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The physiological relevance of p75 neurotrophin receptor-mediated internalization of
ligands with no apparent trophic functions by nerve cells remains unclear. Herein, we
propose a homeostatic role for this in clearance of amyloid β (Aβ) in the brain. We
hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation
in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a
capacity for maintaining physiological levels of this peptide in target areas. Thus, in addition
to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic
innervations could supply the cerebral cortex with an elaborate system for Aβ drainage.
Interpreting the emerging relationship of molecular data with recognized role of cholinergic
modulator system in regulating cortical activity should provide new insights into the brain
physiology and mechanisms of neuro-degenerative diseases.
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Depositions of Aβ plaques and neuro-fibrillary tangles in limbic,
para-limbic, and associative cortices with depletion of acetyl-
choline (ACh) have been recognized as reliable pathological hall-
marks of Alzheimer’s disease (AD) (Davies and Maloney, 1976;
Mesulam, 2004). Discovery of the functional relationship between
the cognitive decline and loss of cholinergic markers in the plaque
laden cerebral cortex with degeneration of source neurons in the
nucleus basalis Meynert (NBM) of basal forebrain (BF) marked a
major breakthrough in interpreting the AD since its first account
in 1907 by Alzheimer (1907). Indeed, closure was reached in the
1970s of the descriptive “anamneses morbid” and a transmitter-
based hypothesis of AD was launched, with hopeful therapeutic
projections. Alas, both the functional vision and optimistic cura-
tive forecasts were doomed to defeat, with in-depth research
revealing an incredibly composite nature of the pathology, gradu-
ally shifting the heuristic spotlight back onto descriptive grounds
and focusing the main emphasis on plaque and tangle related
processes (Selkoe, 1997; Holtzman et al., 2011). Thus, the sig-
nificance of cholinergic deficiency in the patho-physiology of the
disease was relegated to the secondary rank of undecided impor-
tance. Without doubt, such dialectical back-tracking owes itself to
tough questions being identified yet not addressed explicitly by the
cholinergic hypothesis (Francis et al., 1999; Terry and Buccafusco,
2003). Indeed, neither the cellular-molecular basis for the greater
vulnerability of cholinergic axons nor the partial restorations of
mnemonic and cognitive functions by anti-cholinesterase drugs
have been mechanistically explained. Conceivably, most challeng-
ing to the cholinergic theory of AD were reports doubting the
selective loss of cholinergic axons as well as the causal relationship
between the degeneration of neurons supplying ACh to the cerebral
mantle with plaque- or tangle-associated pathology (Davis et al.,

1999; Zarow et al., 2003). Along with overtly intact brainstem and
striatal cholinergic neurons in the AD brain with absence of amy-
loid plaque and neurofibrillary tangle related pathology in sub-
jects affected by atrophy of hind-brain cholinergic nuclei, these
unsettled views suggested important unknowns in the biology of
the forebrain cholinergic system, in all likelihood, extending its
functions beyond the mere supply of ACh to the cerebral cortex.

What is unique about BF cholinergic neurons and why contro-
versy persists over their significance in the patho-biology of AD
for over almost a half of a century? In addition to being one of
the largest neurons in the forebrain, which channel the rostral
stream of signals from the reticular core and deep brain nuclei
to the cerebral mantle (extra-thalamic route), these represent the
only population of nerve cells in the adult forebrain that expresses
unusually high level of the p75 neurotrophin receptor (p75NTR)
(Hartig et al., 1998; Mufson et al., 2008). Like other members
of the tumor necrosis factor (TNF) receptor family to which it
belongs, p75NTR lacks endogenous catalytic activity and relies on
the recruitment of co-receptors and signaling molecular partners
for initiating the cellular response. Distinctly, however, p75NTR
is the only member of this family that binds neurotrophins and
brain-derived growth factors, playing a key role in activation of
survival or apoptotic processes (Costantini et al., 2005; Coulson
et al., 2009; Knowles et al., 2009) (Figure 1). To make matters
more complex, p75NTR also binds with high affinity to a range
of collateral ligands of no obvious neurotrophic function, includ-
ing tetanus toxins, some viral glycoproteins, prion protein and Aβ

peptide (Yaar et al., 1997; Dechant and Barde, 2002). Although the
fate of ligands bound and internalized in complex with p75NTR
is a matter of ongoing research, emerging evidence suggests at
least three routes that can be pursued by the endocytosed Aβ
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(Bronfman and Fainzilber, 2004; Trajkovic et al., 2008; Sorkin
and von Zastrow, 2009): (1) advancement via early endosomes
and trans-Golgi networks into recycling compartments with par-
tial back-fusion to surface membranes; (2) formation of signaling
endosomes to influence nuclear function and gene expression and
(3) maturation into late endosomes destined to fusion with lyso-
somes and degradation of cargo or escape through sorting in MVBs
and release in association with exosomes (Figure 1). Due to such
special arrangements, the unusually high expression of p75NTR
in BF cholinergic neurons is likely to render the later particularly
responsive to a range of putative ligands, including Aβ (Counts
and Mufson, 2005; Coulson et al., 2009; Knowles et al., 2009).
On the other hand, the capacity to sequestrate and degrade Aβ

by cholinergic neurons and their projections is expected to play a
pivotal role in the maintenance of low physiological levels of Aβ

in axon terminal fields. This intuitive notion received experimen-
tal backing from recent studies in primary neuronal cultures of BF,
which demonstrated robust internalization and transport of fluor
labeled Aβ in conjunction with a p75NTR antibody (IgG192-
Cy3) in cholinergic neurons, with its accumulation in lysosomes
(Ovsepian and Herms, 2013; Ovsepian et al., 2013). Unlike reg-
ulated endocytosis which is reliant on high voltage gated Ca2+
influx and canonical neuronal SNAREs (e.g., SNAP-25, syntaxin
1/2 and VAMP 1/2), the internalization of p75NTR requires Ca2+
entry via low-threshold T-type channels or mobilization of Ca2+
from thapsigargin-sensitive internal stores and is independent of
VAMP 1/2 and SNAP-25. Quantitative analysis of the distribution
of IgG192-Cy3 revealed its deposition in acidifying late endo-
somes and lysosomes—key organelles involved in degradation of
cellular debris and metabolites. Although limited data is avail-
able on the relevance of these processes to Aβ clearance within
the intact brain, injection of IgG192-Cy3 into the medial frontal
cortex or lateral cerebral ventricle in rats also revealed its rapid
axonal internalization followed by retrograde transport and accu-
mulation in putative lysosomes of cholinergic neurons in the BF
(Hartig et al., 1998; Ovsepian et al., 2013).

Thus, it emerges that in addition to modulator functions
reliant on synaptic release of ACh (Figure 1) and muscarinic (M1

and M3) receptor-mediated regulation of the processing of amy-
loid precursor protein (APP) (Nitsch et al., 1993; Fisher, 2012),
diffuse cholinergic innervations of the cerebral cortex may also
contribute to Aβ clearance. While further research is warranted
to establish the contribution of the latter process to the multifar-
ious mechanisms of regulation of Aβ homeostasis, direct evidence
for dissociation of cognitive and anti-amyloidogenic functions
of the BF cholinergic system has been provided recently (Wang
et al., 2011; Laursen et al., 2013). Indeed, unlike the selective lesion
of cholinergic cells with p75NTR targeting neurotoxin (IgG192-
saporin) in AD APPswe/PS1dE9 mice, exhibiting cognitive deficit
and enhanced deposition of Aβ in several cortical regions, genetic
deletion of p75NTR without ablation of cholinergic neurons
led to enhanced cortical Aβ loading in the absence of cognitive
deficit. Together with clinical data demonstrating that neither
Aβ accumulation nor cognitive deficit in AD can be attributed
exclusively to depletion of cortical ACh, these findings strongly
support the direct involvement of p75NTR rich cholinergic axons
in clearance of cortical Aβ. Finally, the dual neuro-modulator
and homeostatic functions of cholinergic projections received

FIGURE 1 | (A) Schematic illustration of the human BF cholinergic
projections with modulator and neurotrophic mechanisms: coronal brain
section. Long-range cholinergic axons and collaterals supply the entire
cerebral mantle with acetylcholine (upper), which via muscarinic
(mAChR1–5) and nicotinic (nAChRI-III) cholinergic receptors regulate a wide
range of cortical processes and functions (lower). The diffuse projections
through retrograde axonal transport channel back to the basal forebrain
cholinergic neurons signaling endosomes and organelles, which carry
trophic factors and other ligands bound to trkA-C and p75NTR. The
homeostatic significance of p75NTR-mediated uptake of Aβ and its
degradation in lysosomes of basal forebrain cholinergic neurons is
discussed. (B) Graphical illustration of 3 possible intra-cellular routes taken
by p75NTR (and Aβ) carrying endosomes. After internalization via
clathrin-dependent and -independent processes, a fraction of p75NTR (and
Aβ) loaded endosomes is recycled back to the plasma membrane, whereas
the rest is sorted to signaling endosomes and multivesicular bodies
(MVBs). From here, bulk of the cargo is degraded in hybrid
MVB—lysosomal compartments, which comprise the primary metabolic
hot spots of Aβ proteolysis (Mullins and Bonifacino, 2001) while a minute
fraction escapes from degradation through MVB sorting into exosomes and
becomes available for exocytotic released from the cell (Rajendran et al.,
2006; Trajkovic et al., 2008). Abbreviations: EE and RE—early and recycling
endosomes, respectively; ER—endoplasmic reticulum; SE—signaling
endosomes (SE); Nuc.—nucleus; LE and LS—late endosomes and
lysosomes, respectively.

experimental support from studies of AD brain autopsies, which
highlighted considerable topographic overlap between the corti-
cal areas undergoing extensive loss of cholinergic axons and those
with Aβ load (Davies and Maloney, 1976; Geula and Mesulam,
1996). Noteworthy, diffuse cholinergic projections with a large
fraction of terminal varicosities lacking post-synaptic specializa-
tions (Descarries et al., 1997), appear highly suited for effective
sequestration and removal of Aβ from target fields.

It is now over a century since the German psychiatrist Alois
Alzheimer presented the results of the first case study of a then
obscure brain disorder at the local meeting of neurologists and
psychiatrists in Tübingen. The disease, according to Alzheimer,
manifests in a variety of symptoms affecting first the “memory
and judgment, emotion and will” and with time “the power of
observation becomes blunted, old memories and experiences no
longer resonate. . . and nothing remains of the earlier personality”
(Maurer and Maurer, 1998). Although this first report failed to
capture the interest of the scientific community of those days
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and soon fell into oblivion, the case presented then heralded the
rise of one of the most prevalent and devastating neurodegen-
erative disorders of the modern age, which relentlessly crumbles
all that is humane in millions affected worldwide. In spite of the
considerable advances and tough lessons since the beginning of
the 20th century, the rising need in effective therapies against
AD dwells as blatant testimony to the shortage of knowledge
and understanding of arguably one of the greatest puzzles of the
Universe residing behind our eyes—the human brain.
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