
Vascular Health and Risk Management 2005:1(4) 333–344
© 2005 Dove Medical Press Limited. All rights reserved

333

R E V I E W

Abstract: The progressive stiffening of the large arteries in humans that occurs during aging

constitutes a potential risk factor for increased cardiovascular morbidity and mortality, and is

accompanied by an elevation in systolic blood pressure and pulse pressure. While the underlying

basis for these changes remains to be fully elucidated, factors that are able to influence the

structure and composition of the extracellular matrix and the way it interacts with arterial

smooth muscle cells could profoundly affect the properties of the large arteries. Thus, while

age and sex represent important factors contributing to large artery stiffening, the variation in

growth-stimulating factors and those that modulate extracellular production and homeostasis

are also being increasingly recognized to play a key role in the process. Therefore, elucidating

the contribution that genetic variation makes to large artery stiffening could ultimately provide

the basis for clinical strategies designed to regulate the process for therapeutic benefit.
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Introduction
Large artery stiffness is a principal determinant of pulse pressure and can increase

the risk of cardiovascular morbidity and mortality via an elevation of systolic blood

pressure (leading to elevations in left ventricular afterload) and a reduction in diastolic

blood pressure altering coronary perfusion (Dzau and Safar 1988). Such stiffening

can occur via processes that involve changes in the overall dimensions of arteries

arising from medial hypertrophy and increased wall thickness – “geometry-dependent”

(Benetos, Laurent, et al 1993; Jaeckel and Simon 2003); or it can result from

perturbations in the amounts of arterial matrix, both elastic and extracellular, such

that the orderly arrangement of elastic fibers and lamenae is degraded over time and

an increase in collagenous material occurs – “geometry-independent” (Lakatta 1987;

Laurent et al 2005). Although a number of factors combine to determine increases in

large artery stiffening, a principal determinant is age; the central arteries stiffen

progressively over time while the peripheral muscular arteries do not appear to undergo

such profound structural changes (Benetos et al 2002). Indeed, by use of a variety of

assessment criteria, age-dependent increases in arterial stiffening have been described

in both healthy and diseased populations, predominantly occurring from the age of

10 years in both males and females (Laogun and Gosling 1982). These increases in

large artery stiffness, whether they occur within the aorta or carotid artery, do so in a

continuous and gradual manner (van der Heijden-Spek et al 2000), although there is

some indication that a more pronounced increase occurs from the age of 55 years

onwards (Nagai et al 1999). It is interesting that telomeric length, a heritable indicator

of biological aging, may also be indicative of vascular aging given that it appears to

inversely correlate with increased arterial stiffening (Jeanclos et al 2000; Benetos et

al 2001).
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Whereas large artery stiffening increases gradually with

aging independently of the occurrence of cardiovascular risk

factors or other associated conditions, a number of studies

clearly suggest that the superimposition of environmental

and genetic factors is also likely to be critical in the process.

Some of these environmental factors include nutritional

status, smoking, and aerobic capacity. Increasingly, the

influence of genetic factors is becoming better understood

in terms of how it may affect the epidemiology of large

artery stiffening. Studies carried out a decade ago in rat

models of salt-sensitive hypertension (Benetos et al 1995;

Levy et al 1997) and in human sodium-sensitive hyper-

tensives (Draaijer et al 1993) seem to indicate that

hemodynamic and humoral factors alone cannot fully

account for differences in mechanoelastic arterial properties

when compared with the situation in salt-resistant or

normotensive controls. This suggests a major influence of

predisposing genetic factors on arterial mechanical

properties. Indeed, some studies suggest that the total genetic

heritability of aortic stiffening determinants, which are

independent of the influence of blood pressure, heart rate,

height, and age, may make a substantial contribution,

perhaps as high as 30%–40% (Snieder et al 2000).

Furthermore, the results of genome-wide linkage analyses

of pulse pressure indicate that while some overlap may exist

between genetic components that underlie blood pressure

phenotypes (Atwood et al 2001), there is also likely to be a

distinct set of genes that contribute to the modulation of

arterial stiffness (Camp et al 2003; DeStefano et al 2004).

In this regard, a number of polymorphisms in various genes

have been found to associate with increased arterial

stiffening, thereby implicating these genes in this process.

In this review, the current knowledge about these genetic

factors is discussed, as is the potential molecular basis that

underlies their involvement in arterial stiffening, particularly

as it relates to the growth of arteries, the structure and

remodeling of the extracellular matrix, and the interactions

that occur between the extracellular matrix and the cellular

components of the artery.

Nonmatrix gene polymorphisms
The renin–angiotensin system
Local hormonal factors that may play a pressure-

independent role in the arterial wall via a modification of

cellular growth or by influencing the extracellular matrix

include angiotensin II acting via the angiotensin II type 1

receptor (AT1-R). Animal studies using both Wistar Kyoto

and spontaneously hypertensive rats (SHR) have

demonstrated that inhibition of angiotensin-converting

enzyme (ACE) activity can reduce stiffness within the

carotid artery independently of transmural pressure, both

when the drug was administered locally (Levy et al 1990)

and after acute oral administration (Benetos, Pannier, et al

1993). In both studies, changes in stiffness were seen even

in the absence of significantly lowered systemic blood

pressure. Experimentation using two-kidney, one-clip

Goldblatt hypertensive rats, and SHR indicated that the

beneficial effect of ACE inhibition may arise via effects on

vascular smooth muscle cell hypertrophy (Levy et al 1988,

1993) or collagen accumulation (Albaladejo et al 1994;

Benetos et al 1997).

While in humans the relationship between ACE

inhibition and arterial stiffness is likely to be more complex,

it has been demonstrated that long-term administration of

ACE inhibitors to individuals with essential hypertension

significantly reduces arterial stiffness within the brachial,

radial, abdominal, and carotid arteries (Asmar et al 1988;

De Luca et al 1993; Kool et al 1995). Such findings are

consistent with the observations of elevated levels of ACE

in humans with increased thickness of the carotid wall

(Bonithon-Kopp et al 1994). Both ACE inhibition and

AT1-R blockade, in either acute or long-term treatment, can

reduce the stiffness of muscular arteries independent of

changes in mean blood pressure (Topouchian et al 1998,

1999; Benetos et al 2000). In view of these observations, it

has been of interest to ascertain whether genetic poly-

morphism within the ACE and AT1-R genes may be

associated with alterations in arterial stiffness. For example,

it has been shown that specific polymorphisms within the

AT1-R and ACE genes within hypertensive individuals do

appear to be involved in the regulation of aortic stiffness.

Specifically, in the study by Benetos, Gautier, et al (1996),

in which arterial stiffness was assessed by measuring aortic

pulse wave velocity (PWV), the AT1-R A1166C polymorphism

was the second most important determinant of aortic stiffness

in hypertensives, accounting for 11.6% of PWV variance,

an effect that appeared to be co-dominant. Although a strong

association between the AT1-R A1166C genotype and PWV

was observed in both young and old hypertensives, the effect

was more pronounced in the older individuals, suggesting

that this polymorphism may amplify the effects of age on

arterial stiffness. Some studies have provided data consistent

with the C allele influencing arterial stiffness, for example

the demonstration that ACE inhibition with perindopril
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reduced PWV threefold in carriers of the C allele as

compared with individuals homozygous for the A allele

(Benetos, Cambien, et al 1996). Interestingly, the presence

of the C allele has been associated with increased

vasoconstriction of both the coronary arteries (Amant et al

1997) and the internal mammary artery (Henrion et al 1998).

More evidence that the AT1-R A1166C polymorphism is

likely to be a key determinant in the process of arterial

stiffening has been provided in a recent study in which an

additional cohort of individuals was also found to exhibit

association between this polymorphism and arterial

stiffening, although in this study (Gardier et al 2004) it was

the A allele that was associated with such increased

stiffening. Additional involvement of the AT1-R gene in the

process of arterial stiffening has been provided by Lajemi,

Labat, et al (2001), demonstrating an age-related association

between the AT1-R A153G polymorphism and aortic stiffness.

In the study by Benetos, Gautier, et al (1996), the ACE I/D

polymorphism showed an association with aortic stiffness,

albeit at a lower level, accounting for less than 2% of the

PWV. This polymorphism has also been found to be

associated with aortic and carotid artery stiffening in a group

of 137 Japanese individuals with type 2 diabetes (Taniwaki

et al 1999). In addition to these data is the study by Mattace-

Raso et al (2004), demonstrating an association between

this polymorphism and common carotid artery stiffness in

individuals younger than 70 years. Some studies also

indicate that the ability of this polymorphism either to

modulate increases in pulse pressure (Safar et al 2004) or

to influence diastolic blood pressure (Rudnichi et al 2004)

is likely to be dependent on age and sex, with males being

more susceptible to these outcomes. It should also be noted

that there may be additional complexity to the relationship

between the ACE I/D polymorphism and the AT1-R A1166C

polymorphism and modulation of arterial stiffness, as there

is evidence that in some population cohorts these

polymorphisms do not strongly affect the stiffness of either

the carotid or radial arteries (Girerd et al 1998).

A key factor that regulates the amount of angiotensin II

is its generation from angiotensinogen. Polymorphisms have

been detected within the human angiotensinogen gene,

which appear to correlate with plasma concentrations of

angiotensinogen, specifically the variant M235T, which

arises from a thymidine-to-cytosine transition at

nucleotide position 704 and causes substitution of a

methionine for a threonine at residue 235 in the mature

angiotensinogen peptide (Jeunemaitre et al 1992). In some

studies the T235 allele has been found to be associated with

higher plasma concentrations of angiotensinogen in

individuals homozygous for this allele (Bloem et al 1997),

and it has also been associated with hypertension (Caulfield

et al 1995). This polymorphism has also been found to

associate with arterial structure, with hypertensive

individuals homozygous for the T235 allele exhibiting a

higher amount of carotid intimamedia thickness (Bozec et

al 2003). More importantly, this polymorphism has also very

recently been shown to be associated with arterial stiffness.

In a study by Bozec et al (2004) in which 98 untreated

hypertensive individuals were assessed for arterial stiffness,

those who were homozygous for the T235 allele had, on

average, increased carotid artery stiffness compared with

the T/M235 heterozygotes and the M235 homozygotes.

Such data provide further evidence that perturbation within

a number of the genes encoding for components of the renin–

angiotensin system is likely to play a key role in the process

of large artery stiffening.

Aldosterone synthase
Aldosterone is a mineralocorticoid hormone which is in-

volved in the regulation of blood pressure through its effects

on sodium balance and intravascular volume (White 1994).

Experimental studies have demonstrated that aldosterone

may be capable of playing a prominent role in regulating

the structure of large arteries. For example, aldosterone

receptors occur within the large arteries, particularly the

aorta (Lombes et al 1992). Endogenous vascular synthesis

of aldosterone can also occur (Takeda et al 1995). It has

also been demonstrated that aldosterone can increase the

expression of both cardiac and vascular collagens (Robert

et al 1994; Sun et al 1997). It has been more recently dem-

onstrated that aldosterone can amplify the proliferative

effects of angiotensin II on vascular smooth muscle cells

via an increase in expression of the AT1-R (Xiao et al 2004).

Synthesis of aldosterone occurs in the adrenal cortex

from deoxycorticosterone, via the action of a mitochondrial

cytochrome P450 enzyme aldosterone synthase (CYP11B2),

the gene for which can be regulated by angiotensin II (White

1994). Interestingly, polymorphisms within the CYP11B2

gene that may influence its activity have also been found. A

common polymorphism within the promoter region has been

demonstrated to influence binding of the transcriptional

regulatory protein SF-1 (White and Slutsker 1995). This

C/T polymorphism (-344C/T), occurring 344 nucleotides

upstream of the translational start site of the CYP11B2
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protein, is within a region in which the steroidogenic

transcription factor SF-1 binding occurs, and studies have

found that plasma aldosterone levels or urinary aldosterone

excretion can vary according to the -344 genotype

(Hautanena et al 1998; Pojoga et al 1998). This poly-

morphism has also been found to be associated with arterial

stiffening in a study in which 216 hypertensive individuals

of European origin were assessed for plasma levels of renin

and aldosterone, blood pressure, and PWV as a measure of

arterial stiffness (Pojoga et al 1998). The presence of the

-344C allele was associated with elevated levels of plasma

aldosterone, with the CC homozygous individuals having

on average the highest levels, and the TT homozygotes

having the lowest level. Individuals carrying the C allele

also exhibited a higher degree of arterial stiffening as

assessed from measurements of PWV. Consistent with such

polymorphisms influencing arterial stiffness via perturba-

tions in aldosterone levels have been the findings that an

increase in carotid artery stiffness in response to long-term

aldosterone administration to Sprague-Dawley rats can be

ameliorated by treatment with the mineralocorticoid

antagonist eplerenone (Lacolley et al 2002) and that salt-

dependent increases in stiffness in the mesenteric vessels

of spontaneously hypertensive stroke-prone rats could also

be blunted by treatment with this aldosterone antagonist

(Endemann et al 2004).

Moreover, there is evidence demonstrating that gene–

gene interaction between components of the rennin–

angiotensin–aldosterone system act to modulate large artery

properties. For example, in a study of 756 Belgian

individuals ranging in age from 12–79 years, a single-gene

effect was observed to occur for the ACE I/D polymorphism

on compliance of the common carotid artery, with the D

allele being associated with decreased compliance

(Balkestein et al 2001). In multigenetic analysis, it was seen

that the influence of the ACE D allele depended on both

“vascular territory” and genetic background, such that the

presence of the aldosterone -344T allele appeared necessary

to bring about the negative association of the ACE D allele

on distensibility of the common carotid artery (Balkestein

et al 2001). Although such an interaction occurred at the

level of the common carotid artery, it did not appear to

influence properties of the femoral artery. Rather, in the

latter, ACE DD homozygotes, when additionally homozy-

gous for the α-adducin Gly460 allele, had lower cross-

sectional compliance and lower distensibility (Balkestein

et al 2001).

Guanine nucleotide regulatory proteins
(G-proteins)
G-proteins are key components of a plethora of intracellular

signaling cascades, relaying signals from more than 1000

receptors to a diversity of intracellular effector molecules,

including enzymes and ion channels (Farfel et al 1999). The

structural features of the G-protein are an α-subunit bound

loosely to a tightly associated dimer consisting of a β- and

a γ-subunit, each subunit being the product of a different

gene. Diversity of G-protein composition is generated via

the number of different genes that encode for these subunits,

with 16 α-subunit genes, 6 β-subunit genes, and 12 γ-subunit

genes (Farfel et al 1999). It is known that mutations within

these trimeric proteins are involved in a number of disease

states, including hypertension. Specifically, a common

C-to-T polymorphism in exon 10 (C825T) of the β3 subunit

whereby the T allele is associated with a splice variant

(GNB3-s) in which the nucleotides 498–620 of exon 9 are

deleted in-frame, thereby truncating the β3 protein by 41

amino acids, has been demonstrated to be capable of

significantly enhancing signaling when in a trimeric complex

with Gαi2 and Gγ5 (Siffert et al 1998). Interestingly, the

825T allele has been associated with hypertension

(Benjafield et al 1998; Schunkert et al 1998; Siffert et al

1998; Dong et al 1999) and higher blood pressure

(Benjafield et al 1998; Schunkert et al 1998; Hengstenberg

et al 2001). Moreover, the potential for this polymorphism

to influence arterial structure has been demonstrated by the

finding that in a French cohort of 306 individuals with no

history of cardiovascular disease, a significant association

existed between the 825T allele and radial artery

hypertrophy, independent of age, blood pressure, sex, and

body mass index (Hanon et al 2002). This polymorphism

has been recently found to be associated with arterial

stiffness, as measured by PWV and augmentation index

(Nürnberger et al 2004). Specifically, this study compared

a group of young healthy males with and without the 825T

allele under resting conditions, finding that carriers of this

allele exhibited a significantly higher PWV and

augmentation index than individuals with the CC genotype.

Although the underlying mechanistic basis linking such a

polymorphism to arterial stiffening remains to be fully

elucidated, it may relate to altered vascular remodeling

events arising from aberrant vascular smooth muscle cell

proliferation in response to enhanced Na+/H+ exchanger

activity (Siffert 2000).
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Nitric oxide synthase
In addition to factors that can influence the growth of

vascular smooth muscle cells or the expression of

extracellular matrix proteins within the arterial wall, a degree

of functional regulation of smooth muscle tone by circulating

and locally produced vasoactive factors may also influence

arterial stiffness. One such factor, nitric oxide, is synthesized

from L-arginine in vascular endothelial cells by the action

of the enzyme endothelial nitric oxide synthase (eNOS) and

has a profound effect on both vascular tone and blood

pressure (Palmer et al 1987; Rees et al 1989). In this regard

it has been demonstrated that both exogenous and

endogenous eNOS inhibitors, which decrease basal

endothelial cell eNOS, can cause an increase in carotid artery

intimamedia thickness (Lacolley et al 1998; Wilkinson et al

2002). Within the human eNOS gene, a polymorphic

transversion of a G-to-T nucleotide at position 894 (G894T )

within exon 7 results in a substitution of Glu by Asp at amino

acid residue 298 (Glu298Asp) (Marsden et al 1993). This

polymorphism has been shown to influence vascular

responsiveness to vasoconstricting hormones, with the 894T

allele being associated with an enhancement of the

hemodynamic response to phenylephrine in a cohort of

individuals undergoing cardiac pulmonary bypass surgery

(Philip et al 1999). Interestingly, a relationship between this

polymorphism and blood pressure level was found to occur,

with the T allele being associated with lower blood pressure

in a young adult cohort aged 19–38 years in the Bogalusa

Heart Study (Chen et al 2001). In a recent study examining

the independent effect of the G894T eNOS polymorphism

on arterial stiffness in 118 African Americans and 285 white

young adults (aged 25–37 years), the T allele was associated

with lower systolic blood pressure and a lower degree of

carotid artery stiffening within the African American cohort

(Chen et al 2004), after adjusting for insulin, heart rate, and

mean arterial pressure. The genotype effect was not

significant within the white male cohort, an observation

consistent with a previous study utilizing a French cohort

in which the T allele was not found to be significantly

associated with PWV (Lacolley et al 1998). It appears likely

that the eNOS gene may be one of the key underlying factors

that contribute to the observed ethnic differences in both

hypertension and arterial stiffness. The mechanistic basis

for how the G894T eNOS polymorphism could be linked

with effects on arterial stiffness remains unclear, but is likely

to relate to the ability of nitric oxide not only to be involved

in the maintenance of vascular tone but also to exert an effect

on arterial mechanical properties via inhibition of vascular

smooth muscle cell proliferation (Garg and Hassid 1989;

Jeremy et al 1999). At this stage, the relationship between

the G894T eNOS polymorphism and eNOS enzyme activity

and subsequent nitric oxide production is yet to be clarified,

with the polymorphism having no significant effect on eNOS

activity in a study in which this parameter was tested

(Kamitani et al 1998). Another possibility is that the G894T

polymorphism either is in strong linkage disequilibrium with

another, as yet unidentified, eNOS polymorphism(s) that

has an effect on enzyme activity or is linked with another

gene that influences arterial stiffness.

Endothelin and endothelin receptors
Endothelins -1, -2, and -3 are peptides of 21 amino acids,

produced from different genes in a diverse array of cells,

with endothelin-1 (ET-1) – the only member of the family

to be expressed in endothelial cells and vascular smooth

muscle cells (Levin 1995) – being a potent paracrine

vasoconstrictor that can modulate vasomotor tone, cell

proliferation, and vascular remodeling (Komuro et al 1988;

Levin 1995). These peptides exert their biological responses

by binding to two types of receptors (ETAR and ETBR),

which are G-protein linked and range in size from 45 kDa

to 50 kDa in various cells and tissues, including vascular

smooth muscle cells and endothelial cells (Sakurai et al

1990; Seo et al 1994). Although this is somewhat

controversial, a relationship may exist between the

expression of endothelin/endothelin receptors and

hypertension, with some studies showing overexpression

of both ET-1 and its ETAR genes in arteries of hypertensive

patients (Hasegawa et al 1994; Schiffrin et al 1997) and

others finding elevated ET-1 levels in some hypertensive

animal models (Larivière, Day, et al 1993; Larivière,

Thibault, et al 1993) and in some patients with hypertension

(Yokokawa et al 1991). A number of polymorphisms have

also been identified within both the ET-1 and ETR genes

that have shown associations with either hypertension or

elevated pulse pressure (Nicaud et al 1999; Jin et al 2003).

As well, an association has been found between specific

ETR polymorphisms and arterial stiffness. In a study by

Lajemi, Gautier, et al (2001) 528 untreated hypertensive

individuals of European origin (314 men, 214 women) were

assessed for aortic stiffness using PWV measurement and

association with the ETAR – 231 A/G and +1363 C/T

polymorphisms, the ETBR +30 G/A polymorphism, and the

ET-1 138 I/D polymorphism. In women, these analyses
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showed that the age-adjusted PWV was associated with both

the ETAR –231 A/G polymorphism and the ETBR +30 G/A

polymorphism, with the –231 G and +30 G alleles being

associated in a co-dominant manner with higher PWV, both

alleles being significant independent determinants of PWV.

In men, no association was seen for any of these

polymorphisms and PWV, although the presence of the

ETBR 30A allele was associated with higher levels of radial

artery wall cross-sectional area (Lajemi, Gautier, et al 2001).

The mechanistic basis for such sex-specific association

between the ETAR polymorphisms and arterial stiffening

has yet to be elucidated.

Extracellular matrix gene and
matrix metalloproteinase gene
polymorphisms
Matrix homeostasis is also a critical determinant of the

mechanical properties of the blood vessel, and the

mechanisms whereby matrix proteins are regulated in their

accumulation and deposition are therefore likely to play key

roles in the process of arterial stiffening (Safar et al 2003).

In view of the information pertaining to polymorphism in

the genes described above, it is critical to understand the

extent to which polymorphism within extracellular matrix

genes themselves and genes that encode for the proteins

that regulate matrix homeostasis (the matrix metallo-

proteinases [MMPs]) plays a role in relation to the process

of arterial stiffening. Evidence is emerging to indicate the

contribution of genetic variation to both the composition

and accumulation of the arterial extracellular matrix and to

the activity of specific MMPs (Ye 2000).

Elastin and fibrillin-1
Major determinants of the arterial distensibility of large

blood vessels include desmin (Lacolley et al 2001) and

elastin. The latter, a highly insoluble extracellular matrix

protein synthesized as a soluble precursor, tropoelastin, by

vascular cells (including smooth muscle cells), is the

principal component of elastic fibers from the arterial media

(Wolinsky and Glagov 1967). Interaction between the elastic

fibers and vascular proteoglycans may also influence arterial

geometric and elastic properties (Germain et al 2003).

Although no studies have yet been carried out to assess the

potential association of polymorphisms within the desmin

gene and arterial stiffness, a number of polymorphisms

have been identified within the elastin gene. One of these,

an A-to-G substitution resulting in a serine-to-glycine

replacement at amino acid 422 in the elastin protein, has

been demonstrated to be associated with carotid artery

distensibility, independent of age and blood pressure (Hanon

et al 2001).

Interestingly, recent genotype-phenotype studies have

revealed a potential link between polymorphisms within the

fibrillin-1 gene and aortic stiffness and coronary artery

disease severity (Medley et al 2002). Fibrillin-1 is the

principal constituent of 10-nm microfibrils and functions

as a scaffold for the deposition of tropoelastin, thereby

participating in both load-bearing and anchoring within the

artery. In Marfan syndrome, in which aortic stiffening and

elevated pulse pressure are the primary determinant of aortic

root dilation (Jondeau et al 1999), mutations in the fibrillin-1

gene leading to abnormalities in elastic fibers are known to

occur (Tsipouras et al 1992). In addition, within the fibrillin-1

gene, a polymorphic (variable) tandem nucleotide repeat

(VNTR) sequence, TAAAA, found within intron 28, has

been shown to be associated with elevated arterial pulse

pressure in men older than 50 years (Powell et al 1997).

More recently, this polymorphism has been found to

modulate large artery stiffness and pulse pressure within a

group of 145 individuals with moderate-severity coronary

artery disease (Medley et al 2002). Moreover, individuals

heterozygous for fibrillin-1 alleles in which the number of

TAAAA repeats was 2 and 3 (2–3 genotype) had stiffer large

arteries and higher pulse pressure than other genotypes for

this VNTR. Although the precise molecular mechanism

linking this intronic polymorphism to large artery stiffening

has yet to be elucidated, it may relate to an effect on gene

expression or occur via an influence on RNA splicing, as

the VNTR is located near the 3́  splicing boundary for exon

28 of the fibrillin-1 gene (Pereira et al 1993).

Type I collagen
Collagen is a primary constituent of extracellular matrix

and is abundant in bone, connective tissues, and the arterial

wall (Bedalov et al 1994). There is evidence to suggest an

interplay between the levels of elastin and collagen and the

mechanical properties of arteries with regard to stiffness

(Lakatta 1987; Laurent et al 2005). Polymorphism has been

shown to exist in the gene encoding for type I collagen,

which appears to be associated with arterial stiffness (Brull

et al 2001). This polymorphism (2046G/T) is located within

the promoter region of the collagen type I-α1 gene

(COL1A1) at the first base of a consensus site for the binding

of the transcription factor Sp1 and has previously been

shown to be associated with reduced bone density and
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osteoporotic fracture (Grant et al 1996). In a study of 489

Northern Irish individuals (251 men and 238 women) the

T allele was associated with a higher aortic PWV,

independent of age, sex, and mean arterial pressure (Brull

et al 2001). Presumably, this polymorphism alters Sp1

binding and therefore affects transcription rates of the

COL1A1 gene, suggesting that altered collagen deposition

is directly related to the effects on arterial stiffening.

Matrix metalloproteinase-3 (MMP-3)
With regard to matrix homeostasis, MMP-3 (stromelysin-1)

is likely to be a critical regulator of arterial stiffness, given

its wide range of substrates that include most major matrix

components within arteries, such as the fibronectins,

collagens, gelatins, laminins, elastin, and various

proteoglycans (Wilhelm et al 1987). In addition, MMP-3 is

capable of activating other MMPs, such as collagenases

(Milner et al 2001), matrilysin (Imai et al 1995), and

gelatinase B (Dreier et al 2004). The level of MMP-3 is

regulated primarily by its gene transcription, and its

promoter is known to contain sequences that mediate

induction by various stimuli, including growth factors and

cytokines such as platelet-derived growth factor (Kanaki et

al 2002) and interleukin-12 (Monteleone et al 1999), and

suppression by agents such as dexamethasone (Hoshino et

al 2001). A common polymorphism has been found within

the MMP-3 promoter, giving rise to one allele that has a run

of six adenosines (6A) and another having a run of five

adenosines (5A) at nucleotide position –1171 relative to the

transcriptional start site (Ye et al 1995). The ability of this

polymorphism to influence expression of MMP-3 via effects

on transcription factor binding within the MMP-3 promoter

has been demonstrated from cell culture experiments, in

which the 5A allele has a higher promoter activity (Ye et al

1996). Moreover, this allele has been associated with acute

coronary events (Terashima et al 1999) and aortic aneurysms

(Yoon et al 1999), most likely via an increase in matrix

proteolysis. Conversely, the 6A allele has been found to be

associated with carotid intimamedia thickening (Gnasso et

al 2000; Rauramaa et al 2000), presumably via a mechanism

arising from an increase in matrix accumulation. The

relationship between MMP-3 allelic variation and age-

related large artery stiffening appears complex, with a

recent study demonstrating that both the 5A/5A and

6A/6A homozygotes are associated with age-related

aortic stiffening, as compared with the 5A/6A hetero-

zygotes exhibiting delayed large artery stiffening

(Medley et al 2003), thereby implying that either high

(5A/5A) or low (6A/6A) MMP-3 activity has an adverse

effect on the outcome over time on aortic stiffening. In the

situation of high MMP-3 activity, the mechanism underlying

the adverse increase in aortic stiffening may arise from the

augmented degradation of elastin leading to dilatation of

the vessel lumen and a subsequent increase in stiffness as

the elastin is replaced with stiffer collagen (O’Rourke 1995).

Subsequently, adverse effects regarding aneurysmal

formation could occur via the thinning of the atherosclerotic

vessel wall as collagen is then degraded by high MMP-3

activity, either directly or via its activation of other

collagenases (Carrell et al 2002). Alternatively, plaque

instability could occur via a similar degradation mechanism

leading to weakening of the fibrous cap in the advanced

atherosclerotic lesion (Terashima et al 1999; Nojiri et al

2003).

Matrix metalloproteinase-9 (MMP-9)
More recently, a potential involvement of MMP-9

polymorphisms on large artery stiffening has also been

reported. MMP-9, otherwise known as gelatinase B, is a

92 kDa type IV collagenase, which has been shown to be

highly expressed in the rupture-prone regions of human

atherosclerotic plaques (Galis et al 1994). As its name

suggests, it is particularly active at degrading gelatins, but

its substrate specificity is sufficiently broad to render it

capable of also degrading type IV collagen, a primary

substituent of the basement membrane that underlies the

endothelium and is found enveloping smooth muscle cells

(Birkedal-Hansen et al 1993). The expression of MMP-9 is

controlled in large part at the level of its gene transcription,

and it has been shown that factors such as interleukin-1

(Huhtala et al 1991), platelet-derived growth factor, tumor

necrosis factor-α (Fabunmi et al 1996), and epidermal

growth factor (Kondapaka et al 1997) can influence the

expression of MMP-9 via stimulation of its promoter region.

In this regard it has been shown that several cis-acting

elements in the MMP-9 promoter are critical in the

regulation of its transcription, including two AP-1 sites

bound by c-fos and c-jun transcription factors, a PEA3 motif

mediating regulation by the ETS transcription factor, and a

potential binding site for nuclear factor-κB (Huhtala et al

1991; Gum et al 1996). Additionally, sites mediating

transcriptional repression of the MMP-9 gene have been

identified within its promoter (Zhang et al 1999). Within

this 9-bp sequence a C-to-T polymorphism exists

(GCGCAC/TGCC), such that repression is minimal when

the T substitution (C1562T) occurs, as shown from transient
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transfection experiments in cultured macrophages (Zhang

et al 1999). It has also been shown that individuals of the T/

T genotype tend to have a higher serum level of MMP-9

than those of either the C/T or C/C genotype (Blankenberg

et al 2003); furthermore, in a sample of 374 individuals from

France for whom coronary angiographic data were available,

there was a significant association between this

polymorphism and the severity of coronary atherosclerosis

as assessed by the number of coronary arteries that had a

stenosis > 50% (Zhang et al 1999). Using this criterion, the

number of patients with triple-vessel disease was higher in

the T/T and C/T genotypes than in the C/C genotypes.

Interestingly, this polymorphism has recently been shown

to associate with large artery stiffness in a group of

individuals with angiographically defined coronary artery

disease. Specifically, individuals carrying the T allele (either

T/T or C/T genotype) had stiffer large arteries (higher input

and characteristic impedance) and higher carotid pulse and

systolic blood pressure than individuals with the C/C

genotype (Medley et al 2004). Such a relationship remained

significant after age, sex, mean arterial pressure, total

cholesterol, low-density lipoprotein cholesterol, and

triglycerides were considered as covariates.

Moreover, in a subsample of eight aortic tissues from a

separate population of cardiac transplant patients, MMP-9

gene expression was found to be fivefold higher in T allele

carriers than in individuals with the C/C genotype (Medley

et al 2004); within these samples there was a trend towards

increased total MMP-9 protein in the T allele carriers, and

MMP-9 activity was significantly higher in this group. The

mechanism linking increased MMP-9 expression to large

artery stiffening could potentially occur via processes

involving vascular remodeling events. In this regard it is

interesting that in MMP-9-deficient mice, arterial

geometrical remodeling within the carotid artery has been

observed to be impaired subsequent to flow cessation (Galis

et al 2002), an effect most likely exerted through a

modulation of collagen metabolism and organization. A

relationship between MMP-9 expression and large artery

stiffening has also been seen in Marfan syndrome (Segura

et al 1998).

Conclusions
It has become increasingly recognized that the stiffening of

large arteries, a critical independent predictor of cardio-

vascular risk, is likely to be profoundly influenced by

variation within a diverse array of genes, the proteins for

which are involved in the modulation of arterial growth and

extracellular matrix properties. An expanding array of

genetic polymorphisms has been identified to associate with

arterial stiffness. This “candidate gene” approach has yielded

significant information about the identity of various genes

that are likely to be involved in human arterial stiffening,

and for some of these polymorphisms the mechanistic link

to this process has been suggested from structure-function

studies and supported by studies in appropriate animal

models. However, limitations to some of the studies must

be acknowledged, particularly where the mechanistic link

between the identified polymorphism(s) and the process of

arterial stiffening remains to be elucidated or in cases for

which specific polymorphisms have not been consistently

associated with arterial stiffness between different

population groups. In this regard, the use of complementary

approaches such as gene array profiling between individuals

with increased arterial stiffening as compared with

individuals with more distensible arteries has the potential

to discern genes in which polymorphisms result in

perturbations in protein expression, rather than direct effects

on protein function. The applicability of such an approach

has already been shown in a study in which a diverse set of

genes, including those involved in cellular signaling and

the mechanical regulation of vascular structure, were seen

to be differentially expressed in aortas with increased

stiffness (Durier et al 2003). The situation is likely to be

even more complex when the influence of linkage

disequilibrium and the combination of various poly-

morphisms, or haplotypes, is additionally considered. This

has been shown by studies indicating that when

combinatorial arrays of specific polymorphisms, either from

the same gene or between different genes, are used to

evaluate relationships to arterial stiffening, associations exist

that either were not evident or were less apparent when

considering one polymorphism alone (Balkestein et al 2001;

Mourad et al 2002). Clearly, future research in which there

is an integration of genetic, molecular, biochemical, clinical,

and epidemiological studies (as similarly advocated by

Staessen et al [2003]) to elucidate the genetic and

environmental factors that interact to cause human

hypertension should contribute significantly to a greater

understanding of the heritable factors that act to modulate

arterial stiffness. Ultimately, the clarification of these genetic

influences will allow for the targeting of key factors for

therapeutic benefit, particularly in individuals with either

increased or premature arterial stiffening.



Vascular Health and Risk Management 2005:1(4) 341

Genes and large artery stiffening

References
Albaladejo P, Bouaziz H, Duriez M, et al. 1994. Angiotensin converting

enzyme inhibition prevents the increase in aortic collagen in rats.
Hypertension, 23:74–82.

Amant C, Hamon M, Bauters C, et al. 1997. The angiotensin II type 1
receptor gene polymorphism is associated with coronary artery
vasoconstriction. J Am Coll Cardiol, 29:486–90.

Asmar RG, Pannier B, Santoni JP, et al. 1988. Reversion of cardiac
hypertrophy and reduced arterial compliance after converting enzyme
inhibition in essential hypertension. Circulation, 78:941–50.

Atwood LD, Samollow PB, Hixson JE, et al. 2001. Genome-wide linkage
analysis of pulse pressure in Mexican Americans. Hypertension,
37:425–8.

Balkestein EJ, Staessen JA, Wang JG, et al. 2001. Carotid and femoral
artery stiffness in relation to three candidate genes in a white
population. Hypertension, 38:1190–7.

Bedalov A, Breault DT, Sokolov BP, et al. 1994. Regulation of the α1(I)
collagen promoter in vascular smooth muscle cells: comparison with
other α1(I) collagen-producing cells in transgenic animals and cultured
cells. J Biol Chem, 269:4903–9.

Benetos A, Bouaziz H, Albaladejo P, et al. 1995. Carotid artery mechanical
properties of Dahl salt-sensitive rats. Hypertension, 25:272–7.

Benetos A, Cambien F, Gautier S, et al. 1996. Influence of the angiotensin
II type 1 receptor gene polymorphism on the effects of perindopril
and nitrendipine on arterial stiffness in hypertensive individuals.
Hypertension, 28:1081–4.

Benetos A, Gautier S, Lafleche A, et al. 2000. Blockade of angiotensin II
type 1 receptors: effect on carotid and radial artery structure and
function in hypertensive humans. J Vasc Res, 37:8–15.

Benetos A, Gautier S, Ricard S, et al. 1996. Influence of angiotensin-
converting enzyme and angiotensin II type 1 receptor gene
polymorphisms on aortic stiffness in normotensive and hypertensive
patients. Circulation, 94:698–703.

Benetos A, Laurent S, Hoeks AP, et al. 1993. Arterial alterations with
aging and high blood pressure. A noninvasive study of carotid and
femoral arteries. Arterioscler Thromb, 13:90–7.

Benetos A, Levy BI, Lacolley P, et al. 1997. Role of angiotensin II and
bradykinin on aortic collagen following converting enzyme inhibition
in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol,
17:3196–201.

Benetos A, Pannier B, Brahimi M, et al. 1993. Dose-related changes in
the mechanical properties of the carotid artery in WKY rats and SHR
following relaxation of arterial smooth muscle. J Vasc Res, 30:23–9.

Benetos A, Okuda K, Lajemi M, et al. 2001. Telomere length as an indicator
of biological aging: the gender effect and relation with pulse pressure
and pulse wave velocity. Hypertension, 37:381–5.

Benetos A, Waeber B, Izzo J, et al. 2002. Influence of age, risk factors,
and cardiovascular and renal disease on arterial stiffness: clinical
applications. Am J Hypertens, 15:1101–8.

Benjafield AV, Jeyasingam CL, Nyholt DR, et al. 1998. G-protein β3
subunit gene (GNB3) variant in causation of essential hypertension.
Hypertension, 32:1094–7.

Birkedal-Hansen H, Moore WG, Bodden MK, et al. 1993. Matrix
metalloproteinases: a review. Crit Rev Oral Biol Med, 4:197–250.

Blankenberg S, Rupprecht HJ, Poirier O, et al. AtheroGene Investigators.
2003. Plasma concentrations and genetic variation of matrix
metalloproteinase 9 and prognosis of patients with cardiovascular
disease. Circulation, 107:1579–85.

Bloem LJ, Foroud TM, Ambrosius WT, et al. 1997. Association of the
angiotensinogen gene to serum angiotensinogen in blacks and whites.
Hypertension, 29:1078–82.

Bonithon-Kopp C, Ducimetiere P, Touboul PJ, et al. 1994. Plasma
angiotensin-converting enzyme activity and carotid wall thickening.
Circulation, 89:952–4.

Brull DJ, Murray LJ, Boreham CA, et al. 2001. Effect of a COL1A1 Sp1
binding site polymorphism on arterial pulse wave velocity: an index
of compliance. Hypertension, 38:444–8.

Bozec E, Fassot C, Tropeano AI, et al. 2003. Angiotensinogen gene M235T
polymorphism and reduction in wall thickness in response to
antihypertensive treatment. Clin Sci (Lond), 105:637–44.

Bozec E, Lacolley P, Bergaya S, et al. 2004. Arterial stiffness and
angiotensinogen gene in hypertensive patients and mutant mice.
J Hypertens, 22:1299–307.

Camp NJ, Hopkins PN, Hasstedt SJ, et al. 2003. Genome-wide multipoint
parametric linkage analysis of pulse pressure in large, extended Utah
pedigrees. Hypertension, 42:322–8.

Carrell TW, Burnand KG, Wells GM, et al. 2002. Stromelysin-1 (matrix
metalloproteinase-3) and tissue inhibitor of metalloproteinase-3 are
overexpressed in the wall of abdominal aortic aneurysms. Circulation,
105:477–82.

Caulfield M, Lavender P, Newell-Price J, et al. 1995. Linkage of the
angiotensinogen gene locus to human essential hypertension in African
Caribbeans. J Clin Invest, 96:687–92.

Chen W, Srinivasan SR, Elkasabany A, et al. 2001. Combined effects of
endothelial nitric oxide synthase gene polymorphism (G894T) and
insulin resistance status on blood pressure and familial risk of
hypertension in young adults: the Bogalusa Heart Study. Am J
Hypertens, 14:1046–52.

Chen W, Srinivasan SR, Bond MG, et al. 2004. Nitric oxide synthase gene
polymorphism (G894T) influences arterial stiffness in adults: the
Bogalusa Heart Study. Am J Hypertens, 17:553–9.

De Luca N, Savonitto S, Ricciardelli B, et al. 1993. Effects of the single
and repeated administration of benazepril on systemic and forearm
circulation and cardiac function in hypertensive patients. Cardiovasc
Drugs Ther, 7:211–16.

DeStefano AL, Larson MG, Mitchell GF, et al. 2004. Genome-wide scan
for pulse pressure in the National Heart, Lung and Blood Institute’s
Framingham Heart Study. Hypertension, 44:152–5.

Dong Y, Zhu H, Sagnella GA, et al. 1999. Association between the C825T
polymorphism of the G protein β3-subunit gene and hypertension in
blacks. Hypertension, 34:1193–6.

Draaijer P, Kool MJ, Maessen JM, et al. 1993. Vascular distensibility and
compliance in salt-sensitive and salt-resistant borderline hypertension.
J Hypertens, 11:1199–207.

Dreier R, Grassel S, Fuchs S, et al. 2004. Pro-MMP-9 is a specific
macrophage product and is activated by osteoarthritic chondrocytes
via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp Cell Res, 297:
303–12.

Durier S, Fassot C, Laurent S, et al. 2003. Physiological genomics of human
arteries: quantitative relationship between gene expression and arterial
stiffness. Circulation, 108:1845–51.

Dzau VJ, Safar ME. 1988. Large conduit arteries in hypertension: role of
the vascular renin-angiotensin system. Circulation, 77:947–54.

Endemann DH, Touyz RM, Iglarz M, et al. 2004. Eplerenone prevents
salt-induced vascular remodelling and cardiac fibrosis in stroke-prone
spontaneously hypertensive rats. Hypertension, 43:1252–7.

Fabunmi RP, Baker AH, Murray EJ, et al. 1996. Divergent regulation by
growth factors and cytokines of 95 kDa and 72 kDa gelatinases and
tissue inhibitors or metalloproteinases-1, -2, and -3 in rabbit aortic
smooth muscle cells. Biochem J, 315:335–42.

Farfel Z, Bourne HR, Iiri T. 1999. The expanding spectrum of G protein
diseases. N Engl J Med, 340:1012–20.

Galis ZS, Johnson C, Godin D, et al. 2002. Targeted disruption of the
matrix metalloproteinase-9 gene impairs smooth muscle cell migration
and geometrical arterial remodeling. Circ Res, 91:852–9.

Galis ZS, Sukhova GK, Lark MW, et al. 1994. Increased expression of
matrix metalloproteinases and matrix degrading activity in vulnerable
regions of human atherosclerotic plaques. J Clin Invest, 94:2493–503.



Vascular Health and Risk Management 2005:1(4)342

Agrotis

Gardier S, Vincent M, Lantelme P, et al. 2004. A1166C polymorphism of
angiotensin II type 1 receptor, blood pressure and arterial stiffness in
hypertension. J Hypertens, 22:2135–42.

Garg UC, Hassid A. 1989. Nitric oxide-generating vasodilators and 8-
bromo-cyclic guanosine monophosphate inhibit mitogenesis and
proliferation of cultured rat vascular smooth muscle cells. J Clin Invest,
83:1774–7.

Germain DP, Boutouyrie P, Laloux B, et al. 2003. Arterial remodeling and
stiffness in patients with pseudoxanthoma elasticum. Arterioscler
Thromb Vasc Biol, 23:836–41.

Girerd X, Hanon O, Mourad JJ, et al. 1998. Lack of association between
renin-angiotensin system, gene polymorphisms, and wall thickness
of the radial and carotid arteries. Hypertension, 32:579–83.

Gnasso A, Motti C, Irace C, et al. 2000. Genetic variation in human
stromelysin gene promoter and common carotid geometry in healthy
male subjects. Arterioscler Thromb Vasc Biol, 20:1600–5.

Grant SF, Reid DM, Blake G, et al. 1996. Reduced bone density and
osteoporosis associated with a polymorphic Sp1 binding site in the
collagen type I alpha 1 gene. Nat Genet, 14:203–5.

Gum R, Lengyel E, Juarez J, et al. 1996. Stimulation of 92-kDa gelatinase
B promoter activity by ras is mitogen-activated protein kinase kinase
1-independent and requires multiple transcription factor binding sites
including closely spaced PEA3/ets and AP-1 sequences. J Biol Chem,
271:10672–80.

Hanon O, Luong V, Mourad JJ, et al. 2001. Aging, carotid artery
distensibility, and the Ser422Gly elastin gene polymorphism in
humans. Hypertension, 38:1185–9.

Hanon O, Luong V, Mourad JJ, et al. 2002. Association between the G
protein β3 subunit 825T allele and radial artery hypertrophy. J Vasc
Res, 39:497–503.

Hasegawa K, Fujiwara H, Doyama K, et al. 1994. Endothelin-1-selective
receptor in the arterial intima of patients with hypertension.
Hypertension, 23:288–93.

Hautanena A, Lankinen L, Kupari M, et al. 1998. Associations between
aldosterone synthase gene polymorphism and the adrenocortical
function in males. J Intern Med, 244:11–18.

Hengstenberg C, Schunkert H, Mayer B, et al. 2001. Association between
a polymorphism in the G protein β3 subunit gene (GNB3) with arterial
hypertension but not with myocardial infarction. Cardiovasc Res,
49:820–7.

Henrion D, Amant C, Benessiano J, et al. 1998. Angiotensin II type 1
receptor gene polymorphism is associated with an increased vascular
reactivity in the human mammary artery in vitro. J Vasc Res, 35:
356–62.

Hoshino Y, Mio T, Nagai S, et al. 2001. Fibrogenic and inflammatory
cytokines modulate mRNA expressions of matrix metalloproteinase-
3 and tissue inhibitor of metalloproteinase-3 in type II pneumocytes.
Respiration, 68:509–16.

Huhtala P, Tuuttila A, Chow LT, et al. 1991. Complete structure of the
human gene for 92-kDa type IV collagenase. Divergent regulation of
expression for the 92- and 72-kilodalton enzyme genes in HT-1080
cells. J Biol Chem, 266:16485–90.

Imai K, Yokohama Y, Nakanishi I, et al. 1995. Matrix metalloproteinase 7
(matrilysin) from human rectal carcinoma cells. Activation of the
precursor, interaction with other matrix metalloproteinases and
enzymic properties. J Biol Chem, 270:6691–7.

Jaeckel M, Simon G. 2003. Altered structure and reduced distensibility of
arteries in Dahl salt-sensitive rats. J Hypertens, 21:311–19.

Jeanclos E, Schork NJ, Kyvik KO, et al. 2000. Telomere length inversely
correlates with pulse pressure and is highly familial. Hypertension,
36:195–200.

Jeremy JY, Rowe D, Emsley AM, et al. 1999. Nitric oxide and the
proliferation of vascular smooth muscle cells. Cardiovasc Res, 43:
580–94.

Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. 1992. Molecular basis
of human hypertension: role of angiotensinogen. Cell, 71:169–80.

Jin JJ, Nakura J, Wu Z, et al. 2003. Association of endothelin-1 gene variant
with hypertension. Hypertension, 41:163–7.

Jondeau G, Boutouyrie P, Lacolley P, et al. 1999. Central pulse pressure is
a major determinant of ascending aorta dilation in Marfan syndrome.
Circulation, 99:2677–81.

Kamitani S, Saito Y, Miyamoto Y, et al. 1998. Effect of Glu298Asp missense
mutation of human endothelial nitric oxide synthase gene on its enzyme
activity [abstract]. Circulation, 97(Suppl):I-537.

Kanaki T, Bujo H, Mori S, et al. 2002. Functional analysis of aortic
endothelial cells expressing mutant PDGF receptors with respect to
expression of matrix metalloproteinase-3. Biochem Biophys Res
Commun, 294:231–7.

Komuro I, Kurihara H, Sugiyama T, et al. 1988. Endothelin stimulates
c-fos and c-myc expression and proliferation of vascular smooth
muscle cells. FEBS Lett, 238:249–52.

Kondapaka SB, Fridman R, Reddy KB. 1997. Epidermal growth factor
and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9)
in human breast cancer cells. Int J Cancer, 70:722–6.

Kool MJ, Lustermans FA, Breed JG, et al. 1995. The influence of
perindopril and the diuretic combination amiloride + hydro-
chlorothiazide on the vessel wall properties of large arteries in
hypertensive patients. J Hypertens, 13:839–48.

Lacolley P, Challande P, Boumaza S, et al. 2001. Mechanical properties
and structure of carotid arteries in mice lacking desmin. Cardiovasc
Res, 51:178–87.

Lacolley P, Gautier S, Poirier O, et al. 1998. Nitric oxide synthase gene
polymorphisms, blood pressure and aortic stiffness in normotensive
and hypertensive subjects. J Hypertens, 16:31–5.

Lacolley P, Labat C, Pujol A, et al. 2002. Increased carotid wall elastic
modulus and fibronectin in aldosterone-salt-treated rats: effects of
eplerenone. Circulation, 106:2848–53.

Lajemi M, Gautier S, Poirier O, et al. 2001. Endothelin gene variants and
aortic and cardiac structure in never-treated hypertensives. Am J
Hypertens, 14:755–60.

Lajemi M, Labat C, Gautier S, et al. 2001. Angiotensin II type 1 receptor-
153A/G and 1166A/C gene polymorphisms and increase in aortic
stiffness with age in hypertensive subjects. J Hypertens, 19:407–13.

Lakatta EG. 1987. Human aging: changes in structure and function. J Am
Coll Cardiol, 10:42A–47A.

Laogun AA, Gosling RG. 1982. In vivo arterial compliance in man. Clin
Phys Physiol Meas, 3:201–12.

Larivière R, Day R, Schiffrin EL. 1993. Increased expression of endothelin-
1 gene in blood vessels of deoxycorticosterone acetate-salt
hypertensive rats. Hypertension, 21:916–20.

Larivière R, Thibault G, Schiffrin EL. 1993. Increased endothelin-1 content
in blood vessels of deoxycorticosterone acetate-salt hypertensive but
not in spontaneously hypertensive rats. Hypertension, 21:294–300.

Laurent S, Boutouyrie P, Lacolley P. 2005. Structural and genetic bases of
arterial stiffness. Hypertension, 45:1050–5.

Levin ER. 1995. Endothelins. N Engl J Med, 333:356–63.
Levy BI, Benessiano J, Poitevin P, et al. 1990. Endothelium-dependent

mechanical properties of the carotid artery in WKY and SHR. Role of
angiotensin converting enzyme inhibition. Circ Res, 66:321–8.

Levy BI, Michel JB, Salzmann JL, et al. 1988. Effects of chronic inhibition
of converting enzyme on mechanical and structural properties of
arteries in rat renovascular hypertension. Circ Res, 63:227–39.

Levy BI, Michel JB, Salzmann JL, et al. 1993. Long-term effects of
angiotensin-converting enzyme inhibition on the arterial wall of adult
spontaneously hypertensive rats. Am J Cardiol, 71:8E–16E.

Levy BI, Poitevin P, Duriez M, et al. 1997. Sodium, survival, and the
mechanical properties of the carotid artery in stroke-prone hypertensive
rats. J Hypertens, 15:251–8.

Lombes M, Oblin ME, Gasc JM, et al. 1992. Immunohistochemical and
biochemical evidence for a cardiovascular mineralocorticoid receptor.
Circ Res, 71:503–10.



Vascular Health and Risk Management 2005:1(4) 343

Genes and large artery stiffening

Marsden PA, Heng HH, Scherer SW, et al. 1993. Structure and
chromosomal localization of the human constitutive endothelial nitric
oxide synthase gene. J Biol Chem, 268:17478–88.

Mattace-Raso FU, van der Cammen TJ, Sayed-Tabatabaei FA, et al. 2004.
Angiotensin-converting enzyme gene polymorphism and common
carotid stiffness. The Rotterdam study. Atherosclerosis, 174:121–6.

Medley TL, Cole TJ, Dart AM, et al. 2004. Matrix metalloproteinase-9
genotype influences large artery stiffness through effects on aortic
gene and protein expression. Arterioscler Thromb Vasc Biol, 24:
1479–84.

Medley TL, Cole TJ, Gatzka CD, et al. 2002. Fibrillin-1 genotype is
associated with aortic stiffness and disease severity in patients with
coronary artery disease. Circulation, 105:810–15.

Medley TL, Kingwell BA, Gatzka CD, et al. 2003. Matrix metallo-
proteinase-3 genotype contributes to age-related aortic stiffening
through modulation of gene and protein expression. Circ Res, 92:
1254–61.

Milner JM, Elliott SF, Cawston TE. 2001. Activation of procollagenases
is a key control point in cartilage collagen degradation: interaction of
serine and metalloproteinase pathways. Arthritis Rheum, 44:
2084–96.

Monteleone G, MacDonald TT, Wathen NC, et al. 1999. Enhancing lamina
propria Th1 cell responses with interleukin 12 produces severe tissue
injury. Gastroenterology, 117:1069–77.

Mourad J-J, Ducailar G, Rudnicki A, et al. 2002. Age-related increase of
pulse-pressure and gene polymorphisms in essential hypertension: a
preliminary study. J Renin Angiotensin Aldosterone Syst, 3:109–15.

Nagai Y, Fleg JL, Kemper MK, et al. 1999. Carotid arterial stiffness as a
surrogate for aortic stiffness: relationship between carotid artery
pressure-strain elastic modulus and aortic pulse wave velocity.
Ultrasound Med Biol, 25:181–8.

Nicaud V, Poirier O, Behague I, et al. 1999. Polymorphisms of the
endothelin-A and -B receptor genes in relation to blood pressure and
myocardial infarction: the Etude Cas-Temoins sur l’Infarctus du
Myocarde (ECTIM) Study. Am J Hypertens, 12:304–10.

Nojiri T, Morita H, Imai Y, et al. 2003. Genetic variations of matrix
metalloproteinase-1 and -3 promoter regions and their associations
with susceptibility to myocardial infarction in Japanese. Int J Cardiol,
92:181–6.

Nürnberger J, Saez AO, Mitchell A, et al. 2004. The T-allele of the C825T
polymorphism is associated with higher arterial stiffness in young
healthy males. J Hum Hypertens, 18:267–71.

O’Rourke M. 1995. Mechanical principles in arterial disease. Hypertension,
26:2–9.

Palmer RM, Ferrige AG, Moncada S. 1987. Nitric oxide release accounts
for the biological activity of endothelium-derived relaxing factor.
Nature, 327:524–6.

Pereira L, D’Alessio M, Ramirez F, et al. 1993. Genomic organization of
the sequence coding for fibrillin, the defective gene product in Marfan
syndrome. Hum Mol Genet, 2:961–8.

Philip I, Plantefève G, Vuillaumier-Barrot S, et al. 1999. G849T
polymorphism in the endothelial nitric oxide synthase gene is
associated with an enhanced vascular responsiveness to phenylephrine.
Circulation, 99:3096–8.

Pojoga L, Gautier S, Blanc H, et al. 1998. Genetic determination of plasma
aldosterone levels in essential hypertension. Am J Hypertens, 11:
856–60.

Powell JT, Turner RJ, Henney AM, et al. 1997. An association between
arterial pulse pressure and variation in the fibrillin-1 gene. Heart,
78:396–8.

Rauramaa R, Väisänen SB, Luong L-A, et al. 2000. Stromelysin-1 and
interleukin-6 gene promoter polymorphisms are determinants of
asymptomatic carotid artery atherosclerosis. Arterioscler Thromb Vasc
Biol, 20:2657–62.

Rees DD, Palmer RM, Moncada S. 1989. Role of endothelium-derived
nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U
S A, 86:3375–8.

Robert V, Van Thiem N, Cheav SL, et al. 1994. Increased cardiac types I
and III collagen mRNAs in aldosterone-salt hypertension.
Hypertension, 24:30–6.

Rudnichi A, Safar ME, Lajemi M, et al. 2004. Gene polymorphisms of the
renin-angiotensin system and age-related changes in systolic and
diastolic blood pressure in subjects with hypertension. Am J Hypertens,
17:321–7.

Safar ME, Lajemi M, Rudnichi A, et al. 2004. Angiotensin-converting
enzyme D/I gene polymorphism and age-related changes in pulse
pressure in subjects with hypertension. Arterioscler Thromb Vasc Biol,
24:782–6.

Safar ME, Levy BI, Struijker-Boudier H. 2003. Current perspectives on
arterial stiffness and pulse pressure in hypertension and cardiovascular
diseases. Circulation, 107:2864–9.

Sakurai T, Yanagisawa M, Takuwa Y, et al. 1990. Cloning of a cDNA
encoding a non-isopeptide-selective subtype of the endothelin receptor.
Nature, 348:732–5.

Schiffrin EL, Deng LY, Sventek P, et al. 1997. Enhanced expression of
endothelin-1 gene in resistance arteries in severe human essential
hypertension. J Hypertens, 15:57–63.

Schunkert H, Hense HW, Döring A, et al. 1998. Association between a
polymorphism in the G protein β3 subunit gene and lower renin and
elevated diastolic blood pressure levels. Hypertension, 32:510–3.

Segura AM, Luna RE, Horiba K, et al. 1998. Immunohistochemistry of
matrix metalloproteinases and their inhibitors in thoracic aortic
aneurysms and aortic valves of patients with Marfan’s syndrome.
Circulation, 98(Suppl 19):II331–7; discussion II337–8.

Seo B, Oemar BS, Siebenmann R, et al. 1994. Both ETA and ETB receptors
mediate contraction to endothelin-1 in human blood vessels.
Circulation, 89:1203–8.

Siffert W. 2000. G protein β3 subunit 825T allele, hypertension, obesity,
and diabetic nephropathy. Nephrol Dial Transplant, 15:1298–306.

Siffert W, Rosskopf D, Siffert G, et al. 1998. Association of a human
G-protein beta3 subunit variant with hypertension. Nat Genet, 18:
45–8.

Snieder H, Hayward CS, Perks U, et al. 2000. Heritability of central systolic
pressure augmentation: a twin study. Hypertension, 35:574–9.

Staessen JA, Wang J, Bianchi G, et al. 2003. Essential hypertension. Lancet,
361:1629–41.

Sun Y, Ramires FJ, Weber KT. 1997. Fibrosis of atria and great vessels in
response to angiotensin II or aldosterone infusion. Cardiovasc Res,
35:138–47.

Takeda Y, Miyamori I, Yoneda T, et al. 1995. Production of aldosterone in
isolated rat blood vessels. Hypertension, 25:170–3.

Taniwaki H, Kawagishi T, Emoto M, et al. 1999. Association of ACE gene
polymorphism with arterial stiffness in patients with type 2 diabetes.
Diabetes Care, 22:1858–64.

Terashima M, Akita H, Kanazawa K, et al. 1999. Stromelysin promoter
5A/6A polymorphism is associated with acute myocardial infarction.
Circulation, 99:2717–19.

Topouchian J, Asmar R, Sayegh F, et al. 1999. Changes in arterial structure
and function under trandolapril-verapamil combination in
hypertension. Stroke, 30:1056–64.

Topouchian J, Brisac AM, Pannier B, et al. 1998. Assessment of the acute
arterial effects of converting enzyme inhibition in essential
hypertension: a double-blind, comparative and crossover study. J Hum
Hypertens, 12:181–7.

Tsipouras P, Del Mastro R, Sarfarazi M, et al. 1992. Genetic linkage of
the Marfan syndrome, ectopia lentis, and congenital contractural
arachnodactyly to the fibrillin genes on chromosomes 15 and 5. The
International Marfan Syndrome Collaborative Study. N Engl J Med,
326:905–9.

van der Heijden-Spek JJ, Staessen JA, Fagard RH, et al. 2000. Effect of
age on brachial artery wall properties differs from the aorta and is
gender dependent: a population study. Hypertension, 35:637–42.

White PC. 1994. Disorders of aldosterone biosynthesis and action. N Engl
J Med, 331:250–8.



Vascular Health and Risk Management 2005:1(4)344

Agrotis

White PC, Slutsker L. 1995. Haplotype analysis of CYP11B2. Endocr
Res, 21:437–42.

Wilhelm SM, Collier IE, Kronberger A, et al. 1987. Human skin fibroblast
stromelysin: structure, glycosylation, substrate specificity, and
differential expression in normal and tumorigenic cells. Proc Natl Acad
Sci U S A, 84:6725–9.

Wilkinson IB, MacCallum H, Cockcroft JR, et al. 2002. Inhibition of basal
nitric oxide synthesis increases aortic augmentation index and pulse
wave velocity in vivo. Br J Clin Pharmacol, 53:189–92.

Wolinsky H, Glagov S. 1967. A lamellar unit of aortic medial structure
and function in mammals. Circ Res, 20:99–111.

Xiao F, Puddefoot JR, Barker S, et al. 2004. Mechanism for aldosterone
potentiation of angiotensin II-stimulated rat arterial smooth muscle
cell proliferation. Hypertension, 44:340–5.

Ye S. 2000. Polymorphism in matrix metalloproteinase gene promoters:
implication in regulation of gene expression and susceptibility of
various diseases. Matrix Biol, 19:623–9.

Ye S, Eriksson P, Hamsten A, et al. 1996. Progression of coronary
atherosclerosis is associated with a common genetic variant of the
human stromelysin-1 promoter which results in reduced gene
expression. J Biol Chem, 271:13055–60.

Ye S, Watts GF, Mandalia S, et al. 1995. Preliminary report: genetic
variation in the human stromelysin promoter is associated with
progression of coronary atherosclerosis. Br Heart J, 73:209–15.

Yokokawa K, Tahara H, Kohno M, et al. 1991. Hypertension associated
with endothelin-secreting malignant hemangioendothelioma. Ann
Intern Med, 114:213–15.

Yoon S, Tromp G, Vongpunsawad S, et al. 1999. Genetic analysis of MMP3,
MMP9, and PAI-1 in Finnish patients with abdominal aortic or
intracranial aneurysms. Biochem Biophys Res Commun, 265:563–8.

Zhang B, Ye S, Herrmann SM, et al. 1999. Functional polymorphism in
the regulatory region of gelatinase B gene in relation to severity of
coronary atherosclerosis. Circulation, 99:1788–94.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


