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Objective: Every year, approximately 50–110/1,00,000 people worldwide suffer from

cardiac arrest, followed by hypoxic-ischemic encephalopathy after cardiopulmonary

resuscitation (CPR), and approximately 40–66% of patients do not recover. The purpose

of this study was to identify the brain network parameters and key brain regions

associated with awakening by comparing the reactivity characteristics of the brain

networks between the awakening and unawakening groups of CPR patients after coma,

thereby providing a basis for further awakening interventions.

Method: This study involved a prospective cohort study. Using a 64-electrode

electroencephalography (EEG) wireless 64A system, EEG signals were recorded from

16 comatose patients after CPR in the acute phase (< 1 month) from 2019 to 2020.

MATLAB (2017b) was used to quantitatively analyze the reactivity (power spectrum and

entropy) and brain network characteristics (coherence and phase lag index) after pain

stimulation. The patients were divided into an awakening group and an unawakening

group based on their ability to execute commands or engage in repeated and continuous

purposeful behavior after 3 months. The above parameters were compared to determine

whether there were differences between the two groups.

Results: (1) Power spectrum: the awakening group had higher gamma, beta and

alpha spectral power after pain stimulation in the frontal and parietal lobes, and lower

delta and theta spectral power in the bilateral temporal and occipital lobes than the

unawakening group. (2) Entropy: after pain stimulation, the awakening group had higher

entropy in the frontal and parietal lobes and lower entropy in the temporal occipital

lobes than the unawakening group. (3) Connectivity: after pain stimulation, the awakening

group had stronger gamma and beta connectivity in nearly the whole brain, but weaker

theta and delta connectivity in some brain regions (e.g., the frontal-occipital lobe and

parietal-occipital lobe) than the unawakening group.

Conclusion: After CPR, comatose patients were more likely to awaken if there was

a higher stimulation of fast-frequency band spectral power, higher entropy, stronger

whole-brain connectivity and better retention of frontal-parietal lobe function after

pain stimulation.
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INTRODUCTION

Hypoxic-ischemic encephalopathy (HIE) after cardiopulmonary
resuscitation (CPR) is a major health problem. Approximately
50–110 people/100,000 people worldwide have cardiac arrest
every year (1). Although some patients recover consciousness,
40–66% of them fail to awaken, resulting in a long hospitalization
period and high economic burden, which makes early prediction
of awakening the focus of neurocritical care research and plays a
vital role in medical decision-making (2, 3). Evoked potentials
(EPs), which are a reliable way of measuring the functional
status of the brain, have been used to predict the prognosis of
patients who are comatose for more than 50 years. Some studies
have found that the bilateral absence of the N20 component
was the most discriminating predictor with a specificity of 100%
for an unfavorable outcome (4, 5). The combination of the
N60 and mismatch negativity (MMN) offered good predictive
performance for awakening with increased sensitivity (70%)
and improved specificity (91.7%) (6). However, the EPs are
confounded by cervical spinal cord injury and isolated brain
stem lesions. Also, interpretation of EPs signal are prone to
artifacts interference. As a simple and safe bedside monitoring
and analysis technology, electroencephalography (EEG) has
been widely used in coma research. Slow-wave EEG patterns
and the presence of EEG reactivity (EEG-R) can predict a
good prognosis with a sensitivity of 42∼97% and specificity of
92∼100% (7, 8). EEG-R is defined as any reproducible change
in the frequency or amplitude of the EEG background pattern
after external stimulation (9). External stimulation can consist
of auditory (clapping, loud name calling), somatosensory or
nociceptive (pinching limbs or nipples, squeezing nails or bone
periosteal surface), or visual (spontaneous or forced eye opening,
intermittent light stimulation) stimulation (9, 10). In 2018, a
systematic review found that regardless of the etiology, patients
with impaired consciousness featuring a reactive EEG were more
likely to have a favorable outcome. EEG-R is a valuable prognostic
parameter and warrants rigorous assessment (11).

However, EEG-R is not only characterized by its presence or
absence. In addition to reflecting the integrity of the conduction
pathway, EEG-R is also the result of the brain’s processing
of various stimuli. Therefore, there are also differences in the
direction, degree and internal relationship of changes, and the
visual analysis is too subjective. Thus, researchers have started
to focus on EEG-R quantitative and network analyses. Previous
studies have found that quantitative analysis (power spectrum) of
EEG-R is better than visual analysis and can well predict recovery
after coma (sensitivity 90%, specificity 88%) (12–14). In 2020,
our team used 16-electrode EEG to analyze the brain network
characteristics of EEG-R in comatose patients. It was found that
patients who regained consciousness had higher alpha coherence
in the posterior cortex and lower delta coherence in the central
brain cortex than patients with a poor prognosis (15). This study
provided reliable parameters for coma prognosis; however, due
to the small number of channels, the construction of the network
was not accurate enough, and it is impossible to more precisely
identify the brain areas related to awakening. Therefore, the
purpose of this study was to identify the parameters and key brain

regions associated with awakening and to provide a basis for
the development of awakening interventions by comparing the
differences in the quantitative analysis and EEG-R brain network
characteristics between an awakening group and an unawakening
group of CPR patients after coma.

MATERIALS AND METHODS

Materials
Between 2019 and 2020, comatose patients were enrolled in the
neurocritical care unit (NCCU) at Xuanwu Hospital of Capital
Medical University. The inclusion criteria were as follows: (1)
patients were 18–80 years of age; (2) initial assessments were
conducted within 1 month of symptom onset; (3) for patients
who received targeted temperature management, the clinical and
EEG assessments were performed during normothermia after
therapeutic hypothermia and sedation; and (4) the Glasgow coma
scale (GCS) score was≤ 8. The exclusion criteria were as follows:
(1) premorbid conditions such as neurological or psychological
diseases, brain trauma or surgery; (2) within 5 half-lives for all
CNS-depressing medications (such as anesthetics, sedatives and
antipsychotics) before data collection; (3) simultaneous multiple
organ dysfunction with unstable vital signs; (4) peripheral
neuropathy or spinal cord lesions affecting afflux of pain
stimulus [detected by medical history and examinations such
as electromyography (EMG), somatosensory evoked potentials
(SSEP) and magnetic resonance imaging (MRI)] and (5) a failure
to follow up. The study observed the principles of the Helsinki
Declaration and was approved by the Ethics Committee of
Xuanwu Hospital, Capital Medical University, Beijing. Informed
consent was obtained from the family members or designated
surrogates of all participants.

Methods
This trial was designed as a prospective, blinded cohort study and
was based on our previous study, which found parameters that
were closely related to consciousness (16). The participants were
divided into the awakening group or the unawakening group
based onwhether they recovered consciousness; the patients were
assessed by two experienced neurologists who were blinded to
the EEG assessments. The awakening of patients was defined as
the patient’s ability to clearly show discernible evidence of self
or surrounding awareness by demonstrating the ability to carry
out commands or exhibit reproducible and sustained purposeful
behavior (17). The prognosis was assessed using the Cerebral
Performance Category (CPC) (Table 1), and the patients were
divided into the awakening group (CPC 1–3) or the unawakening
group (CPC 4–5) (18).

Clinical Evaluation
A clinical evaluation was performed by at least 2 NCCU
professional physicians to characterize the included participants.
The NCCU physicians who recorded the general information
of the participants, including age, sex, duration of arrest or
resuscitation, time from coma after cardiac arrest to EEG
assessment, GCS and contact information, were blinded to the
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TABLE 1 | Cerebral performance category (CPC) score scale.

CPC 1 Good cerebral performance: conscious, alert,

able to work, might have mild neurologic or

psychologic deficit.

CPC 2 Moderate cerebral disability: conscious, sufficient

cerebral function for independent activities of daily

life. Able to work in sheltered environment.

CPC 3 Severe cerebral disability: conscious, dependent on

others for daily support because of impaired brain

function. Ranges from ambulatory state to severe

dementia or paralysis.

CPC 4 Coma or vegetative state: any degree of coma

without the presence of brain death criteria.

Unawareness, even if appears awake (vegetative

state) without interaction with environment; may

have spontaneous eye opening and sleep/awake

cycles. Cerebral unresponsiveness.

CPC 5 Brain death: apnea, areflexia, EEG silence, etc.

EEG results. The researchers who analyzed the EEG results were
blinded to the clinical conditions.

EEG Assessment
EEG Recording
EEG data were recorded at the bedside within 1 month of illness
onset with NicoletOne software (Nicolet, America) using a 64-
electrode EEG wireless 64A system. For each patient, EEG was
recorded at least once and lasted for 30 to 60min. Electrodes
were placed according to the international 10–10 system. The
data were referenced to the Cpz electrode. Impedances were
maintained at < 5 kΩ . The continuous EEG data were recorded
online at a sampling rate of 512Hz with a bandpass filter in
the range of 0.5–70Hz and a 50Hz notch filter. The EEG
reactivity test used painful stimulation (nail bed pressure),
and a simultaneous stimulation mark was performed on the
EEG segment. The stimulation lasted 10 s, and the observation
time was at least 30 s. During the EEG acquisition period, all
instruments and equipment thatmight interfere with EEG signals
were switched off to ensure that the surroundings were quiet and
stable and to avoid signal fluctuations and artifact interference.

Pre-processing
First, a 0.5∼45Hz bandpass digital filter was used to attenuate
frequency artifacts. Noise caused by eye movement was removed
by using the FastICA algorithm. Then, the superfast spherical
interpolation method was used to interpolate the bad channels.
After that, all of the signals were converted to average references
after downsampling to 256Hz. Finally, two 10 s continuous
EEG data segments during and after painful stimulation were
extracted, and every channel’s data were transformed by the
standardized z-score method. We transformed every voltage
according to this expression z(t)= (x(t)–−−x)/σ and transformed
the whole continuous data segment through 30 s data (10 s before
stimulation, 10 s during stimulation and 10 s after stimulation).

Quantitative EEG Analysis
Frequency domain analysis (power spectrum), nonlinear analysis
(entropy) and brain network connectivity analysis (coherence
and phase lag index) were used in subsequent analyses.

Power Spectrum Analysis
Processed time-series data were transformed into the frequency
domain by a 1,024-point fast Fourier transform with Welch’s
method. Specifically, data were analyzed with a 512-point moving
window with a 256-point overlap. Windowed data were extended
to 1,024 points by zero-padding to calculate power spectrum,
yielding an estimation of the power spectrum from 0.5 to 45Hz
(frequency resolution: 0.25Hz). The power spectrum of these
windows were averaged. The frequency bands were divided into
delta (δ: 1–4Hz), theta (θ: 5–7Hz), alpha (α: 8–13Hz), beta
(β: 14–29Hz) and gamma (γ: 30–45Hz). The absolute power
spectrum of a specific frequency band is the area under the power
spectral density curve. The relative power spectrum of each
frequency band is divided by the absolute power spectrum of the
corresponding frequency band by the absolute power spectrum of
the total frequency band (19). The relative power spectrum was
calculated in this study.

Entropy Analysis
Sample entropy (SaEn): SaEn measures the degree of irregularity
and predictability in a time series (20, 21). This method is derived
from approximate entropy (ApEn), However, it can reduce the
error of the ApEn calculation. The definition of SaEn is explained
by combining the algorithm steps. Let the original data be
x(1), x(2), ...x(N), a total of N points.

Step 1: Form a set of m-dimensional vectors in sequence of
numbers as follows:

Xm
i = [x(i), x(i+ 1), ...x(i+m− 1)],

where 1 < i < N − m.
Step 2: Define d[Xm

i −Xm
j ] as the largest difference between X(i)

and X(j) as follows:

d[Xm
i − Xm

j ] = max0≤k≤m−1([x(i+ 1)− x(j+ k)]).

Step 3: Given a threshold r, count the number of d[Xm
i −Xm

j ] of

each i-value less than the number of r. Then, calculate the
ratio of this number to the total number of distances N -
m+ 1 as Bmi (r) as follows:

Bmi (r) =

∑N−m
j=1,j 6=i θ(r − d[xmi − xmj ])

N −m− 1
, 1 ≤ j ≤ N −m

where θ(x) is the Heaviside function.
Step 4: Take the average of Bmi (r) for all i; then, this value can be

denoted as Bm(r) as follows:

Bm(r) =

∑N−m
i=1 Bmi (r)

N −m

Frontiers in Neurology | www.frontiersin.org 3 June 2022 | Volume 13 | Article 877406

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Huang et al. EEG Reactivity Quantitative Analysis

Step 5: Similar to steps 1∼4, we define the function Am(r) as the
total number of template matches under the embedding
dimension ofm+ 1.

Step 6: In theory, the SaEn of the sequence is the following:

SaEn(m, r) = −ln
Bm(r)

Am(r)

SaEn is obviously related to the value of m, r. Based
on experience, we usually take r = 0.1∼0.2 SD (SD
represents the standard deviation of the sequence {x(i)}).
In this paper, SaEn has more reasonable statistical
characteristics. Therefore, we setm= 3 and r= 0.2∗SD.

Permutation entropy (PeEn): Similar to SaEn, PeEn is also used
to estimate the regularity of time series signals and is based on the
phase-space reconstruction method (22). In the PeEn algorithm,
the data of the vector quantity Xm

i are mapped to a sequence
of a symbol, the probability density function is determined, and
the value of PeEn is calculated. Compared to SaEn, PeEn has
two advantages: first, it requires little time and works with small
datasets; second, because it relies only on the relative value of
data, the algorithm can reduce noise to a certain degree (23).

The definition of PeEn is explained by combining the
algorithm steps. Let the original data be x(1), x(2), : : : , x(N), a
total of N points.

Step 1: Form a set of m-dimensional vectors in sequence of
numbers as follows:

Xm
i = [x(i), x(i+ 1), ...x(i+m− 1)],

where 1<i<N-m.
Step 2: Count the sort order of the sequence Xm

i , which has a
total of m! for a vector quantity of m dimension. One of
those arrangement patterns is πj(1 ≤ j ≤ m!), and its
probability occurrence is defined as follows:

p(πj)

∑N−m+1
i=1 {Xm′

i s arrangement pattern is πj}

m!(N −m+ 1)

Step 3: In theory, the ApEn of the sequence is the following:

PeEn(M) = −

m!
∑

j=1

p(πj) log p(πj)

PeEn is obviously related to the value of m. Considering
the validity and complexity of the calculation, we usually
takem= 3∼10 based on experience (24). We setm=3 in
this paper. Thus, we can obtain a total number of m!=6
in PeEn’s arrangement pattern: π =[012, 021, 102, 120,
201, 210].

Coherence
As a commonly used method, EEG coherence quantifies the
linear correlation between two electrode locations’ signals in
the frequency domain by estimating the covariance of the EEG
spectral activity (25). Mathematically, the coherence function

Cxy(f ) at a frequency f for signals x and y is obtained by the
normalization of the cross-spectral spectrum as follows:

Cxy(f ) =

∣

∣Im
〈

Sxy(f )
〉∣

∣

2

√

∣

∣

〈

Sxx(f )
〉∣

∣

2∗ ∣

∣

〈

Syy(f )
〉∣

∣

2

where the notation 〈·〉 denotes the mean value over epochs of the
time series. Sxx(f ) denotes the power spectral density estimate of
signals x and Syy(f ) denotes the power spectral density estimate of
signals y, when Sxy(f ) represents the cross power spectral density
estimate of signals x and y, Im is the operation of extracting the
imaginary part of the complex number:

Sxy(f ) = Fx(f )× Fy∗(f )

where Fi(f ), i ∈
{

x, y
}

is the Fourier transform of signal
i, f is the discrete frequency, and the symbol ∗ denotes the
complex conjugation.

The coherence value ranges from 0 to 1, where 0 indicates
that the corresponding frequency components of both signals
are linearly independent, and 1 indicates that the frequency
components of the two signals give the maximum linear
correlation. Furthermore, high EEG coherence indicates high
cooperation and more information transmission between the
underlying brain regions. After obtaining the function of the
cross-spectral spectrum, we calculated the average coherence in
the following frequency bands: delta (δ: 1–4Hz), theta (θ: 4–
8Hz), alpha (α: 8–13Hz), beta (β: 13–30Hz) and gamma (γ:
30–45Hz). The specific calculation equations are shown in the
Supplementary Materials.

Phase Lag Index
Phase synchronization is an algorithm to estimate the dynamic
synchronization index by calculating the synchronization of two
signal phases in a frequency band (26). The calculation of phase
synchronization is explained by the following steps:

Step 1: The continuous EEG data were filtered into 5 frequency
bands: delta (δ: 1–4Hz), theta (θ: 4–8Hz), alpha (α:
8–13Hz), beta (β: 13–30Hz) and gamma (γ: 30–45 Hz).

Step 2: Filtered EEG data were transformed to complex
analytical signals by using the Hilbert transform. A signal
series x is transformed to an analytic signal by using
the following:

Zx(t) = x(t)+ ix̂(t) = Ax(t)e
−iwx(t)

x̂(t) is the Hilbert transform of x(t):

x̂(t) = x(t)∗
1

πt
=

∫ +∞

−∞

x(τ )
1

π(t − τ )
dτ

where ∗ denotes convolution.
Step 3: We can obtain the instantaneous phase by using the

analytic signal:

wx(t) = arctan(
x̂(t)

x(t)
)
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In order to obtain reliable estimates of phase
synchronization that are invariant against the presence
of common sources (volume conduction and/or active
reference electrodes in the case of EEG), we introduced
phase lag index (PLI). An index of the asymmetry of the
phase difference distribution can be obtained from a
time series of phase differences 1ϕ (tk) , k = 1 . . .N, in
the following way:

PLI =
∣

∣

〈

sign
[

φ(tk)
]〉∣

∣

The PLI ranges between 0 and 1. A PLA of zero indicates
either no coupling or coupling with a phase difference
centered around 0 mod π. A PLA of 1 indicates perfect
phase locking at a value of φ different from 0mod π. The
stronger this nonzero phase locking is, the larger PLI will
be (27).

STATISTICAL ANALYSIS

Statistical analysis was performed using SPSS version 22.0
(IBM Corporation, Armonk, NY, USA) and MATLAB software.
Categorical variables between the two groups were compared
using chi-squared tests. A two-tailed t-test for normally
distributed continuous variables was performed, and the Mann–
Whitney U test was used in cases where the variable was
not normally distributed. The permutation test was used for
small sample data with an unknown population distribution
and for hypothesis-testing problems that are difficult to analyze
by conventional methods. By replacing the sample order,
the statistical test quantity is recalculated to construct the
distribution probability of the mean value, and then the P-value
is calculated and inferred on this basis. P < 0.05 was considered
statistically significant. Additionally, we calculated the false
discovery rate (FDR) across the traditional statistics among the
different parameters to reduce the number of false positives.

RESULTS

Patient Baseline Data
From 2019 to 2020, a total of 16 comatose patients after CPR
were included in the study (Figure 1). The time of ischemia
and hypoxia was 3∼20 (median: 5) min; EEG evaluation was
4∼30 (median: 16) d from the onset time; GCS score was 3∼8
(median: 6) points during EEG evaluation; 7 patients (43.8%)
awakened within 3 months after coma, and 9 patients (56.3%)
had not awakened by 3 months after coma. There was only
significant difference in GCS score and CPC after 3 month
between awakening and unawakening group (Table 2).

Quantitative EEG Analysis
Spectral Power Analysis
We calculated the dynamic changes along the time of power
spectrum as showed in Figure 2. In the awakening group, γ

and β frequency band relative spectral power in the frontal and
parietal lobes, α frequency band relative spectral power in the
central lobe, θ and δ frequency band relative spectral power in

the temporal and occipital lobes increased gradually during the
process of pain stimulation. In the first 2 s after pain stimulation,
there were sudden decreases in all frequency bands relative
spectral power in nearly the whole brain and gradually recovered
later. In the unawakening group, the trend of dynamic changes
seemed to be similar to the awakening group, therefore we further
compared the differences between the two group. In the process
of pain stimulation, compared with the unawakening group, the
power spectrum changes in the awakening group compared with
the unawakening group mainly manifested in the central brain
cortex (parietal lobe) as an increase in γ, β and α frequency
band relative spectral power; in the bilateral temporal lobes, θ

frequency band relative spectral power increased, and in the
bilateral frontal and occipital lobes, δ frequency band relative
spectral power increased. Ten seconds after pain stimulation, the
awakening group had higher γ and β spectral power in the central
brain region (parietal lobe) and higher δ frequency band spectral
power in nearly the whole brain (with the exception of the central
region). However, there were no significant differences in the
above relative power spectrum changes (Figure 3).

Entropy
The dynamic changes of entropy along the time was showed
in Figure 4. In the awakening group, SaEn increased gradually
in nearly the whole brain in the whole stimulation process and
10 s after stimulation while the PeEn didn’t begin to increase
until 6 s after stimualtion. In the unawakening group, SaEn and
PeEn in the whole brain were also increasing gradually, but
the changes were not obvious. We compared the differences
between the two groups and the results showed in Figure 5. SaEn:
The changes in SaEn in the awakening patients, compared with
the unawakening patients, during stimulation were mainly an
increase in the central brain area and decreases in the bilateral
temporal and occipital lobes. Within 10 s of pain stimulation, the
SaEn of the whole brain increased. Additionally, these changes
were not significantly different. PeEn: The changes in PeEn in
the awakening group, compared with the unawakening patients,
during pain stimulation were mainly increases in the frontal
lobe and parietal lobe, and there was a significant difference in
the increase in the frontal lobe. The PeEn in the awakening
patients remained increased in the frontal-parietal lobes within
10 s after pain stimulation, However, the changes were not
significantly different.

Connectivity

Coherence
During the period of pain stimulation, the awakening group
had higher γ and β coherence across the whole brain than
the unawakening group, and the increase in β coherence in
frontal-parietal and frontal-central lobes were more obvious.
α and δ coherence in the whole brain, θ coherence in the
parietal-occipital and parietal-temperal lobes were significantly
decreased. After pain stimulation, γ and β coher ence in nearly
the whole-brain area remained increased, the increase of β

coherence was stronger and wider, and θ and δ coherence in the
whole brain began to increase.
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FIGURE 1 | Flow diagram of the patient screening and exclusion criteria. EEG, electroencephalography.

Phase Lag Index (PLI)
During the period of pain stimulation, the awakening group had
higher γ and β PLI across the whole brain than the unawakening
group. α PLI in the central-parietal lobes, θ PLI in the frontal-
central lobes and δ PLI in nearly the whole brain was mainly
decreased.Within 10 s after stimulation, the increase of γ PLI was
less, and whole-brain β PLI remained increased and stronger. α,
θ and δ PLI began to increase in the whole brain when compared
with unawakening group (Figure 6).

DISCUSSION

Leading neuroscientific theories posit a central role for the
functional integration of cortical areas in conscious states.
Therefore, we used EEG to continuously explore cortical
functional integration. On the basis of previous studies, we
used previously confirmed parameters related to consciousness
(power spectrum and entropy) and connectivity (coherence
and phase synchronization) to provide a further quantitative
analysis of the reactivity characteristics of HIE patients after
pain stimulation (13). Compared with the resting state, pain
stimulation affects oscillations in the neural network. Through
thalamocortical and corticocortical feedback, these oscillations
can reflect the brain’s ability to receive and process sensory
information (28, 29).

Quantitative analysis (computer-based) can assist EEG
analysts, increase the speed and accuracy of EEG interpretation,
and find EEG features that cannot be easily recognized by
visual analysis. Most quantitative analysis methods use “feature
programming”; that is, accurately designed algorithms are used
to detect or quantify predefined features of EEG signals, such
as amplitude, frequency, discharge and linear or non-linear
interactions between channels (30, 31). Our quantitative analysis
found an initial increase in the spectral power of fast oscillations
(α, β, and γ) in the parietal lobe during pain stimulation in
patients who awakened compared with those who did not.
Following the stimulation, the spectral power of the slow
oscillations gradually increased, replacing the fast oscillation
EEG. Similarly, an initial increase in entropy appeared in the
frontal and parietal lobes and then spread to the whole brain.
The increase in fast-frequency band energy after pain stimulation
in the awakening group indicated that some cortical functions
were retained. In the clinical and preclinical environment,
increases in slow frequency spectral power are considered to be
features of unconsciousness. The appearance of low-amplitude
fast EEG, accompanied by the disappearance of slow oscillations,
is related to awakening (32–34). Patients who awakened had
higher entropy after pain stimulation, indicating that a greater
likelihood of awakening was associated with more complex EEG
signals and richer information content and information flow
(22). Previous studies mostly focused on patients with chronic
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TABLE 2 | Baseline data of patients.

ID, sex*, age Duration of

arrest or

resuscitation

Time from coma

onset to EEG

assessment (d)

EEG

classification**

GCS score Outcome after 3

month***

CPC after 3

month

1, M, 68 4 14 S 7 A 2

2, M, 49 5 17 D 7 A 2

3, M, 83 10 13 D 6 A 2

4, M, 23 8 25 D 7 A 2

5, M, 53 10 16 S 4 A 3

6, F, 77 3 28 S 4 A 3

7, M, 59 5 19 D 7 A 3

8, M, 45 5 4 S 5 U 4

9, M, 68 4 6 D 3 U 4

10, M, 83 5 7 S 3 U 5

11, F, 34 4 30 D 5 U 4

12, M, 48 15 17 D 3 U 4

13, M, 62 4 29 S 5 U 4

14, F, 40 7 11 BS 3 U 4

15, M, 39 20 6 S 3 U 4

16, M, 85 4 22 S 5 U 4

Median,

range

5, 3∼20 16, 4∼30 6, 3∼8 4, 2∼5

Z or χ2 −0.16 −0.95 1.415 −2.57 −3.60

P 0.87 0.34 0.49 0.01 0.00

*M, male; F female.
** EEG, electroencephalography; S, suppression; D, delta/theta>50% of record (not theta coma); BS, burst-suppression.
*** A, awakening; U, unawakening; CPC, cerebral performance category.

disorders of consciousness, and there have been few studies on
acute coma, but our results were similar to those of chronic
disorders of consciousness; that is, increases in fast oscillation
spectral power and increases in spatiotemporal complexity were
related to awakening (15, 35–37).

This study also found that after pain stimulation, changes
in the power spectrum and entropy in the patients who later
awakened first appeared in the frontal-parietal lobe. On the
one hand, the primary somatosensory afferent center is located
in the anterior parietal lobe in the central posterior gyrus.
On the other hand, the frontal-parietal lobe may indeed play
an important role in the formation of consciousness. The
prefrontal cortex, parietal cortex, basal forebrain and anterior
cingulate cortex play important roles in the recovery of impaired
consciousness, which has been indicated in many studies based
on positron emission tomography (PET), EEG and functional
MRI (fMRI). In 2000, Laureys et al. observed that functional
connectivity of the prefrontal lobe, anterior cingulate gyrus
and thalamic nucleus in patients with vegetative state was
lower than that in healthy controls using H215O PET. With
recovery of consciousness, functional connectivity of these
areas gradually returned to normal (38). Several studies on
disorders of consciousness based on EEG and fMRI found that
increases in frontoparietal functional connectivity were positively
correlated with improvements in coma recovery scale revised
(CRS-R) scores (39–41). In 2020, Pal et al. found that delivery

of carbachol to the prefrontal cortex induced wakefulness in
mice subjected to continuous administration of the general
anesthetic sevoflurane (42). In 2012, Leon et al. found that the
disappearance or reduction in brain activity in the anterior brain
(frontal-parietal lobes) would terminate or limit the processing
of consciousness and believed that the anterior brain (frontal-
parietal lobes) should play a more important role in the
generation of consciousness, while the activity in the posterior
head (occipital lobe) might reflect the rigid cortical reflex related
to the content of consciousness (43). In 2021, Mashour et al.
found that the frontal-parietal cortex, which is responsible for
executive function, returned first in the recovery of consciousness
in healthy individuals who received general anesthesia (44).
Therefore, we believe that the degree of retention of frontal-
parietal lobe function after brain injury may affect predictions of
awakening in comatose patients.

Our study found that the awakening group showed increases
in fast oscillation (γ and β) connectivity (coherence and phase
synchronization) in nearly the whole brain and decreases in
slow oscillation (θ and δ) connectivity in some brain regions.
Regarding corticocortical connections, the higher the coherence
and phase synchronization of EEG signals was, the stronger the
potential neuronal coordination, and the better the retention
of brain function (45). HIE after CPR causes whole-brain
injury, which limits incoming afferent nociceptive sensory
impulses to the cerebral cortex, and the ability of cortical
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FIGURE 2 | The dynamic changes of the relative power spectrum along the time.

neurons to synchronize or desynchronize is also restricted.
Therefore, the decrease in coherence and synchronization
after stimulation indicates that the integrity of the arousal
system is seriously damaged and the possibility of arousal is
significantly reduced.

Most studies that examined the predictive value and the
reliability clinical outcome predictions in this context had the
limitation of not blinding the neurologists to the EEG findings
and not blinding the EEG analysts to the outcomes. To avoid
information bias in the design, data collection and analysis stages,
we used a blind method in the design, which had the major
advantage of excluding “self-fulfilling prophecies”. There were
still some limitations in this study. (1) The sample size was
small, and the representativeness was poor. (2) Encephaledema
was an important confounding factor. Within 1 month of onset,

encephaledema has a great impact on the evaluation. Even with
standard medical treatment, it was difficult to ensure that the
degree of brain edema was the same in every patient. Thus
it was hard to imagine that the recovery of cortical cognitive
function in such patients was not partly due to the remission
of encephaledema. (3) Pain stimulation by pressing the nail
bed could not be quantified, and differences in stimulation
intensity and duration may have introduced bias. Because we
used only one stimulation per EEG, we could not ensure
reproducibility, which is critical for distinguishing reactivity from
EEG background fluctuations. These shortcomings are the main
reasons why EEG reactivity to stimulation is less reliable than
other clinical, electrophysiological, and neuroimaging predictors
studied to date, as shown in many previous studies and outlined
in the most recent systematic review on this topic (46). Hence, it
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FIGURE 3 | Topography based on relative spectral power. The spectral power between the awakening and unawakening patients were compared in different

frequency bands during and after stimulation separately. The first column includes the results of comparisons before and during stimulation in the awakening group,

the second column includes the results of comparisons before and during stimulation in the unawakening group, and the third column includes the difference between

the awakening and unawakening groups. Similarly, the fourth, fifth and sixth columns are the results of comparisons after stimulation and between stimulation in the

awakening group and unawakening group, respectively (fourth and fifth columns) and their difference (sixth column). The color bar represents the actual value of the

relative power spectrum.

FIGURE 4 | The dynamic changes of entropy along the time. SaEn, sample entropy; PeEn, permutation entropy.
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FIGURE 5 | Topography based on SaEn and PeEn. Significance is the statistical P-value; the greater the absolute value of P, the greater the difference. The first

column and second column are the results of comparisons before and during (or after) stimulation in the awakening group and unawakening group, respectively. The

third column is a comparison between the awakening and unawakening groups. The color bars in the first three columns represent the actual values of the entropy;

the color bar in the fourth column represents the statistical value t. SaEn, sample entropy; PeEn, permutation entropy.

is highly unlikely that the applied EEG analyses will compensate
for these persistent shortcomings when the EEG reactivity
characteristics are compared with other well-studied predictors
in larger cohorts. Thus, quantifiable stimulation, such as electrical
square-wave pulses or thermal stimuli, could be used as a tool
for reactivity in future research to avoid such limitations. (4)
The stimulation time of pressing was relatively short as power
spectrum and entropy analysis need stable EEG state, that is, it
needs a relatively long sequence. Too short data series would
decrease its accuracy. (5) We recorded the bilateral cortical
activation by pressing on either side of the nail bed. After we
have accumulated a larger sample size, we will alternate the
sides of the stimulation (left or right) to determine whether
the results are different in future studies. (6) Electromyogram
(EMG) artifact is another significant confounding factor. We
removed the channel seriously affected by EMG, and then use
the data of peripheral channels to fit a new data to replace the
channel. However, EMG artifact contaminated nearly all EEG
channels and there is a high spatiotemporal overlap between
EMG artifacts and EEG signal. Existing methods to remove EMG
artifacts include independent component analysis (ICA) and
other high-order statistical methods. However, these methods

can not effectively remove most of the EMG artifacts (47, 48).
(7) The time between cardiac arrest and EEG measurements
was not standardized (due to the small sample size), which
was another important confounding factor since different time
frames could produce different results. We will supplement our
work with analyses in different time frames after a sufficient
number of patients are admitted in our future research. (8)
The spectrum of EEG malignant categories (suppression, burst-
suppression, α and θ coma and generalized periodic complexes
combined) is greatly variable, it is difficult to quantify different
EEG features of malignant categories. Therefore, power spectrum
had great shortcomings in evaluating disorders of consciousness.
(9) EEG reflects only the functional activities of the cerebral
cortex and not the functions of the subcortical cortex and
brainstem, although wakefulness requires that the functions
of the ascending reticular activation system of the cerebral
hemisphere and brainstem are simultaneously intact. EEG has
high temporal resolution but low spatial resolution. fMRI could
compensate for the low spatial resolution of EEG. If fMRI
could be added to future research, it could make predictions of
awakening after coma more accurate. (10) The metrics studied
in our research cannot yet be routinely used in daily medical
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FIGURE 6 | Brain connectivity map based on coherence and phase synchronization. The red line indicates stronger connections, while the blue line indicates weaker

connections in awakening patients than in unawakening patients during and after stimulation. The color bar is the connectivity difference. Statistically significant

connectivity differences are plotted in the figure.

treatments due to the time-consuming and complex calculations.
(11) Additionally, we only found some change rules rather than
a cut-off value or marker, and we did not compare the prediction

efficiency of the parameters with other well-studied predictors
(such as SSEPs, EEG background activity changes/patterns, and
MRIs) (46).
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CONCLUSIONS

Our study found that if pain stimulation in comatose
patients after CPR stimulates higher fast oscillation
spectral power, higher entropy and stronger whole-brain
connectivity and if the function of frontal-parietal lobe
is better preserved, then these patients are more likely
to awaken.
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