-C motif ligand 12

(CXCL12) would affect homodimerization of CXCR4, biotinyla-

tion experiments were performed in the presence and absence of

5 nM CXCL12 for different amount of biotinylation time

(Figure 3D). We found that surface biotinylated CXCR4 was

reduced by the addition of CXCL12 at all the time points. Since

CXCL12 is known to induce CXCR4 internalization through

clathrin-mediated endocytosis [21], the reduction in surface

biotinylation could be in part due to the internalization of

biotinylated receptors. Indeed, CXCL12-treated cells had com-

parable level of total biotinylated receptors measured with

permeabilized samples at 37 degrees (Figure 3E), indicating the

effect of CXCL12 induced CXCR4 endocytosis. Since endocytosis

is heavily temperature dependent [22], we carried out the

biotinylation experiment at room temperature (,20uC) which

would significantly reduce endocytosis. Interestingly, in the

presence of CXCL12, there was a significant decrease in the

biotinylation (p,0.001), suggesting that there might be a second

contributor to the reduction in surface biotinylation of CXCR4-

AP. We attribute this decrease to the stabilization of CXCR4

dimers which increased dimer lifetime leading to less rounds of

biotinylation. These results are summarized in a schematic that

illustrates how CXCL12 reduced surface biotinylated CXCR4 at

37 degrees and room temperature (Figure 3F). More specifically,

in a permeabilized sample at 37 degrees, there would be little

difference in the detected biotinylated CXCR4. However, in a

non-permeabilized sample where only surface receptors were

measured, increased endocytosis in CXCL12-treated cells would

lead to a reduction in biotinylated CXCR4. At room temperature,

where membrane trafficking slowed down significantly, the

reduction in biotinylation in the presence of CXCL12 supported

the idea that CXCR4 dimers were stabilized by CXCL12.

Multiplex assay for receptor dimerization
One of the most notable advantages of our biotinylation assay is

the ability for multiplex detection for receptor dimerization.

Analogous to donor and acceptor in FRET, BirA and AP can be

viewed as donor and acceptor, respectively. In FRET, it would be

very difficult to resolve FRET signals using a single fluorescence

donor and multiple acceptors, though bimolecular fluorescence

complementation FRET can circumvent this shortcoming [23]. In

our scheme, a single CXCR4-BirA can biotinylate multiple

receptors that are fused to AP, in this case, CXCR4-AP, CCR2-

AP, and CCR5-AP (Figure 4A). Subsequently, separation and

identification of the biotinylated receptors could reveal the

differential homodimerization and heterodimerization of CXCR4.

Although CXCR4, CCR2, and CCR5 have similar molecular

weights (39,745, 41,914 and 40,524 Da respectively), the three

biotinylated receptors could be resolved on a fluorescent Western

blot (Figure 4B). We were able to deduce the bands by

systematically removing one receptor-AP and look for the

difference in band patterns. CXCR4-AP, CCR2-AP, and

CCR5-AP had similar levels of surface expression relative to the

total from our OCW experiments (Figure S3) and this information

was used to determine the surface receptor expression for the

Western blot data. In RPE cells that expressed all three receptor-

AP constructs, we detected the highest proportion of biotinylated

CXCR4-CXCR4 followed by CXCR4-CCR5 then CXCR4-

CCR2 dimerization but no significant difference between pairs

(p = 0.087). When only CXCR4-AP and CCR2-AP were ex-

pressed along with CXCR4-BirA, we found more CXCR4

homodimer compared CXCR4-CCR2 heterodimer (p = 0.001)

(Figure 4C).

Discussion

We have previously used the BirA/AP biotinylation system to

site-specifically labeled TfnR for live cell imaging [24]. Others

have used this system as well for imaging receptor oligomerization

during endocytosis and for detecting transcellular protein-protein

interactions [25,26]. The specificity of this enzyme substrate

system prompted us to investigate the possibility of using this for

detecting protein-protein interaction, and specifically for examin-

ing homo- and heterodimerization of GPCRs. The premise of this

assay is that only dimers of a certain lifetime would yield

biotinylation since there is a probability that the receptor-AP can

be biotinylated when it encounters the receptor-BirA. We do not

think random collision would account for significant amount of the

measured signals as TfnR-AP was not significantly biotinylated in

any of our assays. Although there are size differences between the

extracellular domains of CXCR4 and TfnR, a structural analysis

suggested that TfnR-AP could be biotinylated by CXCR4-BirA

(Figure S5; PDB ID: 1CX8 [27], PDB ID: 1BIA [28]). The

continuous increase of biotinylation over a long period of time

would suggest that our assay does not reach saturation. We do not

believe this is due to non-specific binding because the amount of

time for streptavidin labeling is fixed. While this may seem like a

disadvantage as an assay, we think this could be an intrinsic

characteristic of our assay in that the efficiency of biotinylation is

low and that we are capturing a percentage of dimerized receptors.

Prolonged biotinylation time is perhaps a drawback as new

receptors may continue to be made during the time though

endocytosis is also expected to internalize biotinylated receptors. A

way to increase biotinylation efficiency may be to increase ATP

concentration. Increasing biotin concentration, however, would

increase non-specific binding [14]. The complete labeling of all

receptor-AP would simply report the total receptors on the cell

surface, while short term labeling was sufficient for us to detect

receptor dimerization.

In this work, we focus on three chemokine receptors, CXCR4,

CCR2, and CCR5. There are conflicting data in the literature

regarding the existence of either homo- or heterodimers and

whether these interactions are constitutive or ligand-induced. Vila-

Coro et al. showed that CXCL12 triggered CXCR4 dimerization

whereas Babcock et al. found that CXCR4 exists as constitutive

dimers [18,29]. Using protein fragment complementation based

on firefly luciferase, it was shown that CXCR4 molecules

constitutively dimerize [30]. Despite a ,70% sequence identity

and close structural homology between CCR2 and CCR5, it is not

entirely clear whether this predisposes equal propensity for

CXCR4 to heterodimerize with either receptor. CXCR4 has

ANOVA (Temperature x CXCL12 Treatment) revealed a significant interaction (p,0.001). Significant differences revealed by Tukey multiple
comparison tests are denoted by an asterisk (p,0.05). F) Schematic explaining the effect of CXCL12 on homodimerization at 37 degrees and room
temperature. At 37uC, the addition of CXCL12 increases CXCR4 internalization while unlabeled receptors continue to traffic to the surface. At room
temperature, both endocytosis and new receptor delivery are decreased. The addition of CXCL12 stabilizes CXCR4 dimers, reducing the availability of
CXCR4-BirA to dimerize and biotinylate other CXCR4-AP receptors available on the surface.
doi:10.1371/journal.pone.0093646.g003
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been reported to form heterodimer with CCR2 [10], but not with

CCR5 [18,19]. There is also indication that CXCR4 does not

dimerize with wild type CCR2, but with a mutant CCR2 [31], as

well as literature pointing to heterodimerization of CXCR4 with

CCR5 [32,33]. High resolution electron microscopy seems to

support the finding that CXCR4 and CCR5 do not heterodimer-

ize as the receptors were detected in clusters that are spatially

segregated [34]. However, these studies have been performed in

different cell lines and employing different techniques, so

comparison is not straightforward. By using a cell line that does

not express endogenous receptors under study, our assumption is

that receptor dimerization represents physical interactions be-

tween two receptors that it does not require specific cellular

adaptor proteins to mediate this interaction. Finally, most of the

established assays do not differentiate between cell surface and

intracellular receptor dimerization. Using our biotinylation assay

for detecting receptor dimerization on cell surface, we found that

CXCR4 homodimerizes in the absence of CXCL12, consistent

with several previous studies [18,30]. However, there was a

reduction in surface biotinylated CXCR4 in the presence of

CXCL12 at 37 degrees in non-permeabilized cells, but not in

permeabilized cells, which suggests CXCR4 is internalized in

CXCL12-treated cells. At room temperature, when vesicle

trafficking (including endocytosis) is significantly reduced, we

observed a reduction in CXCR4 biotinylation with CXCL12

addition. From this, we concluded that CXCL12 promotes

CXCR4 internalization, a view that is consistent with current

understanding of CXCR4 function [35], as well as stabilizes

homodimers of CXCR4.

Comparison of ligand-based and sequence-based dendrograms,

it was recently found that CXCR4, CCR1, CCR2, and CCR5

belong to a group based on ligand similarity [36]. This lends

strong support that within the same cellular context, there could be

a complex composition of homodimers and heterodimers.

However, few studies have attempted to address this. Multiplexed

FRET has been demonstrated using quantum dots in configura-

tion of either multiple donors or multiple acceptors. However, it is

difficult to conceive how this could be applied to cellular

measurements as deconvolution of time-resolved spectra is

required for data analysis [37]. Using a combination of

luminescence complementation and BRET, it was found that

there exist hetero-oligomeric complexes composed of at least three

chemokine receptors CCR2, CCR4, and CXCR4 [38]. Our

multiplex assay measures the degree of biotinylation between

different receptor pairs but cannot distinguish oligomeric com-

plexes. From our results, we determined that CXCR4 homodi-

mers, CXCR4-CCR5, and CXCR4-CCR2 heterodimers form. In

the context of previous finding and ours is that there are different

proportions of homo- and heterodimers, though we cannot

exclude the possibility of coexisting oligomeric and dimeric

species. Nonetheless, our assay provides a new means to measure

Figure 4. Multiplex biotinylation by CXCR4-BirA for measuring homo- and heterodimerization within the same cellular context. A)
Schematic of the multiplex assay of CXCR4-BirA and CXCR4-AP, CCR2-AP, and CCR5-AP. B) Fluorescence Western blot of different combination of
GPCR-AP helps delineate the specific band for each chemokine receptor. C) Analysis of the proportion relative to total biotinylation for each
combination of GPCR-AP in B). Intensity of the bands was normalized to surface expressed receptors obtained from another independent experiment.
(n = 4, mean 6 S.E.) An arcsine transformation was performed in order to run a one factor ANOVA on the relative percentages obtained from
quantifying western blot band intensities (amount of CXCR4 homodimer greater than CCR2-CXCR4 heterodimer, p = 0.001; no difference between
dimer proportions containing CXCR4-AP, CCR2-AP, CCR5-AP, p = 0.087).
doi:10.1371/journal.pone.0093646.g004
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receptor dimerization among multiple species within the same cell

and can be broadly applied to other receptor systems.

Elucidation and manipulation of chemokine receptor homodi-

mers and heterodimers may offer new therapeutic possibilities

[39]. Bivalent CXCR4 ligand that binds to CXCR4 with higher

affinity has been synthesized and it has been shown to have

enhanced antiviral activity [40]. For a heterodimer, it is perhaps

possible to activate one of the two monomeric units to trigger

internalization of both receptors and/or initiate signaling of the G

proteins that it binds to. Conversely, a defective monomer may

adversely affect the function of the dimer, as the primarily

heterozygous disease WHIM syndrome (warts, hypogammaglob-

ulinemia, infections, and myelokathexis syndrome) presents with

coexpression of a truncated CXCR4 that exerts dominance over

the expressed wild-type receptor [41]. Thus, receptor dimerization

may be a mechanism to achieve signal diversity. Such crosstalk

between different receptors is expected to add another level of

specificity for the fine-tuning of cellular responses.

Supporting Information

Figure S1 RPE cells have no endogenous CXCR4,
CCR2, and CCR5. Positive controls using NP-2 cells stably

expressing CD4/CXCR4 (A) or CD4/CCR5 (B) showed that our

flow cytometry assay works. On the other hand, RPE cells (C) do

not appear to have detectable level of CXCR4, CCR2, or CCR5

by flow cytometry.

(TIF)

Figure S2 Comparison of regular FBS and charcoal
dextran-treated FBS in biotinylation in the absence of
exogenous biotin. Biotinylation is clearly present when cells are

cultured in regular FBS (top panels), whereas no labeling is

observed when cells are cultured in charcoal dextran-treated FBS.

This demonstrates the low level of biotin in regular-FBS

containing media could biotinylate receptor pairs during the virus

infection step.

(TIF)

Figure S3 Surface expression of CXCR4-AP, CCR2-AP,
and CCR5-AP determined by On Cell Western (OCW). A)

OCW image of cells in 96 well plate expressing the indicated

viruses stained with anti-HA antibody or a nuclear-stained dye (for

normalization of cell density). Anti-HA antibody was either added

to label cell surface receptor (top row) or in permeabilized cells to

label total receptor (bottom row). B) Quantification of surface to

total receptor for CXCR4-AP, CCR2-AP, and CCR5-AP (n = 3,

mean 6 S.D.)

(TIF)

Figure S4 Heterodimerization between CXCR4 and
b2AR. A) Western blot of b2AR from RPE cells infected with

CXCR4-BirA and b2AR-AP adenoviruses. One blot was probed

for anti-HA to visualize expression of b2AR, a separate blot was

probed with Streptavidin-750 which indicated b2AR biotinylation.

B) Fluorescence images of AlexaFluor 568 SA in RPE cells

expressing CXCR4-BirA and b2AR-AP and treated with biotin

for 15 minutes. b2AR-AP exhibited fluorescent labeling compared

to the no virus staining. C) Intensity histogram of b2AR

biotinylation using flow cytometry.

(TIF)

Figure S5 Structural analysis of CXCR4-BirA and TfnR-
AP. Both the N-terminus of CXCR4 (39 amino acids) and
the last twelve amino acids of TfnR C-terminus do not
have any defined secondary structure allowing for
flexibility of movement. A schematic of the crystal structure

of BirA (PDB ID: 1BIA) in close proximity to the crystal structure

of TfnR (PDB ID: 1CX8, one chain) is shown here The 10 aa

peptide linker off the N-terminus end of CXCR4 was modeled

with a helix secondary structure. The same process was repeated

for the AP linker attached to TfnR. We used PyMol to measure

distances from end to end while in helix or beta-sheet formation.

Two internal measurements were made within BirA and TfnR to

be used as reference. The distance from the N-terminus of BirA to

the residues involved in biotinylating AP sequences is 22 Å. The

distance from the N-terminus of the TfnR to the last helical

residue nearest the C-terminus is 31.3 Å. Although we cannot

know for certain the final structure of the AP linker attached to

TfnR, but it seems feasible that TfnR-AP could be biotinylated if

they were in fact to dimerize.

(TIF)
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