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Special oncogenic mutations in the RAS proteins lead to the aberrant activation

of RAS and its downstream signaling pathways. AMG510, the first approval drug

for KRAS, covalently binds to the mutated cysteine 12 of KRASG12C protein and

has shown promising antitumor activity in clinical trials. Recent studies have

reported that the clinically acquired Y96D mutation could severely affect the

effectiveness of AMG510. However, the underlying mechanism of the drug-

resistance remains unclear. To address this, we performed multiple

microsecond molecular dynamics simulations on the KRASG12C
−AMG510 and

KRASG12C/Y96D−AMG510 complexes at the atomic level. The direct interaction

between the residue 96 and AMG510 was impaired owing to the Y96D

mutation. Moreover, the mutation yielded higher flexibility and more coupled

motion of the switch II and a3-helix, which led to the departing motion of the

switch II and a3-helix. The resulting departing motion impaired the interaction

between the switch II and a3-helix and subsequently induced the opening and

loosening of the AMG510 binding pocket, which further disrupted the

interaction between the key residues in the pocket and AMG510 and induced

an increased solvent exposure of AMG510. These findings reveal the resistance

mechanism of AMG510 to KRASG12C/Y96D, which will help to offer guidance for

the development of KRAS targeted drugs to overcome acquired resistance.
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Introduction

The RAS proteins, as a group of small GTPases, play a

critical role in transduction of intracellular signaling pathways

controlling cell proliferation, differentiation and apoptosis (1).

It cycles between the GTP-bound active state and GDP-bound

inactive state, acting as a binary switch. The cycle regulates

downstream signaling pathways such as Raf/MEK/ERK

pathway and PI3K/AKT/mTOR pathway (2). The activation

of RAS relies on guanine nucleotide exchange factors (GEFs)

that catalyze the exchange of GDP by GTP. In contrast, RAS is

inactivated by its intrinsic GTPase activity and can be assisted

by GTPase-activating proteins (GAPs) (3). Specific mutations

of RAS inhibit its inactivation and induces the aberrant

activation of downstream pathways, leading to oncogenesis

(4, 5). Accumulating evidence indicates that oncogenic RAS

mutations participate in approximately 30% of human cancers

and induce over 1 million deaths per year worldwide (6, 7).

There are four closely related RAS isoforms: HRAS, KRAS-4A,

KRAS-4B and NRAS. Among them, KRAS mutations account

for 85% of observed RAS mutations in cancer (8). KRAS

mutations are dominated by single-base missense mutations,

and 98% of which are found at three mutation hotspots: G12,

G13, and Q61 (6, 9). Compared with other isoforms, KRAS is

the only RAS isoform where the position 12 mutations are

predominant (10) . GTPase cyc le i s based on the

conformational transition of RAS. Three functional elements

in the effector lobe (residues 1–87) of Ras, including P-loop

(residues 10–17), switch I (residues 32– 38), and switch II

(residues 59–76), are pivotal for such conformational changes

(11). With GTP bound, the three elements form the closed

conformation of the catalytic site residing in the active state,

while they adopt the open conformation after GTP hydrolysis

residing in the inactive state (12). In the active state, Tyr32 on

the switch I domain is in the “up” conformation and the a2-
helix on the switch II domain is positioned in the “inward”

conformation towards the a3-helix, denoted as “a2-helixin”
(13). In contrast, the inactive state adopts the “Tyr32down” and

“a2-helixin” conformation. To be noted, specific mutations in

the switches can also affect the conformational transition of

RAS (14). For example, D33E in the switch I can stabilize the

open conformation of RAS even with GTP binding (15).

Previously, Ras was considered as ‘‘undruggable” due to its

picomolar affinities towards GDP/GTP in the orthosteric site

and the lack of suitable binding sites along the surface (16–18).

However, many of the newly proposed drug design strategies

including reversed allosteric communication are gradually

turning the ‘‘undruggable” RAS “drugged” (19–27). The most

exciting advance is the advent of KRASG12C inhibitors (28–31).

They bind covalently to the mutated cysteine 12 and lock the

KRAS in the inactive state, thereby inhibit ing the
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hyperactivation of downstream signaling (32–34). AMG510

(Sotorasib), one of these covalent inhibitors, binds irreversibly

with the allosteric binding pocket of KRASG12C, which mainly

consists of switch II and a3-helix, termed as the switch II

pocket (35). AMG510 has shown particularly promising

anticancer activity in clinical trials for KRASG12C mutant

patients and is the first approval drug for KRAS targeted

therapy by FDA (36–39). Drug resistance has always been a

great challenge to the clinical use of drugs (40, 41) and the

clinical Y96D acquired resistance mutation to AMG510 has

been observed (42, 43). Cell viability assays showed that

relative to the KRASG12C expressing controls, cells expressing

the double KRASG12C/Y96D mutation showed marked resistance

to AMG510, with an IC50 value shifting >100-fold. The crystal

structure of AMG510−KRASG12C complex implies that the

Y96D mutation disrupts the water-mediated hydrogen bond

between Y96 and the carboxyl group of AMG510.

However, the water-mediated hydrogen bond between Y96

and the carboxyl group of AMG510 in the crystal structure

seems relatively weak, hard to explain the significant divergence

of IC50 induced by the mutation. Furthermore, crystal structures

are a spatiotemporal average of the protein structure with

crystal-packing contacts, which may not provide enough

information on the conformational transition of proteins.

Molecular dynamics (MD) simulations that explore protein

conformational dynamics at the atomic level can be helpful to

investigate the resistant mechanism of Y96D mutation. MD

simulations have been applied to investigate the conformational

dynamics of RAS proteins (44, 45). In recent work, we have used

MD simulations to directly uncover biomolecular mechanisms

and protein–ligand/protein recognitions (46–54). In addition,

although previous studies have demonstrated that Y96 plays a

critical role in AMG510 binding (55), no studies have shown

how Y96D mutation affects the conformation of the

KRAS protein.

Here, we performed an extensive large-scale MD

simulations of the KRASG12C−AMG510 and KRASG12C/Y96D

−AMG510 complexes to investigate the underlying mechanism

of the additional Y96D mutation-based resistance to AMG510.

The simulation revealed that the Y96D mutation impaired the

van der Waals interaction between residue 96 and AMG510

and yielded higher flexibility and more coupled motion of the

switch II and a3-helix, which led to the departing movement of

the switch II and a3-helix. The departing motion induced the

opening and loosening of the binding pocket, disrupting

the interactions of KRAS−AMG510. Moreover, the opening

of the binding pocket caused an increased solvent exposure of

AMG510, which may yield the instability of AMG510.

Collectively, this study revealed the underlying mechanism of

the Y96D resistance mutation, which will help to offer guidance

for the design of KRAS targeted drugs.
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Materials and methods

System preparation

Two systems were performed, including KRASG12C−AMG510

(denoted as “G12C”) and KRASG12C/Y96D−AMG510 (denoted as

“G12C/Y96D”). The crystal structure of KRASG12C−AMG510

complex (PDB ID: 6OIM) (43) was selected as the initial

structure. The missing residues of the KRAS protein were added

using the MODELLER program. The Y96D mutation was

conducted using the Discovery Studio 2019.

MD simulations

The force field parameter of AMG510 was generated using

the antechamber program of Amber. The systems were prepared

with the LEaP program using ff14SB force field to describe the

AMG510−protein complexes (56). The prepared complex was

solvated to a truncated octahedron transferable intermolecular

potential three point (TIP3P) water box (57) and Na+ and Cl-

were added to neutralize and simulate normal saline

environment. Two rounds of minimization were performed.

The first round contained 5000 steps maximum minimization

cycles with the complex fixed and the second round contained

10,000 steps maximum minimization cycles with no constraints.

Subsequently, systems were heated from 0 to 300 K within 300

ps, followed by 700 ps equilibration running in a canonical

ensemble (NVT). After all these preparations, 3 replicas of

independent 1 ms simulations were performed with random

velocities under isothermal isobaric (NPT) conditions for each

system. For the long-range electrostatic interactions, the particle

mesh Ewald method (58) was used. Covalent bonds involving

hydrogens were restrained using the SHAKE method (59).
Principal component analysis (PCA)

Principal component analysis (PCA), widely used in

describing the kinetic process during simulation, is a technique

that can transform a series of potentially coordinated

observations into orthogonal vectors. Among these vectors, the

first principal component (PC1) provides the dominant motions

throughout simulation (60). PCs were generated based on

coordinate covariance matrix of Ca atoms in the KRAS

protein using every frame in all two systems and these

collected frames were all projected on the PC1 and PC2.
Dynamic cross-correlation matrix
(DCCM) analysis

The DCCM of all protein Ca atoms was calculated to reflect

the inter-residue correlations. The cross-correlation coefficient
Frontiers in Oncology 03
Ci,j was calculated by:

Ci,j =
c i, jð Þffiffiffiffiffiffiffiffiffiffiffi

c i, ið Þp
 

ffiffiffiffiffiffiffiffiffiffiffi
c j, jð Þp ½1�

where i and j represent the ith and jth Ca atoms, respectively.
Generalized correlation analysis

Generalized correlation (GCi,j) analysis was applied to

calculate the correlated motion. Comparing with the

traditional DCCM analysis, GCi,j analysis has the advantage of

capturing the non-liner correlations by calculating the

correlations independently on the relative orientation of the

atomic fluctuations. To reflect how much information of one

atom’s position is provided by another, Mutual Information

(MI) was introduced and calculated by:

MI xi, xj
� �

=
Z Z

p xi, xj
� �

ln
p xi, xj
� �

p xið Þp xj
� � dxidxj ½2�

The right side of equation can be related to the more widely

known measure of entropy which calculated by:

H x½ � =
Z

p xð Þlnp xð Þdx ½3�

To calculate based on the correlation between pairs of atoms:

MI xi, xj
� �

= H xi½ � +H xj
� �

−H xi, xj
� � ½4�

[xi], was further related to a more intuitive Pearson-like

correlation coefficient GCi,j which can be calculated by:

GCij  = 1 − e−
2MI xi ,xj½ �

d

( )−1
2

½5�

where d represents the dimensionality of xi and xj, which is 3

in our study. GCi,j calculation was done by g_correlation tool in

Gromacs 3.3 (61) with the coordinates of Ca atoms in each

residue as input.
Dynamic network analysis

Dynamic network analysis was performed to reflect the

motion connection using the Network View plugin in VMD

(62). In our analysis, the Ca atoms of KRAS were selected as

nodes to represent their corresponding residues. Edges were

drawn between nodes whose distances are within a cutoff of 4.5

Å for at least 75% of simulation time. The edge between nodes

was calculated using:

di,j = −log Ci,j

�� ��� � ½6�
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where i and j represent the two nodes. Additionally,

community, which means a combination of residues whose

connections are stronger was calculated using the Girvan-

Newman algorithm (63) through the communities program

of VMD.
Markov state model (MSM)

Markov state model (MSM) is a mathematical framework to

describe the dynamics of time-series data (64). In this analysis,

MSM was used to differentiate conformational states throughout

simulation and help to extract representative structures from

each cluster. All MSM calculations were performed using the

PyEMMA software. MSM transition matrix was first calculated

based on the probability of transition between different states.

Implied timescale (ITS) test was performed to check the

Markovian property and choose the proper lag time(t). ITS as

a function of t can be calculated by:

ti = −
t

ln li tð Þj j ½7�

where li means the eigenvalue gotten from MSM transition

matrix of the ith process. In implied timescale plot, each curve

represents an average transition time in one process. When the

curve becomes approximately constant, the corresponding lag

time is appropriate for following analysis and the system is with

Markovian property. In this study, the lag time was set as 1 ns.

Every frame of each system was projected on the free energy

plot according to the characteristic vectors (CV). Then, K-means-

algorithm was applied to cluster the two-dimensional

conformations into 100 microstates in each system. Based on

these 100 microstates, PCCA+ algorithm was performed to

divide the microstates into different clusters. With the divided

clusters, the Chapman–Kolmogorov test was computed to testify

the property ofMSM. The frames near the K-centers (microstates)

belonging to the certain state in energy landscape were extracted to

constitute a new trajectory to represent the state. The structure that

has the smallest root-mean-square deviation (RMSD) with frames

in the representative trajectories was chosen as the representative

structure. For only the states in the energy basin of free-energy

landscape were analyzed, the first cluster in the G12C system was

not analyzed and the two clusters differentiated by MSM in the

G12C/Y96D system were combined.
Results

Y96D mutation affects conformational
dynamics of KRAS

To investigate the effect of mutation on overall

conformational dynamics of KRAS protein, we calculated the
Frontiers in Oncology 04
Ca atoms root-mean-square deviation (RMSD) of the KRAS

protein relative to the initial structure. The results indicated that

both systems reached equilibrium after 100 ns of simulation

(Supplementary Figure 1A). The RMSD values were 1.40 ±

0.16Å for the G12C system and 1.39 ± 0.10Å for the G12C/

Y96D system. The similarity of the RMSD values between the

two systems indicated the minor effect of the Y96D mutation on

overall protein conformational dynamics.

To further uncover the influence of mutation on local

conformational dynamics, the root-mean square fluctuation

(RMSF) of each residue (represented by the Ca atom) was

calculated (Supplementary Figure 1B). To better show the

differences, we subtracted the RMSF value of the G12C/Y96D

system from its counterpart in the G12C system (Figure 1A) and

projected the values on the protein structure. Notably, the RMSF

of the switch II and a3-helix in the G12C/Y96D system was

higher than that in the G12C system (Figure 1B), suggesting that

the Y96D mutation induced higher plasticity of the switch II and

a3-helix. Because AMG510 binds to the switch II pocket that is

mainly composed of the switch II and a3-helix, the increased

plasticity of the switch II and a3-helix can be ascribed to their

impaired interaction with AMG510 induced by the mutation.

Additionally, the RMSF value of the switch I in the G12C/Y96D

system was slightly lower than that in the G12C system,

indicating that the Y96D mutation may stabilize the switch I

region of KRAS.
Y96D mutation induces conformational
transition of KRAS

To characterize the global conformational transition

between the two systems, principal component analysis (PCA)

was performed. We projected all MD snapshots from simulation

of each system on the two-dimensional plot according to the first

two principal components (PC1 and PC2) (Figure 2A) and the

conformational motion along the PC1 was shown on the KRAS

protein (Figure 2B). A significant increase of PC1 value was

observed in the G12C/Y96D system compared with the G12C

system. Along the PC1, the switch I moved towards the P-loop,

and the switch II and a3-helix underwent the departing motion.

Because the switch II and a3-helix constitute the most of the

AMG510 binding pocket, this departing motion represented the

opening of the binding pocket, reflecting the transition from the

“closed” to “opening” motions.

To further probe the conformational transition induced by

the Y96D mutation, we projected all MD trajectories onto the

two-dimensional surface according to the distances from the

M67 Ca atom to the V103 Ca atom and from the A11 Ca atom

to the P34 Ca atom (Figures 2C, D). DM67-V103 represents the

distance between the switch II and a3-helix while dA11-P34
represents the distance between the switch I and P-loop

(Supplementary Figure 2). In agreement with the motion
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https://doi.org/10.3389/fonc.2022.915512
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhuang et al. 10.3389/fonc.2022.915512
along the PC1, the G12C/Y96D system had larger dM67-V103 and

smaller dA11-P34 distances, indicating that the Y96D mutation

induced the departure of the switch II and a3-helix and the

approaching of the switch I to the P-loop. The range of dM67-V103

parameter was much broader in the G12C/Y96D system than

that in the G12 system, which was in accordance with the

increased plasticity of the switch II and a3-helix induced by

the Y96D mutation shown in RMSF analysis. Similarly, the

limited range of the dA11-P34 parameter in the G12C/Y96D

system compared to the G12 system was consistent with the

stabilization of the switch I induced by the Y96D mutation

shown in RMSF analysis.

Markov state model (MSM) was used to differentiate the

conformational states in the free-energy landscape, and only the

states in the energy basin of free-energy landscape were analyzed.

To testify the Markovian property, the implied timescale test and

the Chapman−Kolmogorov test were applied (Supplementary

Figure 3). The proportion, the representative trajectory, and the

structure of each state were calculated based on the MSM. In the

G12C system, with the increase of the dM67-V103 parameter, two

states were observed: C1 and C2 (Figure 2C). The C2 state was

the dominant state. In the G12C/Y96D system, only one state

(C3) was observed (Figure 2D). In the G12C/Y96D system, the

dM67-V103 parameter of the centroid of the C3 state in the free-

energy landscape was larger than that of the C2 and C3 states in

the G12C system. This indicated that the Y96D mutation could

induce the departure of the switch II and a3-helix. To further

illustrate the conformational transition, we superimposed the

representative structures of the dominant state in the G12C

system (C2) and the dominant state in the G12C/Y96D system

(C3) (Figure 3). The departure of the switch II and a3-helix was
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observed and the motion was particularly obvious in the loop

region of the switch II, the key region that interacts with

AMG510. The surface representations of the representative

structures showed that the direct interaction between the

switch II and a3-helix was disrupted, which led to the opening

of the binding pocket (Figures 4A, B).

To further investigate the transition between the switch II

and a3-helix, we calculated the hydrogen bonds formed between

these two regions in the C1, C2 and C3 states (Figure 4C). The

number of hydrogen bonds between the switch II and a3-helix
decreased from the C1 to the C3, indicating that the departing

motion of the switch II and a3-helix would impair the switch II

and a3-helix interaction from the C1 to C3. The decreased

hydrogen bonds occupancy between the switch II and a3-helix
in the G12C/Y96D mutation further proved that the G12C/

Y96D mutation could induce the departing motion of the switch

II and a3-helix, which impaired the interaction between these

two regions and led to the opening of the binding pocket

(Supplementary Table 1). Taken together, the departure of the

switch II and a3-helix induced by the Y96D mutation disrupted

the interaction between these two regions and led to the

loosening and opening of the binding pocket.
Y96D mutation induces the increased
solvent exposure of AMG510

The solvent accessible surface area (SASA) of AMG510 was

calculated to quantify the solvent exposure of AMG510. The

SASA value in the G12C/Y96D system was significantly higher

than that in the G12C system (Figure 4D), indicating a more
BA

FIGURE 1

Conformational dynamics of KRAS protein. (A) The averaged RMSF values of each residue are plotted on the 3D structures of the KRAS protein
in the G12C system. (B) The substation of RMSF values of the G12C/Y96D system from its counterpart in the G12C system. Positive regions (red)
stand for higher RMSF values, whereas negative regions (blue) represent lower RMSF values.
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loosened wrapping of binding pocket. Because SASA was limited

to reflect the real solvent exposure, we calculated the number of

waters in the solvent shell that wrapped AMG510 and the shell

radius was set as 5.0 Å. With the Y96D mutation, the number of

waters in the solvent shell increased (Figure 4E), suggesting an

increased solvent exposure of AMG510 induced by the Y96D

mutation. The extended range of the number of waters in the

solvent shell in the G12C/Y96D system implied the instability of

AMG510 binding pocket. The increased solvent exposure can be

ascribed to the observation that the Y96D mutation promoted

the departure of the switch II and a3-helix and induced the

loosening and opening of binding pocket. The closed binding

pocket could protect AMG510 from water solvent attack in the

G12C system, while such protection was disturbed in the G12C/

Y96D system, which led to the decreased binding affinity.
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Y96D mutation impairs the interaction
between KRAS and AMG510

Although AMG510 covalently binds to Cys12 of KRAS,

other residues also play a significant role in the stable binding

(65). One stable hydrogen bond was observed between Lys16

and the carbonyl oxygen of AMG510 whose occupancy was

83.76% in the G12C system while it was 7.10% in the G12C/

Y96D system, indicating that the Y96D mutation disrupted the

hydrogen bond between Lys16 and AMG510. The

superimposition of representative structures of the two

systems validated the disruption of the hydrogen bond in the

G12C/Y96D system (Figure 3). Crystal structure shows water-

bridged hydrogen bonds between Tyr96 and AMG510. The

water-bridged hydrogen bonds were calculated to investigate
B

C D

A

FIGURE 2

Global conformational transition of the KRAS protein. (A) Projections of the first and second principal components (PC1 vs PC2) from MD
simulations of the G12C system (orange) and the G12C/Y96D system (green). (B) The motion along the PC1. Conformational landscapes
generated using the dM67-V103 (distance from the M67 Ca atom to the V103 Ca atom) and dA11-P34 (distance from the A11 Ca atom to the P34
Ca atom) order parameters in the G12C system (C) and the G12C/Y96D system (D).
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FIGURE 3

Superposition of the representative structures of the G12C system (orange) and the G12C/Y96D system (blue).
B C

D E F

A

FIGURE 4

The Y96D mutation induced the opening and loosening of the binding pocket. (A) The surface representation of the representative structure of
the G12C system. (B) The surface representation of the representative structure of the G12C/Y96D system. (C) The number of hydrogen bonds
formed between the switch II and a3-helix in each state. (D) SASA of AMG510 in the G12C system (black) and the G12C/Y96D system (red).
(E) Number of waters in the 5.4 Å watershell of AMG510 in the G12C system (black) and the G12C/Y96D system (red). (F) The distance between
the CB atom of residue 96 and the centroid of azaquinozoline of AMG510 in the G12C system (black) and the G12C/Y96D system (red).
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the effect of the Y96D mutation on water bridges

(Supplementary Table 2). The water-bridged hydrogen bond

between AMG510 and Gln99 was the most stable water-bridged

interaction between AMG510 and protein whose occupancy was

28.43% in the G12C system and 23.60% in the G12C/Y96D

system. Interestingly, two additional water-bridged hydrogen

bonds were strengthened in the Y96D mutation. One was

formed with the mutated Asp96 and the other was formed

with Lys16 which formed stable hydrogen bonds with AMG510

in the G12C system. Moreover, no conserved water bridges were

observed for the highest occupancy of waters, implying that

these water-bridged hydrogen bonds were delicate and may not

the key interaction in keeping AMG510 binding.

To further investigate the interaction between AMG510 and

KRAS, we calculated the linear interaction energy between key

residues in the binding pocket and AMG510. The residues

whose linear interaction energy having obvious variation

between two systems were shown in Table 1 and the

electrostatic energy contribution and van der Waals energy

contribution were shown, respectively. The van der Waals

energy contribution from the residue 96 significantly decreased

in the G12C/Y96D mutant, indicating that the Y96D mutation

disrupted the van der Waals interaction between residue 96 and

AMG510. By superimposing the representative structures of the

G12C and the G12C/Y96D systems, we observed that the

phenylol group of Tyr96 pointed directly to AMG510 while

the mutated Asp96 was distant from AMG510 to form direct

interaction (Figure 3). The distance between the CB atom of

residue 96 and the centroid of azaquinozoline of AMG510 was

calculated to reflect the interaction between residue 96 and

AMG510. The distance range was more limited in the G12C

system than in the G12C/Y96D system, indicating a more stable

interaction between residue 96 and AMG510 in the G12C

system (Figure 4F). The linear interaction energy of other key

residues also decreased to varied degrees in the G12C/Y96D

system and these key residues are concentrated at the loop of the

switch II and a3-helix, consistent with the conformational

transition induced by the Y96D mutation that the departure of

the switch II and a3-helix from AMG510.
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Y96D mutation disturbs
the correlated motions and
community networks

The above analysis indicated the coordinated motions of the

switch I, switch II, and a3-helix. To further investigate the

correlated motion, the generalized correlation analysis and

dynamic cross-correlation matrix (DCCM) analysis were

applied. The absolute value of coefficients is proportional to

the correlation. The generalized correlation indicated an

increased correlated motion between the switch II and a3-
helix in the G12C/Y96D system (Figures 5A, B). In the

dynamic cross-correlation matrix, the negative coefficients

represent the motions towards the opposite direction and the

positive coefficients represent the motions towards the same

direction. Consistent with the generalized correlation, the

opposite motion between the switch II and a3-helix (A

region) was strengthened due to the Y96D mutation

(Figures 5C, D), suggesting that the mutation yielded more

coupled opposite motion of the switch II and a3-helix which

led to their departing movement. Moreover, the Y96D mutation

weakened the opposite motion between the switch I and switch

II (B region) (Figures 5C, D), which was in line with the switch I

motion observed in PCA analysis.

Community network analysis was performed to uncover the

correlation network. Each community was showed as colored

circles whose area is proportional to the number of residues it

contains (Figures 6A, B). The intensity of inter-community

connection was represented by the width of sticks connecting

circles. In general, the Y96D mutation induced an obvious

variation in community composition and connection. Switch

II was mainly composed of Community F whose connection

with Community D vanished in the G12C/Y96D system. For the

cysteine 12 that covalently binds to AMG510 belonging to

Community D, the vanished connection between Community

D and Community F may suggest the damaged correlation

between AMG510 and switch II. The optimal pathways that

link Cys12 and Met67 (represents switch II) were calculated to

prove the hypothesis. The shortest distance in the node map
TABLE 1 Linear interaction energy (kcal/mol) between key residues and AMG510 in the two systems.

Residue G12C G12C/Y96D

Electrostatic energy
(kcal/mol)

Van der Waals energy
(kcal/mol)

Electrostatic energy
(kcal/mol)

Van der Waals energy
(kcal/mol)

Tyr96/Asp96 -1.53 (0.01) -8.38 (0.02) -3.41 (0.06) -2.84 (0.03)

Thr58 -2.86 (0.03) -2.86 (0.01) -0.40 (0.01) -1.60 (0.02)

Gln61 -0.13 (0.03) -3.89 (0.03) -0.20 (0.03) -3.13 (0.04)

Glu63 -1.92 (0.02) -2.97 (0.03) -0.92 (0.03) -1.89 (0.03)

His95 0.37 (0.01) -2.24 (0.01) 0.44 (0.01) -1.57 (0.02)

Gln99 -2.06 (0.01) -5.49 (0.02) -0.55 (0.02) -5.57 (0.03)
All numbers in parentheses represent standard deviations.
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between Cys12 and Met67 in the G12C system is 244 Å, much

shorter than that in the G12C/Y96D system (457 Å).

Collectively, the community connection and the path length

both reflected the impaired interaction between AMG510 and

switch II. The connection between Community F (composed

switch II) and Community G (composed a3-helix) also vanished
in the G12C/Y96D system compared with the G12C system.

This seemed to be in contradiction with the previous observation

that the Y96D mutation yielded more coupled motion of the

switch II and a3-helix. However, it should be noted that the

Y96D mutation altered the composition of Community C that

newly contained part of switch II (Q70, Y71 and T74) and a3-
helix (V103) compared with the G12C system (Figures 6C, D).

The coexistence of part of the switch II and a3-helix in the same

community revealed a more correlated motion of the switch II

and a3-helix in the G12C/Y96D system, consistent with

previous observation. Overall, the Y96D mutation impaired
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the connection between the switch II and Cys12 that

covalently binds to AMG510, and yielded more coupled

motion of the switch II and a3-helix, which led to the

departing movement of the switch II and a3-helix.
Discussion

RAS proteins, as binary switches, control multiple

intracellular signaling pathways. Specific oncogenic mutations

disrupt the inactivation of RAS proteins and lead to the

hyperactivation of downstream signaling pathways. Among

them, mutations of KRAS account for 85% of observed RAS

mutations in cancer and the mutation of residue 12 is one of the

dominant mutations in KRAS (8). AMG510, the first drug for

KRAS approved by FDA, covalently binds to Cys12 in the

KRASG12C protein and has shown promising anti-cancer
B

C D

A

FIGURE 5

Inter-residue correlation of KRAS. Generallized residue correlation of the G12C system (A) and the G12C/Y96D system (B). DCCM plot of the
G12C system (C) and the G12C/Y96D system (D). The significant correlation differences are highlighted with a rectangle in each panel. Regoin A
represents the correlation between switch II and a3-helix while regoin B represents the correlation between switch I and switch II.
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activity in clinical trials. The response that may induce drug

resistance to these KRASG12C inhibitors can be divided into

following categories, (i) mutations in KRAS, e.g., at G13, R68,

H95, Y96, or multiple copies of KRASG12C; (ii) mutations in

genes other than KRAS; (iii) Transitioning to other cancers, e.g.,

transitioning from adenocarcinomas to squamous cell

carcinomas (66). Among them, the resistance caused by the

acquired Y96D mutation severely affects the effectiveness of

AMG510. Here, using MD simulations, we investigated the

resistance mechanism to AMG510, thereby providing guidance

for optimization and design of targeted KRAS drugs.

The Y96D mutation disrupted the direct interaction between

residue 96 and AMG510. By calculating the linear interaction

energy, we found that the Y96D mutation disrupted the van der

Waals interaction between residue 96 and AMG510. In contrast,

the electrostatic interaction between residue 96 and AMG510

even slightly strengthened with the Y96D mutation. The
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paradoxical change can be ascribed to the substitution from

the phenolic hydroxyl (Tyr) to the carboxyl group with negative

charge (Asp). Thus, rebuilding the interaction between Asp96

and AMG510 by forming new electrostatic interaction might be

an effective strategy to overcome the resistance. By

superimposing the representative structures in the G12C

system and the G12C/Y96D system, we found that the

isopropyl group of AMG510 in the G12C system and the

G12C/Y96D system were close to the carboxyl group of the

mutated Asp96 (Supplementary Figure 4), just right for

hydrogen bonding, implying that the substitution from the

isopropyl group to a polar group such as amino might be

viable to form additional electrostatic interaction with Asp96.

The distance calculation between residue 96 and AMG510 also

indicated a more stable interaction between them in the G12C

system compared with the G12C/Y96D system. By forming the

new electrostatic interaction mentioned above, the instability of
B

C D

A

FIGURE 6

Community network of the KRAS protein. The community network in the G12C system (A) and the G12C/Y96D system (B). Areas of the circles
represent the numbers of residues in corresponding communities, and the widths of sticks connecting communities represent the
intercommunity connections. Community composition in the G12C system (C) and the G12C/Y96D system (D). The color of each community
corresponds to (A, B).
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AMG510 induced by the Y96D mutation could also

be recovered.

The previously reported crystal structure of the KRASG12C

−AMG510 complex showed a bridged hydrogen bondmediated by

two waters between Y96 and the carboxyl group of AMG 510.

Tanaka et al. speculated that the Y96D mutation could impair the

water-bridged hydrogen bond (43). However, the water-mediated

hydrogen bond between residue 96 and AMG510 even

strengthened in the simulation with the Y96D mutation. This can

be ascribed to the disturbed interaction and the increased capacity

to form hydrogen bond with the mutation from the phenolic

hydroxyl (Tyr) to the carboxyl group with negative charge (Asp).

Moreover, no conservedwater bridgeswere observed for thewaters

participated in hydrogen bond bridge varied throughout

simulation, indicating that these water-bridged hydrogen bonds

were delicate and not the key interaction in keeping AMG510

binding. Such instability of water-bridged hydrogen bonds may be

correlated with the mobility of solvation waters compared with

crystal waters.

TheY96Dmutation also affected the conformational dynamics

and correlatedmotion of theKRAS protein. It is not surprising that

the Y96D mutation changes the a3-helix’s dynamics because the

Y96Dmutation is located at thea3-helix. Inaddition,we found that
the mutation affected the global dynamics of KRAS protein rather

than only the a3-helix. The Y96D mutation yielded increased

plasticity and more coupled motion of the switch II and a3-helix,
which led to the departingmovement of the switch II anda3-helix.
The departingmotion disrupted the interaction between the switch

II and a3-helix and induced the opening and loosening of binding
pocket. The “closed” to “opening” motion induced by the Y96D

mutation further disrupted the interactionbetween thekey residues

in binding pocket andAMG510.Moreover, the opening of binding

pocket caused an increased solvent exposure of AMG510, which

may intensify the instability of AMG510. The communication

between the switch II and a3-helix was also observed in other

studies.These studies focused on the conformational changes in the

switch II and a3-helix induced by mutations, which could impair

the “activation” to “inactivation” conformational transition in

GTPase circle of KRAS (67–69). Tanaka et al. found that

KRASG12C/Y96D appeared to have higher basal activation than

KRASG12C for a higher proportion of the active GTP-bound form

of KRAS. From our research and other studies on the

communication between the switch II and a3-helix, we can

speculate that the increased activation of KRASG12C/Y96D was

correlated with the coupled motion of the switch II and a3-helix.
This is a possible direction in future research.

Research on the resistance toG12Ccovalent inhibitors identified

many other acquired mutations in KRAS, which greatly affect the

efficacy of KRASG12C targeted drugs, including Y96C, R68S and

H95D/Q/R (70). Among them, H95D/Q/R mediated resistance to

adagrasib (MRTX849) rather than sotorasib (AMG510) although

His95 is part of the binding pocket of AMG510 (42). The linear

interaction energy calculation in our study revealed that the
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contribution of His95 in AMG510 binding was very limited

(Table 1), much less than key residues such as Tyr96.

Previously, Ras was considered as ‘‘undruggable” due to its

picomolar affinities towards GDP/GTP in the orthosteric site

and the lack of suitable binding pockets along the surface. Here,

using fpocket software (71), we detected two new potential

druggable pockets in the representative structures, which did

not exist in the crystal structure. The two pockets can be detected

in both the G12C system and the G12C/Y96D system with high

druggability scores. The composition and location of these two

pockets were shown in Supplementary Figure 5. This inspires

future research aimed at the design of drugs targeting KRAS

bound to these two new pockets.

Collectively, these results provided novel atomic-level

insights to the resistance mechanism of the Y96D mutation to

KRASG12C targeted drugs. First, they revealed the direct

impairment of the Y96D mutation on the interaction between

residue96 and AMG510. Second, they indicated that the Y96D

mutation could promote the flexibility and the coupled motion

of the switch II and a3-helix, which led to the loosening and

opening of binding pocket. Finally, the coordinated motion of

the switch II and a3-helix induced by the Y96D mutation

further disrupted the interaction between key residues in the

binding pocket and caused the increased solvent exposure of

AMG510. These results elucidated the resistance mechanism on

atomic level, which will help to offer guidance for the design of

the next-generation of KRAS targeted drugs.
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