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Myelin sheaths, by supporting axonal integrity and allowing rapid saltatory
impulse conduction, are of fundamental importance for neuronal function.
In response to demyelinating injuries in the central nervous system (CNS),
oligodendrocyte progenitor cells (OPCs) migrate to the lesion area, proliferate
and differentiate into new oligodendrocytes that make new myelin sheaths.
This process is termed remyelination. Under specific conditions, demyeli-
nated axons in the CNS can also be remyelinated by Schwann cells (SCs),
the myelinating cell of the peripheral nervous system. OPCs can be a major
source of these CNS-resident SCs—a surprising finding given the distinct
embryonic origins, and physiological compartmentalization of the peripheral
and central nervous system. Although the mechanisms and cues governing
OPC-to-SC differentiation remain largely undiscovered, it might nevertheless
be an attractive target for promoting endogenous remyelination. This article
will (i) review current knowledge on the origins of SCs in the CNS, with a
particular focus onOPC to SC differentiation, (ii) discuss the necessary criteria
for SCmyelination in the CNS and (iii) highlight the potential of using SCs for
myelin regeneration in the CNS.
1. Overview
Demyelinating diseases comprise a diverse spectrum of disorders including the
autoimmune disease multiple sclerosis (MS) in the central nervous system
(CNS), Guillain Barre syndrome in the peripheral nervous system (PNS), and
genetic disorders such as leukodystrophies (CNS) and Charcot–Marie–Tooth
disease (PNS). Direct damage to the myelin sheath or to the myelinating
cells, oligodendrocytes in the CNS and Schwann cells (SCs) in the PNS, can
arise in consequence to genetic mutations, trauma, metabolic deficiencies or
exposure to inflammation or toxins [1]. In both the CNS and PNS, the loss of
myelin sheaths from otherwise intact axons, termed demyelination, is followed
by a spontaneous, regenerative response, called remyelination. In the PNS, this
process is mediated by surviving SCs, whereas in the CNS, this can be per-
formed either by surviving oligodendrocytes or oligodendrocytes newly
generated from oligodendrocyte progenitor cells (OPCs), a population of
adult multipotent progenitors that are widespread throughout the CNS [2].
In this latter, better-understood form of CNS remyelination, OPCs migrate to
the lesion site, proliferate and predominantly differentiate into new myelin-
forming oligodendrocytes. However, SCs, the myelinating glia of the PNS,
can also contribute to this CNS regenerative response [3,4]. Remyelination of
central axons reverses conduction deficits and protects axons from secondary
degeneration [5]; however, whether oligodendrocyte- or SC-mediated remyeli-
nation can achieve this to equal degrees is not known. Although the CNS has
historically been seen as an organ with poor regenerative capacity due to the
limited ability to regenerate neurons, the glial compartment is endowed with
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a remarkable regenerative capacity. Thus, while the need
for remyelination therapies remains unmet, developing
methods to harness the remarkable regenerative potential of
myelinating glia represents an exciting avenue of research.
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2. Schwann cells in the central nervous
system

In this review, we focus on the intriguing observation that
SCs, the myelinating cells of the PNS, can also be detected
in the CNS of multiple sclerosis (MS) [4,6,7], neuromyelitis
optica [8] and in spinal cord injury patients [9–11]. SC invol-
vement in CNS remyelination is also a feature of a variety of
demyelinating disease models, including experimental auto-
immune encephalomyelitis (EAE) [12–14], focal compressive
or contusive lesions and after local injections of toxins such
as lysolecithin, 6-aminonicotinamde and ethidium bromide
[3,15–17]. For many years, the predominant hypothesis
regarding the origin of CNS-SCs argued that they invaded
demyelinated regions of the CNS from the PNS following
the breakdown of the glia limitans (for review see [18]). The
observation that they tend to occur close to peripheral
nerve roots is consistent with this explanation [19,20]. How-
ever, findings from genetic lineage tracing studies provided
irrefutable evidence that the majority of CNS-SCs are derived
from OPCs [21,22].

That CNS progenitors can give rise to SCs is surprising
since ontogenetically the CNS and PNS diverge from one
another at the early developmental stage of gastrulation
when the neural tube is formed: oligodendrocytes derive
from the neuroepithelium [23,24] while SCs originate from
the neural crest [25,26]. A distinction between CNS and PNS
myelinating glia can be further traced phylogenetically back
to when myelin first appears in evolution at the divergence
between the cartilaginous and bony fish [27]. Thus, the pres-
ence of SCs in the CNS is an unexpected phenomenon
requiring SCs to overcome a developmentally determined
spatial segregation, to reconcile evolutionary divergence and
to exist in an environment defined by CNS glia. Although
many open questions regarding the mechanisms and long-
term consequences of SC-mediated CNS remyelination
remain, evidence from SC transplantation studies demonstrate
their promising repair potential [28–30]. It is thus hoped that
enhancing SC remyelination may be a powerful strategy to
complement oligodendrocyte remyelination and to attenuate
axonal loss in the CNS. In this article, we first describe the
developmental and functional differences between oligoden-
drocytes and SCs and then review current knowledge on the
central origins of SCs. The potential mechanisms of OPC to
SC differentiation will be examined, before finally discussing
the therapeutic potential of SC-mediated remyelination as a
treatment for CNS demyelinating diseases.
3. Developmental differences between
oligodendrocytes and Schwann cells

Oligodendrocytes, the myelinating glia of the CNS, derive
from OPCs which, for the embryonic spinal cord, mostly
originate from restricted regions within the motor neural pro-
genitor domain (pMN) of the ventral germinal zones (VZ).
Ventrally derived OPCs then migrate dorsally and laterally
to populate the entire white matter of the spinal cord, while
the remaining approximately 20% of OPCs arise from progeni-
tors of the dorsal ventricular zone in a later wave of OPC
production tomyelinate the dorsal spinal tracts [31]. An analo-
gous event occurs in the developing brain, where OPCs first
appear in the ventral VZ of the medial ganglionic eminence
(MGE) and are followed by the production of dorsal OPCs in
the lateral ganglion eminence (LGE). These newly generated
OPCs migrate laterally and dorsally away from the MGE and
LGE to spread throughout the developing cerebral cortex.
After birth, a final wave of cortically derived OPCs settle
within the cortex, while the first wave of MGE derived OPCs
are eventually eliminated from the cortex through unknown
mechanisms (figure 1a) [23,24]. Thus, in the adult mouse,
OPCs in the brain are predominantly cortically derived, with
an approximately 20% contribution from the LGE [33]. From
these diverse origins, OPCs remain proliferative while
migrating laterally and dorsally towards their appropriate des-
tinations within the developing nervous system. Throughout
this process, OPCs are reliant upon extracellular cues including
mitogens such as platelet-derived growth factors (PDGFs) and
fibroblast growth factors (FGFs), as well as contact-mediated
signalling via ECM components for directional guidance
[34]. Once in position, promoters of terminal differentiation,
including thyroid hormones and insulin-like growth factor-1
(IGF-1), converge upon Olig2 to synergistically drive Sox10-
mediated activation of Myrf (myelin regulating factor)
[35–38]. In turn, Myrf initiates core programs to drive oligo-
dendrocyte differentiation and myelin gene expression, to
allow myelination to proceed [39,40].

SCs, in contrast, derive frommultipotent, neural crest cells
that detach from the dorsal neural tube and migrate over large
distances to generate neurons and glia of the PNS, as well as
other cell types including myofibroblasts, chondrocytes and
melanocytes [41–43]. Migrating neural crest cells transition
into SC progenitors, before differentiating into immature SCs
(figure 1b). Although all immature SCs are thought to possess
the capacity to upregulate myelinogenic programs, these cells
can only terminally differentiate into mature myelinating cells
when they associate with axons greater than 1 μm in diameter
through a process known as radial sorting [32,44]. By contrast,
SCs that associate with smaller-diameter axons form bundles
of non-myelinating Remak cells [32,45]. Prior to complete
maturation, SC survival and dynamics are strongly influenced
by the molecular interactions between the SC and the axon
[41,46], of which the neuronally derived factor, neuregulin-1
(NRG1), is particularly critical for promoting SC survival
and for stimulating myelination [47]. Subsequent terminal
differentiation is tightly regulated by a transcription factor
network involving Sox10, Oct6 and Krox20 [48–50].
4. Functional differences between
oligodendrocytes and Schwann cells

The vertebrate nervous system is equipped to execute
complex motor, sensory and cognitive functions due, in
part, to the evolutionary emergence of myelin. Myelination
involves the wrapping of a multi-layered-lipid membrane
around axons by glial cells–oligodendrocytes in the CNS,
and SCs in the PNS. By insulating the axonal segments,
myelin enables saltatory conduction [51,52], which acceler-
ates action potential propagation up to 100-fold compared
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Figure 1. Origins, migration and development of OPCs and Schwann cells. (a) In the rodent spinal cord, OPCs originate from the pMN domain in the ventral
ventricular zone at approximately embryonic (E)12.5. This is followed by a second wave of progenitors in more dorsal regions, which then migrate throughout
the spinal cord to myelinate white matter tracts [23]. Similarly, in the rodent telencephalon, the first wave of OPCs arise from ventral progenitor cells in the
medial ganglionic eminence (MGE) at E12.5. Subsequently, a second wave of OPCs is generated several days later at about E15.5 by dorsal progenitor cells in
the lateral ganglion eminence (LGE). After birth, cortex-derived progenitors give rise to the final wave of OPCs. (b) During the formation of the neural tube,
neural crest cells arise from the tips of the neural folds. Neural cells initially form and accumulate at the dorsal surface of the tube, but soon migrate along
with different pathways to differentiate into SC precursor cells, as well as progenitors of melanocytes, autonomic neurons, dorsal root sensory glia, chromaffin
cells and other peripheral glia). SC precursor cells then transition into immature SCs upon neuregulin-1 (NRG1), fibroblast growth factor 2 (FGF2) and Notch signal-
ling. While all immature SCs are thought to possess myelinating potential, only immature SCs in close association with large-diameter axons differentiate into
myelinating SCs. By contrast, SCs that associate with smaller-diameter axons form bundles of non-myelinating Remak cells [32].
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to nonmyelinated axons of the same diameter. Importantly,
myelin also provides essential trophic support to maintain
normal axonal transport and to ensure long-term axon survi-
val [53]. The biogenesis of myelin requires temporal and
spatial coordination of intricate machinery, whereby glial
cells need to select axon targets for myelination and to con-
struct myelin sheaths of the correct dimension and protein
composition. In the PNS, SCs invade developing nerve bun-
dles and subsequently associate with large-diameter axons in
a 1 : 1 relationship. Once destined for myelination, multiple
SCs line up along the axonal tracts to each extend their
plasma membrane around axons in a spiral fashion, forming
internodes with intervals, termed the Nodes of Ranvier, in
between [54]. In the CNS, newly differentiated oligodendro-
cytes extend filopodia-like processes into the surrounding
environment, where interactions between axonal and oligo-
dendrocyte cell-adhesion molecules help to stabilize or to
retract preliminary myelin sheaths [55]. Since oligodendro-
cytes can each myelinate multiple axons, it is thought that
their dynamic processes may serve to regulate oligodendro-
cyte density and to ensure evenly spaced nodes [54]. Thus,
while SCs and oligodendrocytes differ in their process to
establish contact with axons, it is remarkable that oligoden-
drocytes and SCs both independently produce myelin
that are remarkably similar but far from identical for the
same purposes.
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Figure 2. Comparison of central and peripheral myelination. (a) Each oligodendrocyte in the CNS can extend cytoplasmic projections to formmultiple, multi-layered myelin
sheaths (pink) around different axons, whereas each SC in the PNS completely wraps around a single axon by laying down multiple layers of cell membrane, of which the
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non-axonal domain due to the extra presence of the cytoplasm and nuclei, which is covered by the outermost layer, called the neurilemma.
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Even though the overall morphology of myelin is fairly
well conserved, central and peripheral myelin are character-
ized by distinctive features (figure 2). In the PNS, SCs
closely associate with the axon and each myelinate a single
internode, while oligodendrocytes elaborate myelin sheaths
around up to 60 different axons. Reminiscent of the cruder
forms of myelin in non-vertebrate phyla, SCs only myelinate
peripheral axons greater than 1 μm in diameter, whereas
smaller axons are grouped into Remak bundles and loosely
enveloped, but never myelinated [32]. Oligodendrocytes, on
the other hand, do not perform radial sorting, or require
axonally derived NRG1 signals to myelinate axonal segments
[56]. Instead, the CNS appears to have evolved additional
regulatory mechanisms involving other growth factors and
signalling systems, particularly since oligodendrocytes can
myelinate synthetic nanofibres independently of axonal
signals [57]. Furthermore, while oligodendrocytes tend to
similarly myelinate larger-diameter axons, in areas such as
the optic nerve or the cortex they can also myelinate small,
0.2 μm-diameter axons [58,59]. Once myelinated, PNS axons
are ensheathed in thicker myelin sheaths compared to CNS
axons of the same diameter and show greater periodicity
of spiral wrapping, probably due to differences in protein
composition (table 1) [58].

Based on available fossil evidence, it is hypothesized
that myelin was first acquired in restricted regions of the
primitive nervous system to facilitate escape from predators.
Subsequently, the increase in the size of vertebrates provided
a strong incentive for widespread acquisition of myelination
programs to enable faster impulse transmission across the
longer nerves [62]. A common origin for myelination, rather
than separate de novo development in each part of the nervous
system, is suggested by the overlap in common myelin pro-
teins (MBP, PLP and MAG). Taken together, evolution has
produced two distinct glial cells that share many of the same
features, as well as the same task of myelinating axons in the
nervous system. The unique features of central and peripheral
myelin allow each myelinating cell to better facilitate the
neural and trophic demands of the CNS andPNS. These differ-
ences hold important therapeutic implications for the use of
SCs for CNS remyelination. Thus, while SCs have been
observed to spontaneously remyelinate central axons, whether
SCs can fully substitute for the myelination provided by
oligodendrocytes is unclear.
5. Sources of central nervous system-
resident Schwann cells

The origin of CNS-resident SCs has been a matter of some
debate. It was initially hypothesized that peripheral SCs
invaded demyelinated regions of the CNS following the
breakdown of the glia limitans, the structure made by astro-
cytic end feet that provides the ‘skin’ of the CNS [18]. This
view is based on early observations that SCs in the CNS
appear in regions with proximity to cranial or peripheral



Table 1. Relative abundance of major myelin proteins by mass spectrometric quantification.

myelin protein
CNS myelin
(%) [60]

PNS myelin
(%) [61] associated disease effect on myelination

proteolipid protein (Plp1) 17 0.2 Pelizaeus–Merzbacher disease; spastic

paraplegia type 2

hypomyelinating

leukodystrophy

myelin basic protein (Mbp) 8 8 18q deletion syndrome dysmyelination

myelin protein zero (P0) ND 21 Charcot–Marie–Tooth neuropathy hypomyelinating neuropathy

periaxin (Prx) ND 16 Charcot–Marie–Tooth neuropathy hypomyelinating neuropathy

cyclic nucleotide

phosphodiesterase (Cnp)

4 0.5 catatonia-depression syndrome upon aging white matter

neuroinflammation

myelin-associated

glycoprotein (Mag)

1 0.3 autoantibody-mediated neuropathy —

myelin oligodendrocyte

glycoprotein (Mog)

1 ND narcolepsy 7 —

sirtuin 2 (Sirt2) 1 ND NA NA

Claudin 11 (Cldn11) 1 ND NA NA

fatty acid synthase (Fasn) 1 ND NA NA

Band 4.1-like protein G

(Epb4.1l2)

ND 1 NA NA

others 67 52 — —
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nerve roots, including the spinal cord, brain stem and cerebel-
lum [19,20]. More recently, genetic fate-mapping studies have
confirmed that a subset of Foxj1 expressing Remak cells can
be recruited to remyelinate the CNS [63].

However, experiments showing that purified CNS-derived
cell preparations, when transplanted into demyelinated CNS
lesions, generated both oligodendrocytes and SCs suggested
that some CNS-SCs might also be of CNS origin [64–67].
Since the purity of the transplanted preparations could never
be proven to be absolute, it required the advent of genetic line-
age tracing studies, using reporter proteins that were
expressed exclusively in adult OPCs, to irrefutably demon-
strate that CNS-resident SCs can be derived from OPCs
[21,22,68]. Similar to peripheral SCs, OPC-derived SCs express
proteins such as periaxin and P0, which are unique to
PNS myelin [69,70], form a 1 : 1 association with axons and
show the clear organization of internodes [21]. Together,
these studies demonstrated that adult OPCs possess a
wide differentiation potential, which, when challenged with
damage-induced changes in the microenvironment, allow
their differentiation into SCs of neural crest lineage.
6. Mechanisms of oligodendrocyte
progenitor cells to Schwann cell
differentiation

HowdoOPCs activate a differentiation programme to produce
cells of neural crest descent?Observations fromboth transplan-
tation studies and spontaneous remyelination indicate that SC
remyelination generally occurs in areas that are devoid of astro-
cytes [17,71], suggesting that the OPC to SC fate is gated by
astrocytes (figure 3). In support of astrocyte inhibition, trans-
planted SCs show poor survival and minimal migration in
lesions containing reactive astrocytes [71,72]. Similarly, few
OPCs differentiate into SCs when co-transplanted with astro-
cytes into CNS lesions [18,73]. By contrast, endogenous and
exogeneous SCs canwidely remyelinate axonswhen astrocytes
are experimentally ablated [74] or when their activation is
blocked [75]. Subsequently, analysis of the lesion environment
revealed significant upregulation in BMP, specifically BMP4
transcripts, suggesting that BMPsignallingmight be instructive
for SC fate acquisition. Consistent with this finding, SC remye-
lination was not observed, even within astrocyte-free lesion
areas, when BMP signalling was inhibited with Noggin [73].
Taken together, these studies proposed that OPCs differen-
tiate into SCs in the presence of high BMP signalling, but
only if these signals are not opposed by astrocytes in the
lesion environment.

However, when pure OPCswere cultured in the absence of
astrocytes or BMP signalling, OPCs only differentiate into
astrocytes [76,77], suggesting that the BMP hypothesis does
not fully capture the conditions needed for OPC to SC fate
commitment (figure 4). Recently, transcriptomic profiling
found increased BMP4 and also Wnt signalling in the lesion
microenvironment due to a loss of reactive astrocytes that
secrete the competitive BMP/Wnt antagonist, Sostdc1 [78].
From these findings, we would expect that unopposed BMP
and Wnt signalling will instruct OPCs to differentiate into
SCs: however, unpublished work from our laboratory found
no significant increase in SC-remyelinated axons following
demyelination in Sostdc1 KO mice. NRG1, which signals
through the ErbB tyrosine kinase receptors, has also been
identified as a molecular signal that allows OPCs to form
SCs [79]. Although the authors showed that ablating ErbB3/
4 decreases the generation of Schwann cells from endogenous
central progenitors, it is yet to be determined whether increas-
ing NRG1 activity in OPCs is sufficient to induce SC
differentiation. Therefore, while BMP/Wnt and NRG1/ErbB
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oligodendrocytes are dispersed throughout the normal adult white matter. SCs are absent from the CNS. (b) Following demyelination oligodendrocytes and myelin are
lost. In some instances, astrocytes can also be damaged. Subsequently, OPCs in in the vicinity of the lesion area are activated. (c) Activated OPCs are recruited into the
lesion area by the release of pro-migratory and mitogenic factors, and the demyelinated region is repopulated by new OPCs. At the same time, a small subset of
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and in the absence of astrocytic inhibition, OPCs differentiate into SCs, which form a 1 : 1 association with the axon, resulting in a single myelin sheath. Conversely,
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SCs migrate into the lesion site, where they make contact and myelinate exposed axons. Remyelination is mostly complete within 3 weeks after lesion.
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signalling appear to help prime OPCs towards a SC fate, it is
still unclear what key mediators are necessary to drive this
alternative OPC cell fate decision. The close association of
remyelinating SCs with blood vessels [80] makes it intriguing
to speculate that the yet unidentified factor is blood derived or
provided by the niche created by endothelium or the cells
associated with the vasculature.
7. Therapeutic applications of Schwann
cells in the central nervous system

Oligodendrocyte lineage cells, neural progenitor cells and
olfactory ensheathing cells, among other cell types, have
been shown to remyelinate CNS axons when transplanted
directly into experimentally induced areas of demyelination
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Figure 4. OPC cell fate decisions OPCs are multipotent and can differentiate
into oligodendrocytes, astrocytes or SCs. OPC cell fate decisions are in part,
dependent upon BMP signalling. When BMP signalling is blocked, such as
when OPCs are in proximity to BMP suppressive astrocytes, OPCs predomi-
nantly differentiate into oligodendrocytes in vivo and in vitro. Conversely,
when OPCs are exposed to high BMP signalling in culture, OPCs readily
form astrocytes [76,77]; however, in vivo, few OPCs have been observed to
produce astrocytes. Lineage tracing studies have demonstrated that following
demyelinating injuries, adult OPCs can differentiate into SCs in astrocyte
deficient areas [21]. Although BMP signalling is high within the lesion
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[81,82]. However, as an intrinsic myelinating glia cell of the
PNS, SCs are equipped to aid nerve impulse transmission
and to provide neurotrophic support by generating bona fide
myelin sheaths around exposed axons. These new nodes
formed by remyelinating SCs, exhibit a mature configuration
of voltage-gated sodium ion channels [83] and can be stably
maintained for more than one year in rodents [84]. Trans-
planted SCs can myelinate central axons, which improves
or restores axonal conduction velocity in demyelinated
axons [29,85]. Even when oligodendrocyte remyelination is
inhibited [86], SC remyelination in the CNS correlates with
improved locomotion and neurological function [87,88]. In
addition to restoring myelin sheaths, SC myelin tends to be
spared from autoimmune attacks affecting oligodendrocytes
or central myelin in diseases such as multiple sclerosis, pre-
sumably due to differences in protein expression between
central and peripheral myelin (table 1) [86,87]. It is thus pos-
tulated that SC-remyelinated axons could be more resistant to
CNS demyelinating diseases. Taken together, the regenerative
and neuroprotective capacity of SCs make them attractive
candidates for remyelinating therapies.

In addition to remyelinating central axons, there has
been much interest in the use of SCs to aid regeneration of
damaged CNS axons. Given the contribution of the regenera-
tive SC in peripheral nerve damage [89], it was hoped that
transplanting SCs into the CNS can similarly promote
axonal regrowth. Indeed, early studies demonstrated that
transplanting peripheral nerve grafts into the transected rat
spinal cord was sufficient to help promote regeneration of
the injured host axons [90]. Similarly, transplanted SCs,
derived from purified cultures of SCs, taken from the periph-
eral nerve of rodents and humans, can remove myelin debris
and release growth factors to make the lesion environment
more permissive for axonal regrowth [91,92]. Moreover,
SCs provide a scaffold to guide regenerating axons towards
their intended target site and can remyelinate newly regener-
ated axons [89]. Together, these studies showed that SCs
modify the lesion environment to facilitate central axon
regeneration. To date, the therapeutic use of autologous SCs
for spinal cord injury has passed phase 1 clinical trials
[93,94]. Despite the excellent regenerative response by SCs,
in general there is very poor clinical prognosis even after
peripheral nerve injury in humans. Modest PNS repair can
be attributed to factors including poor axonal growth due to
the hostile injury-induced microenvironment, misrouting or
re-innervation errors due to the gradual loss of axon guiding,
regenerative signals [95]. These challenges further compound
the difficulties stemming from the slow rate of axonal growth
[96]. As a consequence, regenerating axons often fail to reach
their original innervation targets, and functional restoration
does not occur. Although full axonal regeneration is the
ultimate goal for complete functional recovery, studies have
demonstrated that promoting the remyelination of surviving
PNS as well as CNS axons is sufficient to restore locomotion
in previously paralysed mice [28,86,87]. As such, strategies to
accelerate remyelination in order to prevent progressive axon
degeneration have been recognized as a promising approach
for spinal cord injuries [22]. Going forward, this review will
focus on the use of SCs for central remyelination. For more
details about SCs for CNS repair, we refer readers to these
excellent reviews [89,97].
8. Why can we not simply transplant
Schwann cells?

SCs for autologous transplantation can be isolated from per-
ipheral nerve biopsies and are easily expandable in culture
(reviewed in [98]), raising the question why one would not
simply use patient-derived SCs? Despite the benefits of SC
remyelination, the relapsing-remitting, multi-focal nature of
demyelinating diseases, such as multiple sclerosis, limit the
therapeutic feasibility of SC transplantation. In order to fill
the many lesions, patients would require multiple invasive
transplantation surgeries because the systemic delivery of
SCs is likely to show limited success, due to the poor
migratory abilities of SCs in the normal white matter.
Although SCs are intrinsically a mobile, migratory cell type,
the presence of reactive astrocytes greatly restricts its move-
ment in culture [99] and in the CNS [4,6,72,100]. Therefore,
unless the demyelinating injury also damages astrocytes,
transplanted SCs will typically be prevented from migrating
within and beyond the injection site, which significantly
limits the extent of functional restoration [101]. Poor SC
migration within the normal white matter impinges upon
its survival and integration within the CNS, because SCs
are less likely to make contact with axons and receive
neuronal-derived growth factors [3]. Indeed, tracking of
prelabelled SCs found few surviving SCs four weeks post-
transplantation. The cells that did survive long term were
cells in astrocyte-free zones that had made contact with
axons [102,103]. Despite the promising repair capacity of
SCs, they are poorly tolerated in the CNS after transplan-
tation. Therefore, in addition to optimizing the routes of
cell administration, modifications to the exogenous SCs or
CNS environment need to be introduced to overcome the
limitations of SC transplantation [104–106].
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9. Direct differentiation of oligodendrocyte
progenitor cells to Schwann cells can
circumvent transplantation limitations

Unlike SCs, OPCs arewidely distributed throughout thewhite
and greymatter and canmigrate towards andwithin the lesion
zone during the recruitment phase (figure 3c) following
demyelination. Furthermore, OPCs, a CNS progenitor cell,
can interact with other CNS components without eliciting a
reactive response. Thus, it may be possible to override SC
inhibitory astrocytic signals by directly converting existing
OPCs, which are already distributed throughout the CNS,
into SCs by exogenously activating the alternative OPC cell
fate programme. In this way, SCs are more likely to form in
astrocyte rich areas, allowing greater SC presence within the
CNS, and importantly also in regions that would not be acces-
sible for transplantation. Importantly, direct differentiation of
OPCs into SCs should better disperse SCs within the CNS
and place them in closer proximity to demyelinated axons.
This should increase survival rates since SCs are reliant
upon axonally derived survival factors such as NRG1 [107].
Interestingly, once they associate with axons and are in receipt
of growth factors, SCs are much more resistant to the inhibi-
tory effects of astrocytes, allowing their stable integration
within the CNS. Indeed, when SCs do survive in the CNS,
their myelin sheaths are stably maintained for more than a
year post-transplantation in lesioned rodents [84,108] and for
over a decade after spinal cord injury in humans [10].
10. Potential considerations of using
Schwann cell differentiation for central
nervous system remyelination therapies

The caveats of encouraging widespread SC-mediated CNS
remyelination lie in the potential consequences of substituting
oligodendrocytes with SCs. While there are many striking
similarities between the two myelinating cells, their separate
evolutionary developments have also yielded functional
nuances. Of particular concern is the potential increase in
volume and metabolic demand, since SCs, unlike oligoden-
drocytes can only form one myelin sheath around an axon
segment. Therefore, greater numbers of SCs may be required
to replace lost oligodendrocytes, since each cell can only
ensheath a single axon. However, whether sufficient numbers
of SCs can be generated by the exogenous activation of
OPCs to restore information transmission efficiency is presen-
tly unclear. Each individual SC possesses a large, non-axonal
cytoplasmic and nuclear domain. Thus, compared to central
white matter, the peripheral nerve shows lower compac-
tion, and therefore reduced axon density and decreased
information transmission per unit volume. Indeed, SC-
remyelinated CNS axons similarly exhibit characteristic
peripheral nerve features, including thicker myelin, enlarged
extracellular space and deposition of extracellular collagen
[19]. However, ultimately, the true extent of SC remyelination
will likely be limited by the physical andmetabolic constraints
of the CNS. Taken together, SC myelination therapies may
not only represent a novel therapy to circumvent the limita-
tions of transplantation, but also provide new opportunities
to challenge CNS plasticity.
Functional incongruity may also arise due to differences in
axon selection and in myelination patterns. Within the CNS,
all axons greater than 0.4 μm in diameter aremyelinated byoli-
godendrocytes, whereas in the periphery, SCs only myelinate
axons larger than 1 µm in diameter. Although myelinating
small-diameter axons is typically avoided because it is more
energetically costly [109], within regions such as the optic
nerve, this expense can be justified to facilitate the rapid trans-
duction and synchronization of signals needed to perceive and
respond to the external environment. Therefore, it will be of
functional importance to evaluate whether small-diameter
axons, if demyelinated, could be impervious to SC remyelina-
tion therapy. Furthermore, oligodendrocytes intriguingly
myelinate axonal segments discontinuously within the
superficial layers of the cortex, resulting in a patchy mye-
lination pattern [110]. By contrast, peripheral axons are
considered uniformly ensheathed along its entire length,
although intermittent myelination has been observed in
Xenopus [111]. If SCs are unable to faithfully recapitulate
these myelination patterns, adaptions to such differences
could affect the precision and timing of action potentials
within the entire neuronal network, leading to incomplete
functional restoration, or even behavioural deficits. Whether
the CNS, eventually learns to adapt to the consequences of
peripheral-like reorganization requires further investigation.

Beyond electrophysiological function, whether SCs and
oligodendrocytes are functionally interchangeable will be of
utmost importance for the long-term survival of central
axons. Although still poorly understood, observations from
leukodystrophies have pointed towards axonal support as a
critical function of myelin. In the CNS of terrestrial ver-
tebrates, myelin proteolipid proteins (PLPs) represent the
dominant protein family [112], whereas the PNS, as well as
the CNS of aquatic vertebrates, predominantly express
myelin protein zero (P0). Structurally, PLPs differ from the
older DM20 isoform by the addition of 35 amino acids encod-
ing a second intracellular loop [113,114]. This novel mutation
is thought to increase compaction of PLP myelin, which
allowed PLP to better adapt to the spatial constraints of the
CNS. Animals that were engineered to express P0, instead
of PLP in CNS myelin showed increased myelin degener-
ation, decreased motor function and shortened lifespan
[115]. Thus, while P0 can substitute for PLP in the short
run, CNS axons are likely to have evolved distinct metabolic
requirements, that CNS myelin-associated proteins, including
PLP are uniquely positioned to provide. Myelin that contained
both PLP and P0, remainedmostly indistinguishable from that
of CNS myelin, raising the possibility that PNS myelin pro-
teins can conform to CNS constraints when given sufficient
context. Presently, few studies have been able to assess the
long-term consequences of widespread CNS SC remyelina-
tion, because the number of SC remyelinated axons are
typically low compared to the oligodendrocyte remyelinated
majority. Thus, functional changes observed after SC remyeli-
nation may be confounded by compensatory mechanisms of
oligodendrocytes [108]. However, it will be important to
assess these potential consequences, because functional nuan-
ces arising from differences in myelin protein composition
may become difficult to mask when SCs remyelination is
enhanced. Moreover, SCs and oligodendrocytes have different
metabolic needs and strategies [116], which might impact the
ability of SCs in the CNS to provide the appropriate meta-
bolites in a sufficient quantity to CNS axons. Therefore, for
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SCs to be a viable remyelination therapy, it will be important to
ensure that peripheral myelin, even against the backdrop of
central myelin, can provide sufficient trophic support.
 lsocietypublishing.org/journal/rsob
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11. Conclusion
The finding that OPCs are a key source of CNS-SCs opens up
new endogenous targets to achieve regeneration following
demyelinating diseases. Indeed, compelling evidence from
transplantation studies have demonstrated that transplanted
SCs can extensively promote remyelination and functional
restoration in the demyelinated spinal cord. Axons myeli-
nated by SCs may prove less vulnerable to immune attacks
targeted against oligodendrocytes and their myelin sheaths
[117]. Despite these functional benefits, SC therapies have
been greatly hindered by logistical limitations. Instead,
direct activation of the endogenous OPC to SC differentiation
pathways represents new strategies to maximally implement
SC for remyelination therapy. Many studies have contributed
to the current understanding of the major mechanistic and
regulatory elements of OPC to SC differentiation. However,
many questions still remain. What are the molecular mechan-
isms driving the OPC to SC differentiation? What intrinsic or
extrinsic cues can be targeted for the directed differentiation
of OPCs into SCs? What is the functional state and molecular
signatures of CNS-SCs, and how can it be modified to
enhance CNS repair? How similar are CNS and PNS SCs?
Can CNS-derived SCs replace all functions of oligoden-
drocytes in the CNS? Resolution of these questions will
provide important insight into the successful development
of SC-mediated therapies to restore cytoarchitecture and
function to CNS axons after demyelination.
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