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Abstract

Infections with Batrachochytrium dendrobatidis (B. dendrobatidis), the causal agent of chytridiomycosis, have been shown to
play an important role in the decline of amphibians worldwide. Spread of the fungus is poorly understood. Bird movement
might possibly contribute to the spread of B. dendrobatidis in the environment. Therefore, 397 wild geese in Belgium were
screened for presence of B. dendrobatidis on their toes using real-time quantitative PCR (qPCR). In addition, chemotaxis
towards, adhesion, survival after desiccation and proliferation of B. dendrobatidis on keratinous toe scales from waterfowl
were examined in vitro. qPCR revealed that 76 geese (15%) were positive for B. dendrobatidis. Results of the in vitro tests
showed that B. dendrobatidis is attracted to the keratinous toes of aquatic birds on which they can adhere and even
proliferate. However, desiccation is poorly tolerated. This suggests waterfowl are potential environmental reservoirs for B.
dendrobatidis.
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Introduction

Last decades significant declines in amphibians have been

observed which makes these species currently the most threatened

vertebrate class on the planet [1]. Several of these declines have

been linked to the presence of a pathogenic chytrid fungus B.

dendrobatidis, the causal agent of chytridiomycosis [2,3]. Many

members of the chytrid family are parasitic, infecting plants, algae,

protists and invertebrates [4]. B. dendrobatidis is the only known

member of the chytrid family that infects vertebrate hosts. The

fungus colonizes the keratinized layers of the amphibian epidermis

or the keratinized anuran larval mouthparts [5,6]. In clinical

infections this is associated with hyperplasia and hyperkeratosis

resulting in disruption of the skin’s osmoregulatory function,

deshydratation, electrolyte imbalance and mortality [6,7]. Despite

previous attemps to identify potential environmental reservoirs or

vector hosts, the spread of this pathogen or mechanisms that allow

its persistence in the environment are currently poorly understood.

Many members of the chytrid family have, beside a parasitic

lifestage, the ability to develop and reproduce saprophytically [4].

Also for B. dendrobatidis evidence for such saprophytic lifestages,

utilizing non-amphibian organic materials as nutrients, are

suggested. Under laboratory conditions, for instance, B. dendroba-

tidis can be cultured on tryptone agar without any keratin [5]. In

addition, the fungus can survive up to 3 months in moist sterile

river sand and grows on sterile feathers, dead algae and arthropod

exoskeletons [8,9]. Such reservoirs might allow persistence of the

fungus outside its natural host. Unfortunately, outside the lab

environmental reservoirs for B. dendrobatidis have not yet been

demonstrated [10]. In addition, the spread of the disease could be

facilitated by vector hosts transmitting the infection to susceptible

species. Good evidence exist that multiple asymptomatically

infected amphibian species are implicated in translocation of the

fungus to new habitats and in naı̈ve populations [11,12,13]. In

addition, a recent study describes experimental B. dendrobatidis

infections in nematodes (Caenorhabditis elegans) [14]. This might

indicate the possibility of alternative host species.

Since waterfowl and amphibian assemblages often co-occur,

their role as potential reservoir was assessed in this study. For this,

a large population of wild geese in Belgium was screened for the

presence of B. dendrobatidis on their toes using real-time quantitative

PCR (qPCR). To study the interaction of B. dendrobatidis with the

avian foot into more detail, chemotaxis towards and adhesion of B.

dendrobatidis on keratinous toe tissue were examined. Also

proliferation and viability after desiccation of the fungus on avian

toe scales were tested.

Results

B. dendrobatidis is highly prevalent on geese toes
Results of the qPCR assays showed that 15% (76/497) of the

geese tested positive for presence of B. dendrobatidis. All 6 wildlife

areas examined were affected and both Branta canadensis (68/456)

and Anser anser domesticus (8/41) were carriers of B. dendrobatidis

(Table 1.). The number of genomic equivalents (GE) detected on

the swabs varied between 0.1 GE and 469 GE. Overall, mean

numbers were 19.2 GE/swab.
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B. dendrobatidis is attracted to keratinous scales of goose
toes

Positive migration of B. dendrobatidis towards toe scales of a goose

was observed. After 45 minutes zoospore counts in the squares

adjacent to the toe scale were 11, 25 and 35 (mean count = 24;

standard deviation (SD) = 12). After 90 minutes zoospore counts

were increased to 26, 52 and 68 (mean count = 49; SD = 21). At

the opposite side of the counting chamber zoospores were never

observed. In the three control assays with cellulose acetate filters as

attractant only 0, 1 and 2 zoospores were counted after 45 minutes

(mean count = 1; SD = 1). After 90 minutes zoospore counts were

1, 2 and 2 (mean count = 2; SD = 1). Again, zoospores were not

observed at the opposite side of the counting chamber. After

statistical analysis the p-values related to the t-test for repeated

measures, resulted three times in p,0.01 indicating a significant

difference comparing the means of the two experimental groups at

the 0.05 significance level. This determines that toe scales have a

significant effect as attractant, compared to the cellulose acetate

filter.

B. dendrobatidis adheres on duck and swan toe scales
and proliferates on goose toe scales

B. dendrobatidis zoospores adhered to the surface of swan and

duck toe webbings within 30 minutes of incubation (Figure 1).

During the in vitro growth test on goose toe scales, B. dendrobatidis

zoospores had encysted and adhered to the surfaces after 24 hours.

Motile zoospores were absent. From day 4 on, numerous motile

zoospores were present and a clear colonization of the scale

surfaces with numerous sporangia and post-discharge sporangia

was observed (Figure 2). Motile zoospores were still observed

until the end of the experiment (14 days of incubation). Besides

chytrid sporangia associated with the toe scales, no sporangia were

observed elsewhere in the wells. After 0 days of incubation,

zoospores counts in every well were zero. After 14 days of

incubation, zoospore counts in the three replicates were 880, 1350

and 1350 zoospores/well. The results of the qPCR analysis of the

inoculated scales did not show an increase in GE after 14 days of

incubation. Mean GE numbers were on average 1.996103 GE

(SD 0.46) and 1.686103 GE (SD 0.70) after 0 days and 14 days of

incubation, respectively.

B. dendrobatidis zoospores on toe scales can survive a
desiccation period of 30 minutes

When inoculated onto toe scales, both zoospores and zoospo-

rangia proved viable after a desiccation period of 0 minutes

(controls). Growth of B. dendrobatidis was observed in every well

when distilled water was added after the desiccation period had

finished. Also after 30 minutes of desiccation, the zoospores were

still viable in all three replicates. From the three-day-old

zoosporangia 2 positive cultures were obtained. From the five-

day-old zoosporangia only 1 culture was positive. B. dendrobatidis

zoospores and zoosporangia were not able to survive a desiccation

period of 60 minutes. Results of the desiccation tests are given in

table 2.

Discussion

In this study, wild geese were screened for the presence of B.

dendrobatidis on their toes using qPCR and the interaction of the

fungus with the avian foot was studied in vitro. The results of the

qPCR screening prove that chytrid DNA is present on geese toes.

Previously, it has been hypothesized that birds might play a role in

the dissemination of B. dendrobatidis in the environment [10], but

the presence of this fungus on birds had not yet been

demonstrated. Unfortunately, qPCR only detects pathogen

DNA. The results of the in vitro tests, however, demonstrate that

B. dendrobatidis is actively attracted to, adheres and proliferates on

Table 1. Prevalence of B. dendrobatidis on geese toes.

Location Positive geese/sampled geese Mean GE/positive sample (SD) [range]

Branta canadensis Anser anser domesticus

Oudenaarde 3/32 1/17 27.2 (51.8) [0.3–104.9]

Wachtebeke 16/203 0/1 1.1 (1.28) [0.1–5.3]

Berlare 13/34 7/23 11.0 (25.51) [0.2–113.1]

Drongen 31/51 - 35.6 (86.2) [468.6–0.3]

De Pinte 2/25 - 1.2 (0.17) [1.0–1.3]

Destelbergen 3/11 - 3.60 (3.46) [0.10–7.02]

A total of 397 wild geese, originating from 6 wildlife areas in East Flanders (Belgium) were sampled. For each location, the number of geese positive for B. dendrobatidis
per sampled geese and the mean genomic equivalents (GE) per positive sample are illustrated. The standard deviation and range of the genomic equivalents across the
positive samples are shown between brackets.
doi:10.1371/journal.pone.0035038.t001

Figure 1. Adhering B. dendrobatidis zoospore on swan toe
webbings. Scanning electron microscopic image of a B. dendrobatidis
zoospore adhering on toe webbings of a swan 30 minutes after
incubation.
doi:10.1371/journal.pone.0035038.g001

Presence of B. dendrobatidis in Waterfowl
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toe scales. After colonization, B. dendrobatidis encysts and develops

sporangia. Already after 4 days, discharge tubes are formed and

new zoospores released. This finding provides evidence that B.

dendrobatidis is able to reproduce as a saprobe. Such saprophytic life

stage, although common in other members of the chytrid family

[4], has never been documented for B. dendrobatidis before. After 2

weeks of incubation, the number of zoospores was increased up to

1320 zoospores/well. Considering the high inoculation dose (106

zoospores), these relative low zoospore counts could explain that

replication was too limited to result in an increase of GE’s after

qPCR analysis. However, since motile zoospores were continu-

ously present in the growth assays from 4 days onwards, this

provides evidence that feet of waterfowl are suitable for successful

maintenance of B. dendrobatidis for at least a fortnight. This implies

that birds may act as non-amphibian reservoirs of the fungus,

allowing persistence of the fungus outside its natural host.

Additionally, B. dendrobatidis is able to survive a drying period of

30 minutes. In this time span, geese could fly up to 30 km [15].

This means that, when attached to the avian feet, the fungus might

survive when geese move to a pond nearby.

On the other hand, to see things in a proper perspective, two

comments are to be made. First, for the in vitro growth test, toe

scales were autoclaved to prevent overgrowth from residual

microbial flora. Although no macroscopically visible changes were

noticed, this procedure might have altered the structure of the

tissue. In addition, elimination of resident microbiota may affect B.

dendrobatidis’ survival. This might render the test results less

indicative for the situation in the wild. Secondly, due to different

habitat preferences, the chance of direct contact between geese

and amphibians might be rather limited. However, the wildlife

areas sampled in this study contain amphibian communities with

Pelophylax kl. esculentus, Bufo Bufo, Lissotriton vulgaris and Ichthyosaura

alpestris [16]. In general, geese prefer large wetlands, lakes and

rivers [17] whereas many European amphibians prefer ponds. In

conclusion, although qPCR does not give information on the

viability of the zoospores detected, the prevalence of B. dendrobatidis

on the toes of geese and the high number of GE sometimes found

here, together with our findings that B. dendrobatidis is attracted to,

adheres and proliferates on keratinous avian toes indicates that

aquatic birds may act as non-amphibian reservoirs of B.

dendrobatidis.

Materials and Methods

Screening wild geese for Batrachochytrium dendrobatidis
Wild geese (356 Branta canadensis and 41 wild Anser anser

domesticus) were caught in 6 different wildlife areas in East Flanders

(Belgium) as part of an eradication programme [18], transported

to the Faculty of Veterinary Medicine (UGhent) and euthanized

by intravenous embutramid injection (T61, Intervet, Belgium).

Immediately after euthanasia samples for B. dendrobatidis detection

were taken by swabbing the plantar side of the toes of the geese

using cotton-tipped swabs (Copan Diagnostics Inc., Corona, CA).

After sampling, the carcasses of the geese were destroyed conform

health regulations. Subsequently DNA from the swabs was

extracted and qPCR assays were performed as described

previously [19]. The study was conform regulations of the Ethical

and Animal Welfare Committee of the Faculty of Veterinary

Medicine of Ghent University.

B. dendrobatidis strain and collection of keratinous tissue
for in vitro use

In vitro inoculations were carried out with zoospores of the B.

dendrobatidis strain IA042, kindly provided by Dr. T. Garner and

Dr. M. Fisher. The strain was isolated from a dead Alytes obstetricans

involved in a mass mortality event (Ibon Acherito, Spanish

Pyrenees) and belongs to the Global panzootic lineage [20]. For

inoculation, strain IA042 was cultured in tryptone/gelatine

Figure 2. Colonization of B. dendrobatidis on duck toe squamae. Light micrograph of B. dendrobatidis colonization on Barbary duck toe
squamae, showing A: abundant sporangia (arrow) present upon the surface of the keratinous squamae; B: post-discharge sporangia (arrow);
magnification 4006.
doi:10.1371/journal.pone.0035038.g002

Table 2. Survival rate of B. dendrobatidis on duck toes after desiccation.

Number of growth positive wells/total number of wells

Desiccation period Zoospores 3 day old sporangia 5 day old sporangia

0 min 3/3 3/3 3/3

30 min 3/3 2/3 1/3

60 min 0/3 0/3 0/3

Viability of zoospores and zoosporangia after different desiccation periods was assessed in distilled water. The detection of active zoospores after desiccation was
regarded as a positive assay. When motile zoospores could not be detected the assay was regarded negative. Three replicates were run.
doi:10.1371/journal.pone.0035038.t002
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hydrolysate/lactose (TGhL) broth, in 25 cm2 cell culture flasks, at

20uC for 5 days. A 2 ml-aliquot of a 5-day old broth culture was

transferred onto a TGhL agar plate, and incubated for 5–7 days at

20uC. Zoospores were collected by flooding the agar plate with

2 ml of distilled water, and were immediately counted in Lugol’s

solution by using a haemocytometer and adjusted to the final

inoculum concentration.

Avian keratinous toe tissue for the in vitro tests were collected

from a dead swan (Cygnus cygnus), two dead Moscovy ducks (Cairina

moschata) and a goose (Anser anser domesticus) which were brought to

the department of Pathology, Bacteriology and Avian diseases

(Faculty of Veterinary Medicine, UGhent) for post-mortem

examination. The keratinous toe scales of these birds were isolated

with a forceps from the rinsed feet and stored at room temperature

until further use. From both animals the toe webs were excised and

stored at 220uC until further use.

Chemotaxis of B. dendrobatidis towards toe scales
Chemotaxis of B. dendrobatidis towards geese toe scales was

determined as described previously [21], with minor modifica-

tions. Briefly, a 10 ml droplet of distilled water was placed directly

on the surface of the counting grid of a Burker counting chamber

(Marienfeld, Lauda-Königshofen, Germany). A keratinous toe

scale of approximately 5 mm was placed at one side of the grid.

After this a cover slip was placed on the counting chamber and

10 ml inoculum (46105 zoospores/ml) was carefully added at the

other side of the grid. For the negative controls, instead of toe

scales, 5 mm discs perforated out of sterilized cellulose acetate

filters (0.45 mm, Sartorius Stedim, Aubagne, France) and impreg-

nated with distilled water were used. Slides were checked under an

inverted microscope (Olympus CKX 41, Hamburg, Germany) to

ensure that zoospores initially accumulated just before the grid.

The number of motile and immobile zoospores in the squares

adjacent to the toe scale and on the other side of the grid were

counted after 45 and 90 minutes incubation at 20uC. The assay

was carried out in triplicate.

For the statistical analysis a linear mixed effect model for

repeated measures was conducted in MLwin with the group as a

fixed effect. To compare the two chemotaxis groups, a t-test was

used with the alternative hypothesis being that zoospore counts

adjacent to toe scales were higher. The tests were performed at a

global 5% significance level. Since count data were analysed, a

Poisson distributed error was conducted.

Adhesion and in vitro growth of B. dendrobatidis on duck
and swan toes

The extent of adhesion of B. dendrobatidis zoospores to duck and

swan toes over a relatively short time span, ranging from

30 minutes to 2 hours was examined. Both toe scales and toe

webbings of a swan and a Barbary duck were inoculated in a 24

well plate (Cellstar H, Greiner Bio-One, Wemmel, Belgium) with

25 ml of a 106 zoospore suspension in distilled water. To each

well, 975 ml distilled water was added. Plates were sealed and

incubated at 20uC for 30 minutes, 1 or 2 hours. After incubation,

the samples were washed three times in distilled water,

centrifuged at 1500 rpm at 20uC and fixed in a 2.5%

glutaraldehyde, 2% formaldehyde containing HEPES buffer

(pH 7.2) for scanning electron microscopy (SEM). The samples

were post-fixed in 1% osmium tetroxide (w/v, OsO4) in distilled

water for 2 h at room temperature and were dried with

hexamethyldisilazane (Electron Microscopy Sciences, Hatfield,

Pennsylvania, USA) in a fume hood. Finally, scales and toe

webbings were mounted on metal bases and platinum sputter-

coated (JFC–1300 Auto Fine Coater, JEOL Ltd, Zaventem,

Belgium), prior to examination with a JSM-5600LV scanning

electron microscope (JEOL Ltd).

In addition, the ability of B. dendrobatidis to colonize and grow on

geese toe scales was examined. Two geese scales were autoclaved

(to prevent overgrowth by residual microbial flora), transferred

into the wells of a 96-well plate and inoculated with 200 ml of a 106

zoospore suspension in distilled water. Prior to inoculation the

zoospores had been washed 3 times with distilled water and

centrifuged at 1500 rpm, at 20uC. Plates were sealed and

incubated at 20uC for 24 hours. After this incubation period,

scales were rinsed in distilled water to remove non adherent

zoospores and transferred into a new well containing 200 ml

freshly distilled water. Subsequently, 10 ml of the well contents was

placed directly on the surface of the counting grid of a Burker

counting chamber (Marienfeld, Lauda-Königshofen, Germany)

and zoospore counts were performed. This was done by counting

the total surface of the grid. After this, one scale and its

corresponding well contents were immediately stored at 220uC.

The second scale was incubated for 14 days at 20uC. During

incubation, growth (development of sporangia and release of

active zoospores) was evaluated daily using inverted microscopy.

After 14 days of incubation, a zoospore count was performed as

described above after which the scale and their corresponding well

contents was stored at 220uC. DNA of the frozen samples was

extracted and qPCR assays were performed as described

previously [20]. The assay was performed in 3-fold.

Survival of B. dendrobatidis on duck toe scales after
desiccation

The viability of B. dendrobatidis zoospores and zoosporangia on

duck toes after a 0, 30 and 60 minute period of desiccation was

assessed. To test the viability of zoospores, toe scales of a

Barbary duck were autoclaved and subsequently inoculated in a

24 well-plate with 10 ml inoculum containing 76104 zoospores in

distilled water. Prior to inoculation, zoospores had been washed

3 times in distilled water and centrifuged at 1500 rpm at 20uC.

The wells were dried under a laminar flow after which they were

incubated at 20uC for 0 (positive control wells), 30 and

60 minutes. After this incubation period, 1 ml of distilled water

was added to each well. Plates were sealed and incubated at

20uC. Growth was evaluated during 7 days using inverted

microscopy. The detection of active zoospores after desiccation

was regarded as a positive assay. When motile zoospores could

not be detected the assay was considered negative. The assay was

carried out in triplicate.

To test the viability of zoosporangia, autoclaved toe scales were

placed in a 24 well-plate and inoculated with 1 ml of a 76104

zoospores suspension in distilled water. Plates were incubated at

20uC and the zoospores were allowed to develop into zoosporan-

gia on the scales for 3 to 5 days. Scales were then removed and

transferred to a new 24 well-plate. The scales were dried under a

laminar flow after which they were incubated at 20uC for 0

(positive control wells), 30 and 60 minutes. Subsequently, the assay

was performed in triplicate as described above.
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