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A B S T R A C T   

The Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) infection, has created unprecedented public health and economic crises around the world. SARS- 
CoV-2 2′-O-methyltransferase (nsp16) adds a “cap” to viral RNA to maintain the stability of viral RNA, and 
inhibition of nsp16 activity may reduce viral proliferation, making this protein an attractive drug target. Here, 
we report the identification of several small molecule inhibitors of nsp16 by virtual screening. First, the nsp16- 
sinefungin complex (PDB ID: 6WKQ) was selected from the protein data bank. Asp6912, Cys6913, Asp6897 and 
Asp6928 were determined to be the key amino acids for sinefungin binding in the crystal structure of nsp16- 
sinefungin complex by molecular dynamics simulation. The complex structures in the stable binding trajectory 
of nsp16-sinefungin were than clustered through molecular dynamics RMSD analysis. Six clusters were gener-
ated, and six representative structures were selected to construct the pharmacophore based on the structure. 
These six pharmacophores were superimposed on the binding pocket to simplify and pick the common char-
acteristics. The compounds obtained by the pharmacophore screening from Bionet and Chembiv databases were 
docked into the nsp16 active pocket. The candidate compounds were selected according to the molecular 
docking score and then screened by MM/GBSA. Finally, four candidate compounds were obtained. Four sets of 
150ns molecular dynamics simulations were performed to determine whether candidate compounds could 
maintain stable interactions with key amino acids. The results of MD and MM/PBSA energy decomposition 
indicated that C1 and C2 could form a stable complex system with nsp16, and could form strong hydrogen bonds 
and salt bridges with the key amino acid Asp6897 and Asp6928. This study thus identifies and attempts to 
validate for the first time the potential inhibitory activities of C1 and C2 against nsp16, allowing the development 
of potent anti-COVID-19 drugs and unique treatment strategies.   

1. Introduction 

Since December 2019, disease caused by severe acute respiratory 
syndrome (SARS-CoV-2) virus has been declared as an accessible disease 
by the World Health Organization (WHO) [1,2]. As of April 26, 2021, 
the virus has had an extremely dangerous impact on more than 200 
countries, with more than 140 million confirmed cases and more than 3 
million deaths [3]. However, few drugs are available for the treatment of 

COVID-19 infection, and the maximum efficacy of these drugs may only 
reduce the symptoms of infection [4]. Therefore, there is an urgent need 
to develop effective antiviral therapies to combat the pandemic. 

The 5′ end of the coronavirus RNA is modified by a cap structure. 
Modification of the 5′ end of RNA virus genome is very important for the 
replication of the virus genome [5], the translation and synthesis of virus 
protein, the assembly of virus particles and the elusion of the host innate 
immune system from the recognition of virus pathogen molecular 
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pattern [6,7]. Therefore, 5′ terminal modification of the RNA virus 
genome serves as a potential target for antiviral drug design. Because the 
replication life cycles of coronavirus takes place in the cytoplasm, the 
capping enzyme of the host cannot complete the capping of coronavirus 
itself [8,9], so coronavirus completes the capping of viral RNA cap1 
through its own protein [10–12]. Additionally ribose 2′-O-methylation 
plays an important role in the evasion of innate immune recognition. In 
SARS-CoV-2 virus, 2′-O-methyltransferase (2′-O-Mtase) consists of two 
subunits: catalytic subunit nsp16 and stimulating subunit nsp16 [13, 
14]. SARS CoV-2 2′-O-methyltransferase (nsp16) is an important 
enzyme for virus survival [15–17]. The role of nsp16 is to protect viral 
RNA from the cellular innate immunity by participating in the formation 
of a special arrangement at the 5′ end of RNA molecule. Therefore, 
nsp16 inhibitor can effectively inhibit the infection of COVID-19 [18, 
19]. 

The use of computer-aided drug design (CADD) experiments can 
accelerate the process of drug development. Currently, a multitude of 
simulation experiments have been conducted to develop inhibitors for 
nsp16. Mahmoud et al. [20] screened the zinc database by constructing 
the nsp16-sinefungin complex pharmacophore model, and evaluated the 
candidate compounds by molecular dynamics and binding free energy in 
order to indentify potential nsp16 inhibitors. Aldahham et al. [21] 
screened naphthyridine and quinoline derivatives as potential 
nsp16-nsp10 complex inhibitors by similar methods. In addition to 
these, other screening efforts were directed towards natural product 
development studies. Anuradha et al. [22] screened 10 natural products 
for nsp16 inhibitors by molecular docking and concluded that thea-
flavins and catechins have the potential to inhibit the interaction of viral 
molecules. In another study, Fatoki et al. [23] used gene network 
analysis, molecular docking, and sequence and structural dynamics 
simulations to determine potential medicinal phytochemicals to modu-
late gene expression networks associated with the pathology of 
SARS-CoV-2 in the human host. Malik et al. [24] identified the plant 
compound Withanolide and the anti-HIV drug Dolutegravir as Nsp16 
inhibitors after analyzing 128 plant compounds and 10 FDA-approved 
anti-HIV drugs through AutoDock Vina docking and Gromacs dy-
namics simulations analysis. 

In this study, based on the reported nsp16 and sinefungin crystal 
complex structure (PDB ID: 6WKQ) [25], we applied a virtual screening 
workflow based on a combination of structure-based pharmacophore 
modeling with molecular dynamics simulation techniques in order to 
discover potent SARS-CoV-2 inhibitors. 

2. Materials and methods 

2.1. Protein preparation 

The crystal structure of the nsp16 in complex with the pan-methyl- 
transferase inhibitor sinefungin was retrieved from the protein data 
bank (PDB ID: 6WKQ, resolution:1.98 Å). The crystal structure of nsp 16 
in complex with sinefungin was prepared by Schrödinger 2018. First, 
water molecules and other cofactors were removed. Hydrogen atoms 
and amino acid residues of the crystal structure were subsequently 
added via “Protein Preparation Wizard” in the Schrödinger [26]. At pH 
7.4, the protonated and tautomeric of amino acids were adjusted to the 
corresponding state. Finally, through the atomic force field OPLS 2005, 
the hydrogen atom energy of the crystal structure was minimized and 
the heavy atom converges to an RMSD of 0.3 Å [27]. 

2.2. Molecular dynamics simulations and clustering 

Using the “System Builder” module in the Schrödinger, the solvent 
system was constructed for the crystal structure of nsp 16 in complex 
with sinefungin. The system was solvated in an orthorhombic box, with 
SPC as the solvent system, and then two Cl− were added for neutrali-
zation. The 0.15 M NaCl acts to reproduce physiological conditions. At 

the same time, the system was given OPLS_2005 force field. At 310K and 
normal pressure (NPT) for 50ns simulation, the prepared system was 
simulated by “Desmond 3.7” [28]. The energy and trajectory atomic 
coordinate data were recorded at 1.2ps and 100ps, respectively, and the 
data were used for statistical analysis. The most stable path in simulation 
was clustered. According to RMSD, “Desmond trajectory clustering” was 
used to cluster frames that were collected, and the frequency value was 
set to 1, resulting in a maximum of 6 clusters. The MD simulation for the 
complexes generated by docking studies were executed employing the 
aforementioned protocol. 

2.3. Pharmacophore construction and virtual screening 

The “Phase” in the Schrödinger was used for pharmacophore con-
struction and virtual screening [29–31]. The representative conforma-
tions from 6 clusters were selected to construct the pharmacophore 
model, and the exclusion volume was adjusted according to the 
conformation of the binding pocket. Combined with molecular dy-
namics analysis, several representative pharmacophore models were 
merged and simplified to obtain the screening pharmacophore model. 

The molecules in Bionet [35] and Chembiv (https://www.chemdiv. 
com/) databases were matched with the screening pharmacophores. In 
the screening process, up to 50 conformations were generated for mol-
ecules and the energy minimization was utilized when the small mole-
cules were exported. The compound matched at least three of the 
characteristics in the pharmacophore. The screening results were ranked 
by phase screen score. The pharmacophore-based virtual screening was 
performed by “Phase Ligand Screening” in the Schrödinger. 

2.4. Docking-based virtual screening 

2.4.1. Ligand Preparation 
In the “LigPrep”, the molecules matched with the screening phar-

macophore were optimized using OPLS3 force filed. All molecules retain 
specified chirality, generate tautomers, and result in the corresponding 
ionized state at pH 7.0 ± 2.0 by using Epik (Empirical pKa Prediction) 
[32]. The co-crystalline compound performs the same treatment as 
described above. 

2.4.2. Molecular docking 
The docking simulation was performed in Glide. Re-docking was 

implemented to verify the accuracy of Glide docking protocol. The two 
docking precisions “standard precision (SP)” and “extra precision (XP)” 
were used in the docking simulation [33]. Therefore, both docking 
methods were used in the re-docking of the exfoliated co-crystalline 
compound. The root mean square deviation (RMSD) between crystal 
and re-dock pose was calculated. The RMSD value less than 2 Å can 
confirm that the conformation produced by the docking can reproduce 
the X-ray results accurately [34]. The receptor grid file was defined 
according to the sinefungin position, and the parameter coordinates are 
shown in Table 1. Docking score and glide score were used to evaluate 
the screening results. 

2.5. MM/GBSA calculation 

The stability of the ligand-protein complex system generated by the 
docking simulation was verified by the calculation of the free binding 
energy in Prime MM/GBSA. The free binding energy calculation abide 
by the following formulas: 

ΔGbind = ΔGcomplex −
(
ΔGprotein + ΔG1igand

)
(2.1)  

ΔGbind = ΔH − (ΔGsdvation + TΔS) (2.2)  

ΔGbind = ΔEMM + ΔGGB + ΔGSA − TΔS (2.3) 

ΔGbind is the binding energy; ΔGcomplex is the free energy of the 
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complex system; ΔGprotein and ΔGligand are the free energy of protein and 
ligand in the complex system; ΔGGB and ΔGSA are the contribution of 
polarity and nonpolarity to solvent free energy in solvent environment. 
ΔS represents the entropy change of ligand structure during sampling. 
ΔEMM is the Gas phase free energy. The parameters in MM/GBSA are the 
default settings: solvation model is VSGB, and sampling method is 
Minimize. Check “use constraints on flexible residues” to set the residues 
around the receptor pocket as flexible conformation during calculation. 

2.6. MM/PBSA and energy decomposition calculation 

Protein-ligand complexes were then subjected to a molecular dy-
namics study and MM-PBSA binding free energy calculations by Gro-
macs2021. The RESP charges were calculated for ligands by Gaussian16, 
and the GAFF force field was subsequently assigned by the Bio2Byte 
online server (https://www.bio2byte.be/). The AMBER99SB force field 
was assigned to the protein in Gromacs. The position of the ligand in the 
complex system was restricted. The complex system was then placed in a 
dodecahedral volume (the edge of the volume box was 10 Å from the 
molecular edge of the complex system), and the TIP3P solvent model 
was added to the volume box. The “genion” module in Gromacs adds 
counter ions (Na + or Cl-) for the system to maintain electrical 
neutrality. Before the molecular dynamics simulations simulation, the 
energy of the system was minimized, 100ps equilibration was then 
carried out under the NVT and NPT systems respectively. The equili-
brated system was finally subjected to 100ns dynamics simulation, and 
the trajectories were sampled every 100ps. The “trjconv” module in 
Gromacs removes the coordinates for the trajectory and corrects the 
periodicity. The binding free energy of the ligand-protein complex sys-
tem and the energy contribution of the amino acids in the binding pocket 
were analyzed from the four terms ΔGvan der Waals, ΔGElectrostatic, ΔGPolar 

Solvation and ΔGNon-Pol Solvation by the MMPBSA.py script in the Amber 
Tool 21 software. 

3. Results and discussion 

3.1. Molecular dynamics simulation 

We analyzed the interaction between sinefungin and nsp16. Crystal 
structure 6WKQ interactions between sinefungin and nsp16 in PDB 
database revealed that sinefungin forms multiple hydrogen bonds with 
amino acid. As shown in Fig. 1a, the carboxylic acid on sinefungin forms 
hydrogen bonds with Asn6841 and Gly6879, Asp6897 as the hydrogen 
acceptor forms hydrogen bonds with two hydroxyl groups. The amino 
group and the nitrogen on the purine act as the donor and acceptor to 
form hydrogen bonds with Asp6928, Gly6869, Leu6898, Asp6912 and 
Cys6913. In addition, Asp6928 forms a salt bridge with amino cations. 

In order to verify the stability of the interaction between sinefungin 
and nsp16, a 50ns molecular dynamics simulation was performed for the 
crystal structure of the nsp16-sinefungin complex, and the stability of 
the ligand in the binding pocket and the stability of the protein were 
evaluated by RMSD during the simulation (Fig. S1 in Supplementary 
Materials). The results showed that sinefungin maintained a relatively 
stable state in the binding pocket after 30 ns. In order to explore the 
main interaction between the ligand and receptor in the simulation 
process, the 50% of ligand-amino acid interaction was analyzed. As 
shown in Fig. 1b, the main interaction is dominated by hydrogen bonds. 
The proportions of hydrogen bonds between sinefungin and Asp6912, 
Asp6897, Cys6913 and Asp6928 are 98%, 97%, 86%, and 78%, 
respectively. 

Based on molecular dynamics simulation analysis, sinefungin can 
stably exist in the binding pocket. The analysis of the interaction of the 
whole trajectory revealed that the hydrogen bonds formed by Asp6912, 
Cys6913, Asp6897 and Asp6928 with sinefungin were quite conserva-
tive (Fig. 1b; Fig. S2 in Supplementary Materials), and these amino acids 
were critical for the stable binding of sinefungin as an inhibitor. 

3.2. Construction of pharmacophore 

The key feature of sinefungin stable in the binding pocket can be 
characterized by pharmacophores based on structure, which can be used 
in screening simulation to greatly improve the probability of screening 

Table 1 
Parameters of Glide docking pocket definition.  

Receptor Native Ligand Coordinates of Grid Center Dimensions of the Outer Box (Å) Dimensions of the Inner Box (Å) 

SARS COV-2 2 ′-O-methyltransferase (nsp16) Sinefungin X = 2.73 X = 20 X = 10 
Y = − 9.70 Y = 20 Y = 10 
Z = − 5.90 Z = 20 Z = 10  

Fig. 1. (a) Interactions between sinefungin and SARS-COV-2 2′-O-methyltransferase (nsp16) from the crystal structure (PDB code 6WKQ). (b) Interactions between 
sinefungin and nsp16 during molecular dynamics simulation. 
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compound with inhibitory activity. In the 30–45ns interval of molecular 
dynamics simulation, sinefungin maintains a relatively stable state at 
the binding pocket (Fig. S1 in Supplementary Materials). The 300 frame 
structure conformations generated by the selected trajectory was used to 
cluster according to RMSD value, which is helpful for us to investigate 
the representative pose that maintains the ligand stability in the pocket 
and construct the screening pharmacophore with key characteristics. A 
total of 6 clusters were obtained by cluster analysis. The representative 
conformations of these 6 clusters were selected for pharmacophore 
construction. The pharmacophore characteristics included hydrogen 
bond receptor (A), hydrogen bond donor (D), hydrophobic (H), aromatic 
ring (R), positive charge (P) and negative charge (N). Based on the 
structural characteristics of receptor-ligand complexes, 6 pharmaco-
phore models as shown in Fig. 2 were obtained. 

The characteristic number of 6 pharmacophores varied from 4 to 7. 
In order to screen common characteristics of six pharmacophores, 6 
pharmacophore models were superimposed and placed in binding 
pocket. As shown in Fig. 3a, the common features are D10, A2, D8, P14 
and N13. Among them, the superposition outcomes of D10, A2, D8 and 
P14 shows that the deviation of the four features in both displacement 
and direction is very small. These results indicate that the interaction 
corresponding to the four features (hydrogen bonds with Asp6912, 
Cys6913, Asp6897 and Asp6928) is highly conservative in the 6 clusters 
which was consistent with the results of molecular dynamics simulation 
analysis. N13 has an obvious position shift, N13 is mapped on the car-
boxylic group at the end of sinefungin structure. The last frame of the 
dynamics simulation was superimposed with the initial frame. The 
deflection amplitude and direction during the dynamics simulation are 
shown in Fig. 3b. Compared with the initial conformation, the overall 
deviation of the stabilized sinefungin is smaller, but the terminal car-
boxylic acid part has a significant rotational displacement change. In 
order to systematically analyze the existing angle deviation, the change 
of the distance between the hydroxyl group on carboxylic acid and 
Asn6841 in the molecular dynamics simulation trajectory was moni-
tored. The data (Fig. S3 in Supplementary Materials) showed that the 
distance between the monitored objects changed memorably (>8 Å), 
indicating that the electrostatic interaction between the carboxylic acid 
and Asn6841 corresponding to N13 was extremely unstable. Therefore, 
we removed the N13 pharmacophore characteristics. In addition, we 

analyzed the exclusion volume. The flexibility of the amino acid struc-
ture around the binding pocket is poor. During the molecular dynamics 
simulation, the amino acid around the pocket has a micro displacement, 
so the amino acid that affects the compound binding effect is no longer 
flexible. Finally, a simplified pharmacophore model retaining the key 
characteristics was obtained after screening (Fig. 4). 

The pharmacophore model has four characteristics, including two 
hydrogen bond donor D8 and D10, positive charge P14 and a hydrogen 
bond acceptor A2. These characteristics can reflect the stability of 
sinefungin and the key factor of its inhibitory activity while also, 
improving the possibility of screening results with inhibitory activity. At 
the same time, the simplified pharmacophore model also provides the 
possibility of diversification of molecular configuration of screening 
results. 

3.3. Pharmacophore model screening 

The simplified pharmacophore model was used to screen about 1.66 
million compounds in Bionet and Chembiv databases. The minimum 
matching number with pharmacophore model was set to 3. The 
screening results were sorted according to “phase screen score” and a 
total of 543 compounds were retained. These candidate compounds 
were then screened by molecular docking and the interaction was 
analyzed. 

3.4. Docking simulation 

In total 543 compounds screened by the pharmacophore model could 
theoretically form the interaction similar to sinefungin. In order to 
examine whether these compounds fit the binding pocket and form the 
critical interaction mode with the active site, molecular docking method 
was used to further screen the pharmacophore screening results. Dock-
ing simulation contains Glide SP and XP methods. Before docking ex-
periments, SP and XP were used for re-docking the co-crystalline 
compounds. As shown in Fig. 5, the RMSD values deviation between the 
conformation generated by the two docking methods and the original 
crystal conformation is not greater than 2 Å. In addition, the confor-
mation generated by XP docking result in a more reductive crystal 
conformation. Because the reproducibility of XP docking is better, the 

Fig. 2. Structure-based pharmacophore model derived from the representative structure of six cluster sets. Red represents hydrogen bond receptor (A), blue rep-
resents hydrogen bond donor (D), yellow represents aromatic ring (R), pureple represents positive charge (P) and magenta represents negative charge (N). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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pose generated by XP docking was selected for the study of ligand- 
receptor interaction mode. 

First, we used SP to dock 543 compounds screened by pharmaco-
phores model, of which 527 molecules were docked to the binding 
pocket. The docking results were ranked by “Docking score”. We 
selected the top 100 docking compounds for XP simulation to reduce the 
false positive rate of molecular docking. Finally, the top 10 compounds 
generated from XP simulation were selected to analyze their hydrogen 
bonding interaction. The docking data and structural formulas of 10 

compounds were recorded in Table 2. 
C2, C3, C4, C7, C8 and C10 can form hydrogen bonds with key amino 

acids Asp6928 and Asp6897. In addition, the nitrogen ions in these 
compounds can also form salt bridges with Asp6928. Furthermore ionic 
interaction can be observed in the π-cation interactions of C3, C4 and C7 
with Lys6844. As show in Table 2, the structural difference between C1 
and C2 is only in the substituents on the benzene ring, but there is 
evident difference in the interaction between the C1 and C2 in the 
binding pocket (Fig. S4 in Supplementary Materials). Moreover, the 

Fig. 3. (a) 6 representative pharmacophores were superimposed in the binding pocket. (b): Initial crystal structure and generate by molecular dynamics structure of 
sinefungin and nsp16 complex were superimposed. Blue represents the initial conformation of the complex. Pink represents the conformation of the complex in the 
last frame of molecular dynamics simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 4. Merged pharmacophore model created by 6 representative pharmacophores were superimposed to analyze the key characteristics. Black lines and numbers 
represent the distance between pharmacophore characteristics (Distance unit: Å). 

Fig. 5. Glide SP and XP docking program 
respectively re-docking Sinefungin crystal 
structure, re-docking pose and crystal struc-
ture pose compare RMSD value. Blue repre-
sents the initial pose of the crystal, and 
yellow represents the pose generated by the 
docking procedure. The RMSD values of SP 
and XP are 0.4355 and 0.0913 respectively. 
The two docking procedures have good 
reproducibility for the crystal structure of 
the ligand, and the reproducibility of XP is 
more accurate. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the Web version of this 
article.)   
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Table 2 
2D structures and docking evaluation values of 10 candidate compounds.  

Compound CAS ID Structure Docking score H-bond Distance (Å) 

C1 1224032-33-0 − 9.309 Met6929 2.30 
Tyr6930 2.60 
Gly6871 2.12 

C2 1224020-56-7 − 9.191 Gly6871, 2.11 
Asp6928 2.39 

C3 1224031-61-1 − 8.624 Asp6928, 2.79 
Asp6897, 1.87 
Tyr6930 2.22 

C4 310458-53-8 − 8.547 Asp6897, 1.85 
Asn6841 2.46 

C5 1224023-91-9 − 8.000 Tyr6930, 2.39 
Asn6841, 1.75 
Gly6869 2.47 

C6 1224019-21-9 − 7.970 Tyr6930 2.11 

C7 1224035-30-6 − 7.915 Tyr6930, 2.04 
Asp6928, 2.48 
Gly6879 1.73 

C8 2096376-30-4 − 7.908 Asp6928, 2.45 
Asn6841, 1.86 
Lys6933 2.50 

(continued on next page) 
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distance parameter of the hydrogen bond between the compound and 
the amino acid raises questions as to whether some of the hydrogen 
bonds can exist the same time, as shown in Fig. 6. Hence the C1 and C2 
conformations produced by the docking simulation were superimposed 
at the docking pocket. The amino on the double bond side of C2 forms a 
hydrogen bond with Asp6928, while the position of C1 in the bonding 
pocket is lower than C2. We observed that there is sufficient space at the 
end of the binding pocket, which makes it possible for C1 to shift to the 
position that coincides with the C2. The position change increases the 
possibility that the amino on the C1 double bond forms a hydrogen bond 
with Asp6928 (the yellow cutting head direction in Fig. 6 represents this 
hypothesis). In addition, the amino connected to the two segments of the 
double bond can undergo a certain degree of rotation, so the amino on 
the opposite side can be changed by rotation and shorten the distance 
between Asp6928 form hydrogen bond. Furthermore, the pockets where 
the two amino linking groups are deeper, which can eliminate the 
negative effect of steric hindrance when the two amino end of the double 
bond rotate (the red rotating cutting head in Fig. 6 represents hypoth-
esis). The default protein structure of Glide docking simulation is rigid 
and insufficient sampling of the ligand would result in a docking pose 
that lacks accuracy. Therefore, the interaction of ligands at the binding 
pocket was further analyzed by MM/GBSA and molecular dynamics. 

3.5. MM/GBSA calculation 

The thermodynamic concept was introduced to simulate the process 
of ligand binding to the protein pocket, which can effectively determine 
whether the interaction mode between receptor and ligand is stable. 
Prime MM/GBSA was used to scan and analyze the receptor-ligand 
binding mode generated by XP docking simulation, and to determine 
the binding stability of the complex through calculating the free binding 
energy. As shown in Table 3, the free binding energy (ΔGbind) of sine-
fungin was − 51.318 kcal/mol. Among the candidate compounds, the 
free binding energy of C1, C2, C3 and C7 were above this value, and C2, 
C3 and C7 can form hydrogen bonds with key amino acid Asp6898 and 
Asp6928. The similar structures of C1 and C2 results in similar free 
binding energy values (ΔGbindC1 = − 59.983 kcal/mol; ΔGbindC2 =
− 70.916 kcal/mol) which are better than those of the other two com-
pounds. The free binding energy results of C2 show that ΔGbindCoulomd, 
ΔGbindvdW, ΔGbindLipo (nonpolar solvation energy) and ΔGbindHbond 
provide positive contributions with the main contributions from 
ΔGbindvdW (− 51.997 kcal/mol) and ΔGbindCoulomd (− 24.058 kcal/ 
mol). The calculated results of C1, C3 and C7 are similar to C2 and 
sinefungin. The results for MM/GBSA show that the binding of C1, C2, 
C3 and C7 with the protein was relatively stable, and the van der Waals 
energy and Coulomb energy are the main contributors to the free 
binding energy. 

3.6. Molecular dynamics simulation 

The stability of the interaction between the four compounds and 
nsp16 was investigated systematically by 150ns molecular dynamics 
simulation. We expect to use molecular dynamics simulation to inves-
tigate whether the four compounds can interact with key amino acids 
during the simulation, and whether these interactions can persist similar 
to sinefungin. 

As shown in Fig. 7a, during molecular dynamics simulation of the 
four complexes, the structure of nsp16 showed a stable trend after 
105ns, and the fluctuation of RMSD value for C2-protein was signifi-
cantly weaker than other three groups of compounds. At the same time, 
the complex system composed of the four compounds and the protein 
was compared with sinefungin. The deviation amplitude of the protein 
structure relative to the initial structure at 50ns of molecular dynamics 
simulation is about the same, and the RMSD value maintained at 
2.0–3.5 Å. The reasonable fluctuation range proved that the proteins in 
the four complexes could maintain a stable state in the simulation 
process. 

In addition, the data of Fig. 7b shows that Stable RMSD curve fluc-
tuations can prove that the four compounds can remain stable in the 
binding pocket. However, it can be evidently obvious that at the end of 

Table 2 (continued ) 

Compound CAS ID Structure Docking score H-bond Distance (Å) 

C9 1224019-24-2 − 7.819 Tyr6930 2.14 

C10 932539-95-2 − 7.780 Asp6897, 1.94 
Lys6933 2.49  

Fig. 6. C1 and C2 were superimposed at the binding pocket. The Yellow 
translation arrow and red rotation arrow represent the hypothesis in the text, 
which to explore the possibility of forming hydrogen bond between C1 and 
Asp6928. Blue for C1, green for C2. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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the simulation, the position at the binding pocket for compounds besides 
C2 deviate greatly from the initial docking positions (RMSD>4 Å). 
However, the result of C2 is similar to sinefungin with the position at the 
binding pocket deviating only slightly from the initial docking position 
after the simulation. In conclusion, at the end of the molecular dynamics 
simulation, the four compounds maintained a relatively stable state in 
the pocket, but the interaction of C1, C3 and C7 in the binding pocket 
could be changed by the obvious position deviation compared with 
docking pose. 

By analyzing the histogram of the interaction in the simulation 
process (Fig. 8c and d), it evident that the critical hydrogen bonds (in-
teractions fraction was 0.995 and 0.901 respectively) and ionic in-
teractions (0.606 and 0.887 respectively) between C2 and Asp6897, 
Asp6928 are the main interaction. The RMSD value of C2 at the binding 
pocket was maintained between 2-3Å, so the critical hydrogen bond 
with the key amino acid Asp6928 in the docking simulation was retained 
during the molecular dynamics simulation. In addition, new main 
hydrogen bonds were formed between the fluorobenzene linked imide 
group and Asp6897, Tyr6930 (0.754). The change of position in the 
binding pocket brought a positive effect on C1, which forms critical 
hydrogen bonds with key amino acids Asp6928 (0.645) and 6897 
(0.709). Main hydrogen bonds formed by the carboxylic acid on the C1 
benzene ring with Lys6874 (0.577) and the carbonyl oxygen with 
Asn6899 (0.907) did not appear in the docking simulation (Fig. 8a and 
b). However, for C3 and C7, obvious displacement change brings 
negative effects. In the docking simulation, both C3 and C7 can form a 
hydrogen bond with Asp6928 (Table 2), but this hydrogen bond was not 
stable in the molecular dynamics simulation. Upon stable binding, C3 
and C7 deviate from the initial docking position and lose the dominant 
interaction mode with key amino acids (Fig. 8e, f, g and h). The car-
boxylic acid at C3 terminal forms strong hydrogen bonds with Leu6855 
(0.399) and Thr6854 (1.428). The nitrogen cation on C7 piperazine 
forms a strong water bridge with Lys7051 (0.904), and the amino groups 
that linked to two benzene form a strong hydrogen bond with Thr6854 

(0.970) and Thr6856 (0.974). 
In summary, molecular dynamics simulation verified our doubts 

about the docking simulation results. In the molecular dynamics simu-
lation, the candidate compounds with superior free binding energy were 
stable in the binding pocket. The results showed that C1 and C2 could 
form continuous and stable hydrogen bonds with Asp6897 and 
Asp6928, while C3 and C7 could not reproduce the hydrogen bonds 
formed by the docking simulation results with Asp6928. Among the four 
compounds, the change of RMSD values of protein and ligand during 
both the molecular dynamics simulation and the interaction mode 
analysis of C2 was similar to sinefungin C2 also obtained the optimal 
value in MM/GBSA calculation. 

3.7. MM/PBSA energy decomposition 

The results of Desmond MD simulation showed that the candidate 
compounds C1 and C2 could form continuous and stable interactions 
with the key amino acids of nsp16. In order to further explore the energy 
contribution of these key amino acids in the two candidate compounds 
and sinefungin, MM/PBSA calculations were performed on the complex 
system composed of the three compounds and nsp16 after Gromacs MD 
simulation. The RMSD values of the Cα atoms were monitored along the 
whole MD trajectory, as shown in Fig. 9 All the trajectories indicated 
that the MD simulations arrived at equilibrium state. MM/PBSA binding 
free energy calculation results show that the candidate compound and 
sinefungin can stably bind to the nsp16 binding pocket (Fig. S5). Fig. 10 
shows the results of amino acid energy decomposition. Amino acids 
whose energy value is lower than − 0.5 kcal/mol were used for analysis. 
During the binding of sinefungin to nsp16, the polar interaction 
(ΔGelectrostatic and ΔGPolar Solvation) affects the binding stability to the 
greatest extent. The histogram shows that the key amino acids 
(Asp6912, Cys6913, Asp6897 and Asp6928) all have favorable energy 
contribution, and the electrostatic potential energy contributions are 
more prominent than other amino acids. This suggests that there are 

Table 3 
Contributions of various energy components to the binding free energy (kcal/mol).  

Cmpound ΔGbind
a ΔG bind Coulombb ΔG bind Covalentc ΔG bind Hbondd ΔG bind Lipoe ΔG bind vdWf ΔG bind Packingg ΔG b-ind SolvGBh 

Sinefungin − 51.318 − 12.620 1.213 − 5.437 − 8.122 − 49.469 0.000 22.924 
C1 − 59.983 − 16.995 5.673 − 3.536 − 18.079 − 56.289 − 0.597 29.616 
C2 − 70.916 − 24.058 − 2.692 − 1.911 − 18.154 − 51.977 − 1.078 28.976 
C3 − 52.439 − 21.808 2.741 − 3.777 − 14.672 − 43.080 − 0.365 28.379 
C4 − 29.571 − 41.275 7.169 − 3.477 − 12.430 − 52.678 − 0.910 74.102 
C5 − 38.726 − 16.612 5.922 − 3.340 − 16.133 − 40.070 0.008 31.239 
C6 − 47.290 − 11.516 2.653 − 3.007 − 13.941 − 44.122 − 0.415 23.061 
C7 − 54.859 − 26.419 6.347 − 3.657 − 15.608 − 45.450 − 0.681 30.406 
C8 − 18.097 − 45.129 5.969 − 3.112 − 10.273 − 33.485 − 0.013 67.861 
C9 − 48.864 − 22.029 − 0.127 − 2.734 − 10.839 − 43.763 − 0.479 30.838 
C10 − 48.754 − 18.648 2.660 − 1.612 − 14.177 − 38.669 0.015 21.480 

Note: a free binding energy; B the contribution of Coulomb on the free binding energy; c the contribution of covalent on free binding energy; d the contribution of 
hydrogen bond on free binding energy; e the contribution of lipophilic on free binding energy; f the contribution of van der Waals on the free binding energy; g 
contribution of stacking on binding energy; h the contribution of polar solvation on free binding energy. 

Fig. 7. The RMSD trajectory of the Complexes of nsp16 with four candidate compounds (C1, C2, C3 and C7) and sinefungin during the 150 ns simulation. (a) The 
stability of protein structure was analyzed during the simulation. (b) Stability analysis of ligand in binding pocket during simulation. 
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strong hydrogen bonds between sinefungin and these amino acids. 
Asp6897 and Asp6928 also have crucial electrostatic potential energy 
contributions in the binding process of C1 and C2, and the total energy 
contribution is greather than other amino acids. Similar to sinefungin, 
Asp6897 produced the ultimate contribution value. The results of amino 
acid energy decomposition further verified the rationality involved in 
the determination of key amino acids. Candidate compounds C1 and C2 
and sinefungin can stably bind to the docking pocket, and both form 
strong hydrogen bonds with the key amino acids Asp6897 and Asp6928. 

4. Conclusion 

In this work, we constructed a pharmacophore model that can 

Fig. 8. (a, c, e and g) The histogram of protein-ligand contact over the course of the trajectory. (b, d, f and h) Stable protein ligand complex system generated by 
molecular dynamics simulation of the 3D interaction mode of the. The green, pink, and dark green lines represent hydrogen bonds, salt bridges, and π-cation 
interaction respectively. a and b represent C1, c and d represent C2, e and f represent C3, moreover g and h represent C7. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. RMSD values of Gromacs MD simulation.  
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accurately reflect the crucial interaction mode between sinefungin and 
nsp16. Molecular dynamic simulation was integrated into the structure- 
based pharmacophore construction, and the pharmacophore model was 
used to screen Bionet and Chembiv databases in order to find novel and 
potent nsp16 inhibitors. Through docking simulation, MM/GBSA, mo-
lecular dynamics RMSD stability analysis and main interaction analysis, 
it is concluded that C1 and C2 can stably bind to the binding pocket and 
form strong and continuous hydrogen bonds with the key amino acids 
Asp6897/Asp6928. MM/PBSA energy decomposition of sinefungin 
showed that Asp6897 and Asp6928 contributed major energy values 
during C1 and C2 binding, which was similar to sinefungin. Therefore 
C1 and C2 can be used as nsp16 inhibitors for further design and 
development. 
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