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INTRODUCTION

Iodinated contrast-induced acute kidney injury (CI-
AKI) has been identified as a specific form of acute renal 
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Objective: To examine the potential of intravoxel incoherent motion (IVIM) and blood oxygen level-dependent (BOLD) magnetic 
resonance imaging for detecting renal changes after iodinated contrast-induced acute kidney injury (CI-AKI) development in 
a diabetic rabbit model.
Materials and Methods: Sixty-two rabbits were randomized into 2 groups: diabetic rabbits with the contrast agent (DCA) and 
healthy rabbits with the contrast agent (NCA). In each group, 6 rabbits underwent IVIM and BOLD imaging at 1 hour, 1 day, 
2 days, 3 days, and 4 days after an iohexol injection while 5 rabbits were selected to undergo blood and histological 
examinations at these specific time points. Iohexol was administrated at a dose of 2.5 g I/kg of body weight. Further, the 
apparent transverse relaxation rate (R2*), average pure molecular diffusion coefficient (D), pseudo-diffusion coefficient (D*), 
and perfusion fraction (f) were calculated.
Results: The D and f values of the renal cortex (CO) and outer medulla (OM) were significantly decreased compared to baseline 
values in the 2 groups 1 day after the iohexol injection (p < 0.05). A marked reduction in the D* values for both the CO and 
OM was also observed after 1 hour in each group (p < 0.05). In the OM, a persistent elevation of the R2* was detected for 4 
days in the DCA group (p < 0.05). Histopathological changes were prominent, and the pathological features of CI-AKI aggravated 
in the DCA group until day 4. The D, f, and R2* values significantly correlated with the histological damage scores, hypoxia-
inducible transcription factor-1α expression scores, and serum creatinine levels.
Conclusion: A combination of IVIM and BOLD imaging may serve as a noninvasive method for detecting and monitoring CI-
AKI in the early stages in the diabetic kidney.
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function damage associated with the use of an iodinated 
contrast agent (CA) (1, 2). In clinical practice, CI-AKI is 
a major health concern, especially for diabetic patients 
who are more prone to CI-AKI when compared to healthy 
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individuals (3-6). As previously reported, the rate of CI-AKI 
occurrence in diabetic patients could be as high as 29.4%, 
even in the absence of preexisting renal insufficiency (7). 
However, the underlying mechanism that places diabetic 
patients at a higher risk of CI-AKI needs to be investigated.

Due to the rapid development of the functional magnetic 
resonance imaging (fMRI) methodology, it may be possible to 
acquire valuable information on the pathophysiology of CI-
AKI when it follows the onset of diabetes in a patient (8). 
Preclinical studies have demonstrated that blood oxygenation 
level-dependent (BOLD) imaging could serve as a reliable 
noninvasive method to measure the renal oxygen content 
in both humans and animals (9-11). In addition, intravoxel 
incoherent motion (IVIM) imaging could detect the diffusion 
of water molecules and perfusion-dependent diffusion in vivo 
(12-15). Previous studies have reported that a decrease in 
pure molecular diffusion coefficient (D), pseudo-diffusion 
coefficient (D*), and perfusion fraction (f) values was 
detected when IVIM imaging was conducted on CI-AKI rat 
models while an increase in apparent transverse relaxation 
rate (R2*) values was detected when BOLD imaging was 
conducted on contrast-induced rat models (12, 16). 

Although the occurrence of medullary hypoxia in the 
kidney has been reported previously (17), the association 
between renal hypoxia and renal failure has not been 
systematically evaluated. Recent reports have demonstrated 
that the expression of hypoxia-inducible transcription factor-
1α (HIF-1α) is correlated with hypoxia in CI-AKI (17, 18), 
and thus may lead to an increase in the R2* value (16). 
In addition, accumulating evidence has shown that the 
overexpression of HIF-1α increases angiogenesis by inducing 
vascular endothelial growth factor (VEGF) expression (19, 
20). It is noteworthy to mention that hypoxia is the main 
stimulus for HIF-1α and VEGF expression and production (21).

The objective of this study was to determine whether 
IVIM and BOLD imaging could noninvasively identify 
changes in renal water diffusion, perfusion, and 
oxygenation during acute renal damage in diabetic rabbits 
after the administration of a CA. The IVIM and BOLD images 
were compared to detect changes in the histology and the 
expression of HIF-1α and VEGF at different time points after 
the administration of the CA. 
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Fig. 1. Experimental flow chart. BOLD = blood oxygen level-dependent, BUN = blood urea nitrogen, Cr = serum creatinine, d = day, FBG = fasting 
blood glucose, h = hour, IVIM = intravoxel incoherent motion
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MATERIALS AND METHODS

Establishment of the Diabetic Rabbit Model
This study was approved by China Medical University and 

was performed in accordance with the guidelines of the 
institutional animal care and use committee. A total of 62 
8-week-old male New Zealand white rabbits (body weight, 
2.5–3.0 kg) were used. The diabetic rabbit model was 
established by administering a single intravenous injection 
of 100 mg/kg body weight of alloxan freshly dissolved in 
0.9% saline after a 12-hour overnight fasting period (22). 
The rabbits that became diabetic (fasting blood glucose 
levels > 16.7 mmol/L) were used in the study 12 weeks 
after the administration of alloxan (22, 23). 

Experimental Setup
Before the magnetic resonance imaging (MRI), the rabbits 

were anesthetized with 3% pentobarbital sodium (0.5 mL/
kg of body mass). Following this, iohexol 350 (350 mgI/mL, 
830 mOsm/kg H2O; Omnipaque, GE Healthcare, Shanghai, 
China) that was preheated at 37°C was intravenously 
injected at a dose of 2.5 g I/kg body weight (24, 25). 

Firstly, since the intra-group comparisons of the baseline 

values showed significant differences, 6 out of the 31 
diabetic rabbits were imaged longitudinally before and 
1 hour, 1 day, 2 days, 3 days, and 4 days after iohexol 
administration to investigate renal changes during CI-AKI. 
Then, 5 randomly selected diabetic rabbits were euthanized 
at the end of the study (4 days). Secondly, to validate the 
fMRI findings, 5 diabetic rabbits were randomly selected 
from the remaining rabbits for blood measurements and 
histological studies after MRI scanning at the 5 time points 
(baseline, 1 hour, 1 day, 2 days, 3 days). Meanwhile, 6 
out of the 31 healthy rabbits underwent IVIM and BOLD 
examinations at the baseline (pre-contrast), and at 1 
hour, 1 day, 2 days, 3 days, and 4 days after the iohexol 
administration, and 5 randomly selected rabbits were 
euthanized at the end of the study (4 days). The remaining 
animals were randomly sacrificed for further analysis after 
MRI scanning at the baseline, and at 1 hour, 1 day, 2 days, 
and 3 days (n = 5 each) (Fig. 1).

Experimental Procedure
All MRI scans were performed using a clinical 3T Twin 

Speed MR scanner (GE Healthcare, Milwaukee, WI, USA) 
with a cardiac matrix coil. The details of the sequences 

Fig. 2. Temporal changes in IVIM measurements in two groups.
(A-C) DCA group, (D-F) NCA group. Serially measured parameters (baseline, 1 hour, 1 day, 2 days, 3 days, and 4 days after CA injection) in 6 
representative animals were recorded. Asterisk indicates p < 0.05 compared with baseline values. CA = contrast agent, CO = cortex, D = pure 
tissue molecular diffusion coefficient, D* = pseudo-diffusion coefficient, DCA = diabetic rabbits with contrast agent, f = perfusion fraction of 
voxel, NCA = healthy rabbits with contrast agent, OM = outer medulla
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obtained with the optimized MRI parameters are shown in 
Supplementary Table 1 (in the online-only Data Supplement). 
The functional feature of the advanced workstation 
software (GE Healthcare) was used for image analysis. 
The quantitative regional IVIM parameters and R2* values 
were calculated using manually defined regions of interest 

(ROIs) for each of the anatomic layers (the cortex [CO] and 
the outer medulla [OM]) (26). A circular ROI was placed 
in the renal CO (30–35 mm2) and OM (35–40 mm2) regions 
(Supplementary Fig. 1 in the online-only Data Supplement). 
The ROIs drawn over the inner medulla were not analyzed 
due to the presence of the renal pelvis and calyx.
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Fig. 3. Representative IVIM images of two groups at corresponding time points. Maps were produced with same window and level 
settings. Maximum D and f signal changes appeared after day 1, whereas D* values appeared after 1 hour, followed by gradual recovery toward 
baseline values at subsequent time points.



834

Wang et al.

https://doi.org/10.3348/kjr.2018.0757 kjronline.org

Apparent transverse relaxation rate (R2* = 1/T2*) is 
a measure of the deoxygenated hemoglobin content in 
the tissue, which in turn reflects the partial pressure of 
hypoxia in the tissue (27). The diffusion-weighted signal 
intensity depends on a cylindrical two-compartment model 
in the voxel (Equation 1) (28). D is the molecular diffusion 
coefficient of pure tissue. D* is the pseudo-diffusion 
coefficient, and f is the perfusion fraction of the voxel.

Sb / S0 = (1 - f) exp (-b ∙ D) + f exp (-b ∙ D*) (1)

where S0 is the signal intensity in the absence of diffusion 
weighting (b = 0), and Sb is the signal intensity with the 
diffusion gradient b. 

Blood samples (1.5–2.0 mL) were obtained from the 
marginal ear vein and were immediately centrifuged at 3200 
rpm (4°C) for 15 minutes. After the MRI, the right kidneys 
were removed, cut into small pieces, and subsequently fixed 
in 4% buffered paraformaldehyde. The inner medulla was 
excluded from the analysis. The pieces were then cut into 
5-μm slices and stained with hematoxylin and eosin (H&E) 
and with Masson’s trichrome. Cortical alterations were 
graded as follows: normal kidney, 0; minimal injury (0–25%), 
1; moderate injury (25–50%), 2; intermediate injury (50–
75%), 3; and severe injury (75–100%), 4 (29). The severity 
of tubular injury was graded based on the levels of tubular 
necrosis and the proteinaceous casts observed: 0, no 
damage; 1, mild; 2, moderate (< 25%); 3, severe (25–50%); 
and 4, very severe (> 50%) (30).

The details outlining the immunostaining methods have 
been previously described (31), and the antibodies used 

are listed in Supplementary Table 2 (in the online-only 
Data Supplement). The areas displaying HIF-1α+ nuclei and 
VEGF+ podocyte expression were quantified using ImageJ 
software (https://imagej.nih.-gov/ij/download.html).

Statistical Analysis
Statistical analysis was performed using SPSS software 

(SPSS 21; IBM Corp., Armonk, NY, USA). A p value < 
0.05 was considered statistically significant. The IVIM 
parameters and R2* values were statistically compared 
with the baseline values using repeated-measures analysis 
of variance (ANOVA), and the Bonferroni post hoc test 
was used for further comparisons. The semi-quantitative 
pathological damage was statistically analyzed using a one-
way ANOVA. The Kruskal-Wallis test was used to analyze 
the non-continuous parameters. The Spearman correlation 
coefficient was used to assess the relationships of the IVIM 
parameters and R2* values with the histological scores of 
right kidneys of all the animals at the various time points.

RESULTS

General Characteristics of the two Treatment Groups
In general, the animals did not show any signs of 

discomfort after the CA administration. As shown 
in Supplementary Table 3 (in the online-only Data 
Supplement), the fasting blood glucose levels of all the 
diabetic rabbits were significantly higher than those of 
the healthy rabbits. The mean body and kidney weight and 
the kidney/body weight ratio were significantly different 
between the two groups (all p < 0.05).

Table 1. Mean Values of D (x 10-4 mm2/s), D* (x 10-3 mm2/s), and f (%) Recorded after Injection of Contrast Agent for Two Groups

Groups Time Points
Renal CO OM
D/D*/f D/D*/f

DCA

Baseline 3.95 ± 0.23/9.89 ± 0.32/39.17 ± 1.90 3.77 ± 0.13/8.91 ± 0.42/37.35 ± 1.70
1 hour 3.12 ± 0.22*/8.12 ± 0.22*/35.02 ± 1.74 2.58 ± 0.19*/7.68 ± 0.33*/32.35 ± 1.77*
1 day 2.51 ± 0.013*/8.63 ± 0.20*/30.13 ± 1.12* 2.19 ± 0.12*/7.90 ± 0.23*/29.10 ± 1.55*
2 days 2.83 ± 0.12*/9.38 ± 0.28/33.95 ± 1.95 2.43 ± 0.28*/8.04 ± 0.15*/30.57 ± 1.30*
3 days 3.33 ± 0.16/9.48 ± 0.39/36.75 ± 1.20 3.08 ± 0.27/8.36 ± 0.17/32.83 ± 1.63*
4 days 3.55 ± 0.14/9.57 ± 0.49/37.70 ± 1.56 3.24 ± 0.29/8.60 ± 0.21/34.13 ± 1.00

NCA

Baseline 4.14 ± 0.19/10.52 ± 0.80/43.47 ± 1.64 4.12 ± 0.19/9.17 ± 0.20/41.42 ± 1.93
1 hour 3.77 ± 0.19/8.67 ± 0.44/39.93 ± 1.97 3.68 ± 0.19/8.26 ± 0.20*/37.67 ± 1.63*
1 day 3.36 ± 0.27*/9.21 ± 0.32/38.67 ± 1.70* 3.21 ± 0.30*/8.42 ± 0.38/34.78 ± 2.09*
2 days 3.62 ± 0.29/9.44 ± 0.27/40.92 ± 1.92 3.49 ± 0.28/8.61 ± 0.34/37.77 ± 2.01
3 days 3.90 ± 0.14/9.72 ± 0.39/43.02 ± 1.84 3.77 ± 0.21/8.73 ± 0.33/40.55 ± 0.94
4 days 3.92 ± 0.20/9.92 ± 0.32/43.25 ± 1.72 3.96 ± 0.18/9.01 ± 0.19/41.63 ± 1.11

*p < 0.05 vs. baseline. CO = cortex, D = pure tissue molecular diffusion coefficient, D* = pseudo-diffusion coefficient, DCA = diabetic 
rabbits with contrast agent, f = perfusion fraction of voxel, NCA = healthy rabbits with contrast agent, OM = outer medulla
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As shown in Supplementary Table 4 (in the online-only 
Data Supplement), the serum creatinine (Cr) and blood 
urea nitrogen (BUN) concentrations reached their maximum 
values on day 3 in the diabetic rabbits with the contrast 
agent (DCA) group (p < 0.05), whereas they were slightly 
increased without statistical differences after the iohexol 
administration in the healthy rabbits with the contrast 
agent (NCA) group.

Intra-Renal Diffusion and Hemodynamics Measured by 
IVIM

Figure 2 shows the time course of the IVIM parameters 
measured in the two groups. A comparison of the temporal 

changes in the IVIM results between the two groups is 
shown in Figure 3. The data of the two contrast groups are 
shown in Table 1.

In the DCA group, the D values were significantly 
decreased 1 hour, 1 day, and 2 days post-injection in 
the CO and OM of the kidneys compared to the baseline 
values (-21.1% with respect to baseline, p = 0.004 [CO, 
1 hour]; -31.7% with respect to baseline, p < 0.001 [OM, 
1 hour]; -36.4% with respect to baseline, p < 0.001 [CO, 
1 day]; -41.9% with respect to baseline, p < 0.001 [OM, 
1 day]; -28.4% with respect to baseline, p = 0.001 [CO, 2 
days]; -35.5% with respect to baseline, p = 0.002 [OM, 2 
days]), and they were still significantly lower compared 

DC
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Fig. 4. R2* maps for two groups obtained at each time point.
A. R2* maps in DCA group until day 4. B. R2* maps in NCA group until day 4. C, D. Each data point was average of R2* measurements in 6 
rabbits from same group at one scan time. For each group, sharp increase in R2* values was observed after day 1 in two anatomical layers; 
subsequently, R2* values returned to baseline over time. Asterisk indicates p < 0.05 compared with baseline values. R2* = apparent transverse 
relaxation rate
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to the baseline values afterwards (reduced by 10.1% [CO]; 
14.1% [OM]). In the NCA group, iohexol caused a much 
shorter duration of having reduced D values compared to 
the baseline, lasting 1 day in the CO (-18.8% with respect 
to baseline, p = 0.015) and 1 day in the OM (-22.1% with 
respect to baseline, p = 0.043). After 2 days, the D values 
gradually returned close to the baseline levels.

With regard to perfusion measurements, a remarkable 
decline in the D* values in the OM was observed in the DCA 
group after 1 hour (-13.8% with respect to baseline, p = 
0.009) and was only slightly alleviated after 2 days (-9.8% 
with respect to baseline, p = 0.044). In the CO, a prominent 
reduction in the D* values compared to the baseline values 
was observed after 1 hour to 1 day (-17.9% with respect 
to baseline at 1 hour, p = 0.001; -12.7% with respect to 
baseline at 1 day, p = 0.018), followed by a progressive 
increase starting from day 2. In the NCA group, iohexol only 
resulted in a progressive decrease in the D* values in the 
OM by approximately 8.2% of the baseline values at 1 hour 
after the injection time (p = 0.001). 

With regard to the f values in the renal OM, deficiency 
in the CA-induced medullary perfusion level aggravated 
within 1 hour to 3 days when compared to the baseline 
levels (-13.4% with respect to baseline, p = 0.012 [1 hour]; 
-22.1% with respect to baseline, p = 0.007 [1 day]; -18.2% 
with respect to baseline, p = 0.008 [2 days]; and -12.1% 
with respect to baseline, p = 0.001 [3 days]) and remained 
at low levels until day 4. In the CO, the f values reached 
their maximum by day 1 (-23.1% with respect to baseline, p 
= 0.002), but they subsequently returned to baseline levels 
by day 2. In the NCA group, the f values were significantly 
lower compared to the baseline levels and were reduced by 
11.0% in the CO (p = 0.046) and by 16.0% in the OM (p = 
0.025) after day 1. 

Intra-Renal Oxygenation by BOLD
Figure 4A, B illustrates representative R2* images for 

each time point in the 2 groups after the iohexol injection. 
Figure 4C, D summarizes the R2* time course in the 2 
groups. Table 2 summarizes the R2* values after the 
contrast injection in the 2 groups. 

In the DCA cohort, the R2* values were significantly 
higher by 17.4–28.9% compared to baseline values at 1–2 
days after the contrast injection in the renal CO (p = 0.01 
and 0.029, respectively). In the renal OM, the R2* increased 
by 24.2% by the end of the study period (day 4, p = 0.021). 
In the NCA group, the mean R2* values in the OM were 

higher by 15.7–27.8% compared to baseline values on days 
1 and 2 after the iohexol injection; however, no significant 
changes were observed in the 2 renal regions at any of the 
later time points.

Histological Analysis
The cortical and medullary regions of the kidneys of the 

two groups are shown in Figure 5. At 1 hour, the proximal 
and distal convoluted tubular epithelial cells were enlarged, 
and vacuolization was observed in the renal CO while 
proteinaceous casts were observed in the renal OM. In 
addition to vacuolization, small numbers of inflammatory 
cells, tubular collapse, and extensive nuclear necrosis were 
observed on day 1. On day 4, vacuolation and significantly 
increased extracellular matrix deposition were observed in 
both the glomerulus and tubule regions (Fig. 6).

As shown in Figure 7, a marked nuclear accumulation 
of HIF-1α were detectable in the renal CO and OM after 
day 1. Following this, HIF-1α expression levels declined 
over time; however, they were still detectable after day 4 in 
the diabetic group. In contrast, HIF-1α staining denoting 
hypoxia was not detected in the healthy rabbits after day 1. 
As with HIF-1α, the VEGF staining was observed in regions 
of extreme tissue hypoxia. However, they were no longer 
detectable after day 4 in the DCA group and after day 2 in 
the NCA group (Fig. 8). 

Correlation between fMRI Parameters and Renal Injury 
and HIF-1α Expression Scores and Cr Levels

As shown in Figure 9A, C, and D, renal injury scores in 

Table 2. Mean Values of R2* (s-1) Recorded after Injection of 
Contrast Agent for Two Groups

Groups Time Points
Renal CO OM

R2* R2*

DCA

Baseline 24.19 ± 2.29 30.66 ± 3.20
1 hour 26.06 ± 2.68 33.37 ± 2.54
1 day 31.17 ± 2.67* 42.36 ± 3.30*
2 days 28.40 ± 2.10* 41.49 ± 1.64*
3 days 26.89 ± 1.97 40.04 ± 2.02*
4 days 24.95 ± 1.62 38.07 ± 1.74*

NCA

Baseline 22.90 ± 2.39 25.74 ± 2.89
1 hour 25.89 ± 2.95 26.96 ± 3.13
1 day 26.70 ± 2.30 32.90 ± 2.00
2 days 25.92 ± 2.58 29.78 ± 3.05
3 days 24.73 ± 2.74 28.22 ± 3.27
4 days 23.84 ± 1.20 27.17 ± 2.04

*p < 0.05 vs. baseline. R2* = apparent transverse relaxation rate
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the OM correlated well with the D values (r = -0.740, p < 
0.001), f values (r = -0.754, p < 0.001), and R2* values (r = 
0.759, p < 0.001). However, only a modest correlation was 

observed between the renal injury scores and the D* values 
(r = -0.406, p = 0.0013) (Fig. 9B). In addition, very good 
correlations were observed between the expression scores 
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of HIF-1α and the D, D*, f, and R2* values (r = -0.857, p 
< 0.001; r = -0.716, p < 0.001; r = -0.781, p < 0.001; and 
r = 0.863, p < 0.001, respectively) (Fig. 9E-H). A modest 
correlation was observed between Cr levels and the D, D*, 
and f values (r = -0.609, p < 0.001; r = -0.519, p < 0.001; 
and r = -0.563, p < 0.001, respectively) (Fig. 9I-K), whereas 
the Cr correlated well with the R2* values (r = 0.752, p < 
0.001) (Fig. 9L). The correlations of fMRI parameters with 
histological injury, HIF-1α expression, and Cr in the renal 
CO are presented in Supplementary Figure 2 (in the online-
only Data Supplement).

DISCUSSION

The diabetic cohort displayed prolonged changes in the 
parameters measured in this study compared to the healthy 
cohort. The D and D* values in the diabetic cohort gradually 
decreased from 1 hour to 2 days from the baseline levels 
while the f values also gradually decreased during the first 3 
days after the iohexol injection. It should be noted that an 
earlier significant decrease in the D* values was observed 
at 1 hour. The peak changes in the R2* were observed 
on day 1, and the R2* was correlated with HIF-1α and Cr 
measurements. However, pronounced changes in the IVIM 
parameters and R2* values in the NCA group were observed 
on day 1 after the iohexol injection. These findings support 
the feasibility of using IVIM and BOLD imaging to study CI-

AKI in diabetic patients.
The decrease in the D values indicated that iohexol 

induced a progressive reduction in intrarenal diffusion in 
the diabetic rabbits. This result can be attributed to several 
conditions. First, this reduction may be associated with 
renal tissue edema and inflammatory cell infiltration, which 
could be detected by the results from H&E staining. Ries 
et al. (32) also found a reduction in the apparent diffusion 
coefficient in diabetic rabbits and in case of edematous 
cellular damage. In addition, a decrease in the D values 
is followed by a subsequent development of interstitial 
renal fibrosis and glomerular atrophy. Observing the area 
affected by fibrosis using Masson’s staining supports 
this hypothesis. An association between decreased water 
diffusion and tissue fibrosis has already been shown in a 
rat model of liver fibrosis (33). Lastly, a CA disrupts the 
renal pathology by necrosis of the renal tubular epithelial 
cells, proteinaceous casts in renal tubules, and medullary 
congestion, which negatively correlates with the successive 
aggravation of diffusion deficiency (34). 

Significant decreases in the D* and f values were 
observed in the diabetic rabbits, suggesting a reduction 
in blood flow. This may be due to vasculopathy in the 
pathogenesis of diabetic nephropathy (35). The elevated 
levels of VEGF also suggest impaired renal endothelial 
function, as has been reported in several previous studies 
(19, 36). After iohexol administration, the decreased 

DCA

CO CO OM OM

NCA

Fig. 6. Representative micrographs of kidney with Masson’s trichrome staining.
(A, C) diabetic rabbits, (B, D) DCA post day 4, (E, G) healthy rabbits, and (F, H) NCA post day 4 (original magnification x 200). In DCA group, 
Masson’s trichrome staining showed gradual increase in percentage of interstitial fibrosis, while in NCA group, small amount of interstitial fibrosis 
was observed after day 4.
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medullary blood flow could aggravate and be prolonged. 
The early D* and f response to iohexol was primarily due to 
sustained vasoconstriction (within the first hour), which 

was demonstrated previously by Rauch et al. (37). The renal 
vascular dysfunction in diabetic rabbits may be caused 
by an increased sensitivity to renal vasoconstriction and 
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slightly increased after 1 hour in all anatomical layers and was significantly higher after day 1 compared to baseline in 2 groups. *p < 0.05 vs. 
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ischemia due to the increased generation of reactive oxygen 
species (38) and a decrease in nitric oxide-dependent 
vasodilation (3). Similarly, complete renal ischemia in 

diabetic rats caused accelerated renal injury with lesions 
(39). 

With respect to contrast-induced kidney damage, we 
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found that the R2* was significantly higher in the diabetic 
rabbits compared to in the healthy rabbits, and these 
observations were correlated with HIF-1α levels. The CA 
administration aggravated physiological medullary hypoxia 
in an acute-on-diabetes renal failure compared to an acute-
on-healthy renal failure (8). Chronic renal disease is a 
significant risk factor for acute renal dysfunction following 
renal hypoxia and toxicity (40). We hypothesized that OM 
microvascular depletion and hypoxia in diabetes predispose 
individuals to tubular hypoxic damage during acute insults. 
Furthermore, hyperfiltration, which is a characteristic of 
the early stages of diabetic nephropathy, likely results in 
increased sodium load to the tubules, resulting in enhanced 
oxygen consumption (41). We found that HIF-1α, a member 
of the ubiquitous master regulators of hypoxic adaptation 
family, accumulates in the hypoxic regions identified by 
VEGF expression. 

In this study, a persistent elevation of R2* values 
was observed in the DCA group. The hypothesis is that 
exacerbated hypoxia occurs secondary to CI-AKI and 
predisposes the kidney to develop chronic renal disease (42, 

43). CI-AKI does not seem like a secondary result, since 
exacerbated medullary hypoxia may trigger and aggravate 
the development of chronic disease (42, 44). Regarding 
renal safety, when a CA is administered to patients with a 
predilection to develop chronic renal failure, they should 
have follow-up fMRI monitoring while in hospital and 1–4 
days after being discharged.

This study had a few limitations. Quantitative comparisons 
were performed using the mean values of manually drawn 
ROIs, which made the analysis prone to error. For the 
diabetic cohort, several of the fMRI parameters failed to 
recover to the baseline levels even after 4 days. Hence, 
additional studies should be performed for a longer period 
to measure these parameters.

In summary, when there is an increase in the expression 
of AKI markers, the impaired kidney is in a critical 
condition due to the onset of CI-AKI, leading to a lower 
renal tolerance to iohexol. Therefore, a combination of 
BOLD-fMRI and IVIM-fMRI can detect the structural and 
functional damage to the kidneys before the established 
clinical markers for kidney disease become apparent. 
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