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The use of nanoparticles encapsulating messenger RNA (mRNA) as a vaccine has recently attracted much attention because of
encouraging results achieved in many nonviral genetic antitumor vaccination studies. Notably, in all of these studies, mRNA
nanoparticles are passively targeted to dendritic cells (DCs) through careful selection of vaccination sites. Hence, DC-targeted
mRNA nanoparticle vaccines may be an imminent next step forward. In this brief report, we will discuss established conjugation
strategies that have been successfully applied to both polymeric and liposomal gene delivery systems. We will also briefly describe
promising DC surface receptors amenable for targeting mRNA nanoparticles. Practicable conjugation strategies and receptors
reviewed in this paper will provide a convenient reference to facilitate future development of targeted mRNA nanoparticle vaccine.

1. Introduction

Messenger RNA (mRNA) has achieved great success in an
increasing number of biological applications. Apropos, the
notion of nonviral genetic vaccination is also increasingly
associated with mRNA instead of DNA. Given a mature
drug and gene delivery field, mRNA nanoparticle delivery
science is often deferred or closely compared with DNA and
siRNAsystems [1, 2].However, as various reports have shown,
unique properties of mRNA delivery exist [3, 4] and continue
to be a relevant research focus today. mRNA delivery science
has made significant progress since the first demonstration
of cell based mRNA tumor vaccine delivery via RNA loaded
DCs [5]. They include the optimization of the mRNAmolec-
ular structure [6, 7], direct in vivo administration of mRNA
[8, 9], delivery routes [3, 4], evaluation of rationally designed
gene carriers [10–14], and, recently, self-replicating RNA [15].

Along this developmental trajectory, DC-targeted nano-
particle gene delivery systems may be an imminent next step
forward for nonviral tumor vaccine delivery. In this brief
report, established conjugation strategies for both polymeric
and liposomal gene delivery systems will be described. This
will be followed by a brief discussion on three promising
DC receptors that are suitable for targeted delivery of mRNA
nanoparticles for tumor vaccination.

2. Ligand Conjugation Strategies for Gene
Delivery Systems

Ligands targeting surface receptors on DCs are molecules
grafted onto surfaces of formulated nanoparticles, recog-
nizable by DC-specific uptake mechanisms, and endow
nanoparticles with the ability to be taken up exclusively
by them. This has the benefit of reducing effective doses
of vaccine required through nonspecific uptake by other
cell types. In the case of vaccines, which typically contains
proinflammatory adjuvant molecules, a decreased dose also
has the benefit of reducing undesired side effects. Since a
wide variety of nanoparticle delivery systems exist, different
ligand conjugation strategies have been developed. In this
section, we will discuss three conjugation strategies that are
most often applied to gene delivery systems.

First, nanoparticles with solid cores such as poly(lactic-
co-glycolic acid) (PLGA) and inorganic nanoparticles (e.g.,
gold nanospheres, calcium phosphate) possess excellent col-
loidal stability such that ligands can be covalently conju-
gated directly onto particles surfaces without aggregation.
In PLGA systems, nanoparticles are formulated by emul-
sion techniques [16–18] using PLGA-PEG-COOH copoly-
mer, which can be synthesized by grafting PEG-COOH
onto the ends of PLGA [19]. The resultant mRNA infused
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Figure 1: Established strategies for the conjugation of ligands onto polymeric and liposomal nanoparticles. (a) (Top) PLGA (poly(lactic-
co-glycolic acid)) nanoparticles formed by copolymer PLGA-PEG-COOH are stabilized with normal surfactant and subsequently reacted
with ligands bearing compatible linking groups. (Bottom) PLGA nanoparticles are stabilized with amphiphilic surfactants containing
functionalizable molecules. PLGA nanoparticles, susceptible to hydrolysis, are purified by centrifugation to reduce water exposure time.
(b) DC-targeting antibodies bearing compatible cross-linkers (e.g., -SH) are reacted with preformed liposomes to form immunoliposomes,
which are purified by dialysis. (c) Electrostatically neutral ligands (mannose) are covalently conjugated to cationic polymers and directly used
to formulate targeted nanoparticles. (d) Postinsertion functionalization of liposomes/lipopolyplexes. Formulated liposomes/lipopolyplexes
are heated with micelles bearing targeting ligands at 55∘C for at least 15mins. The resultant ligand conjugated liposomes/lipopolyplexes can
be used without further purification.

PLGA nanoparticles bearing surface carboxylate groups
(COOH) can be further functionalized with any ligands
bearing amine groups (e.g., peptides, antibodies, nanobodies,
and aptamers) via N-hydroxysuccinimide (NHS) chemistry,
which proceeds with good efficiencies under physiological
conditions if NHS bearing ligands are applied in excess
[20] (Figure 1(a), top). However, this conjugation strategy
will require the colloidal nanoparticles to remain stable
through every step of the conjugation process (surface chem-
istry modifications, purification and lyophilization). Ligand
conjugated nanoparticles are normally purified from the

reaction mixture via centrifugation, and hence this strategy
is compatible with formulations bearing a solid core because
they can withstand compression without aggregation. Apart
from centrifugation, dialysis is another common technique
used to remove unconjugated ligands.However, dialysis is not
compatible with PLGA (as well as other polyesters, e.g., poly-
𝛽-amino esters) as ester bonds in these polyesters undergo
hydrolysis. Conversely, formulations that are chemically inert
(e.g., gold nanoparticles, immunoliposomes, and polyamide-
based nanoparticles) but aggregate upon centrifugation can
be purified by dialysis (Figure 1(b)). A similar approach



Journal of Immunology Research 3

uses functionalized amphiphilic surfactants commonly used
to stabilize the PLGA nanoparticles in colloidal suspension
(Figure 1(a), bottom). These surfactants, which bear reactive
chemicalmoieties (e.g., COOH,NH

2
, andOH), are optimally

incorporated on particle surfaces and amenable for subse-
quent conjugation with targeting ligands bearing compatible
linkers [21]. In particular, avidin-fatty acid surfactants have
been applied to stabilize PLGA nanoparticles [22, 23]. The
resulting nanoparticles can be subsequently functionalized
with biotinylated ligands such as antibodies, which are
easily available, to render user defined DC surface receptor
targets such as DEC-205 and DC-SIGN [22, 24, 25]. This
formulation is relatively attractive because DC receptors are
very often targeted by antibodies. However, notwithstanding
the immunological consequences of antibodies, the sheer
size of antibodies may result in low surface coverage due to
steric hindrance. This can be mitigated with more advanced
ligands such as single chain fragment variable (scFv) [26,
27] or aptamers [28], making this an attractive conjugation
method.

Second, targeting moieties can instead be incorporated
as part of the carrier molecule (polymer or lipid). The
ligand conjugated carrier is directly used to formulate the
nanoparticles via coacervation between positively charged
gene carriers and negatively charged mRNA, and hence no
additional step is needed to affix the ligands. This strat-
egy is typically applicable for electrostatically neutral, low
molecular weight ligands to ensure that they do not interfere
with the carrier molecule during nanoparticle formulation
(Figure 1(c)). Mannan/Mannose, a sugar that interacts with
C-type lectin/lectin-like receptors, is the most commonly
applied DC-targeting ligand incorporated into nanoparticles
using this approach. A large number of mannosylated lipids
and polymers have been developed hitherto for the purpose
of vaccination [29–36]. For liposomal systems, mannose are
grafted onto the head groups of lipids [29–31], while, for poly-
meric systems, they are normally covalently attached along
the backbone of polymeric carriers [32–36]. Most of these
systems are tested for delivery of different vaccine molecules
including peptides, DNA, and siRNA with a consistent
improvement in uptake efficiencies over nonmannosylated
nanoparticles, which translates to an improved immunization
outcome. Notably, Midoux group elegantly demonstrated,
as a proof-of-concept, that mRNA-loaded mannosylated
lipophosphoramides target DCs in vivo and translate into
a better survival outcome based on a B16-F10 prophylactic
tumor model [31, 37].

Third, another tried and tested strategy for ligand con-
jugation primarily in liposomal systems exploits the use of
hydrophobic interaction (Figure 1(d)). It is well known that
liposomes/lipopolyplexes are not thermodynamically stable
colloids that aggregate slowly over time [38–40]. Aggregation
is a fusion process when hydrophobic interactions between
the lipid tails are stronger than the repulsive forces on the
surfaces of the liposomes. Factors determining this balance
include temperature, ionic concentration of the buffer, and
amphiphilic property (surface charge of the lipids versus
length and number of the lipid tails). Exploiting effects of
temperature on lipid fusion, liposomes or lipopolyplexes

encapsulated with mRNA or other payloads can be incu-
bated with ligand-micelles (e.g., DSPE-PEG-2000-X, where
X = ligand) at a temperature of 55∘C for at least 15 min-
utes. Due to increased hydrophobic interaction at a higher
temperature, ligand conjugated lipids from these micelles
can be transferred to the liposomes, effectively decorating
them with the desired targeting ligands. These ligand con-
jugated micelles can be prepared by reacting thiol (SH-)
or amine (NH

2
-) bearing ligands with DSPE-PEG-NHS or

DSPE-PEG-maleimide (DSPE: 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine) available commercially with different
PEGmolecularweight.This so-called “postinsertion” strategy
is a facile approach to functionalizing liposomes with any
desired ligands. Unlike PLGA system, DSPE-PEG-ligand can
be prepared separately and conveniently incorporated into
formulated liposomes on demand [41–43]. The amount of
PEG coverage over a 100 nm liposome needed to prevent
aggregation in serum is determined to be >8 mole% (based
on total lipid content) in the liposome formulation [44, 45].
A caveat to postinsertion strategy is that if the amphiphilicity
of the micelles is significantly affected by an excessively
hydrophilic head (e.g., highly charged aptamer, long PEG
chain), postinsertion method may fail because the increased
hydrophobic interaction induced at a higher temperature
may not be sufficient to trigger micelle fusion with the
liposomes/lipopolyplexes.

3. Targeting mRNA Nanoparticles via Selective
Endocytic Pathways

When particles are administered into the body, unless the
injected site is already the lymph node (e.g., intranodal
administration) or has a high density of antigen present-
ing cells (e.g., intradermal or intranasal administration),
nanoparticles need to be passively transported from the
site of administration to the lymph nodes via the body’s
circulatory system such as the lymphatics or the systemic
circulation [28, 46–48]. During passive transport from the
site administration to the lymphoid tissues, nanoparticles
may be taken up nonspecifically by bystander cells based
on a range of physiochemical factors such as size, surface
charge, and chemical structure of surface molecules. Target-
ing ligandsmay reduce such occurrences due to incompatible
surface chemistries while increasing uptake efficiencies of
nanoparticles when reaching the target site [49–51].

There are different interpretations of “targeted delivery.”
While generally it means selective delivery of the vaccine
to DCs bearing specific surface receptors, direct outcome
of receptor binding depends on what receptors are being
targeted. Targeting ligands can, amongst other functions,
help increase the uptake by binding to receptors designed to
endocytose larger particles [50],mitigate repulsive forces [51],
or improve surface compatibility between the particles and
the cellmembrane [49]. Since intracellular fate of the particles
taken up by endocytosis [52] is determined largely by the
mechanism through which they are being taken up, targeting
ligands may help direct endosomes into specific intracellular
trafficking pathways that are less degradative so that gene
delivery efficiencies are increased.
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Figure 2: The genetic vaccination model. Antigen presentation occurs directly by transfected DCs through gene expression of the antigen.
DCs also cross present antigens secreted by transfected bystander cells, or derived from phagocytosis of apoptotic cells. Cross presentation
mechanisms in DCs may facilitate delayed lysosomal delivery leading to higher delivery efficiencies.

DCs, unlike other somatic cells, possess unique endocytic
receptors catered to antigen uptake and processing. These
receptors are special because they not only trigger particle
uptake, but also mediate cross presentation and the develop-
ment of the immune response. Although cross presentation
in DCs influenced the development of subunit nanoparticle
vaccines, its impact on genetic vaccination is less conclusive.

The genetic vaccination delivery model has been
described as a process where both bystander and antigen
presenting cells are transfected [53, 54]. According to this
model, as illustrated in Figure 2, antigen presentation occurs
through direct transfection of DCs and also through indirect
transfer by transfected bystander cells. When the mRNA
nanoparticles are targeted to DCs directly, those that escape

the endosomes will have a higher chance of being expressed.
In DCs, endosome escape not only depends on the efficiency
of the gene carrier, but also depends on the trafficking
mechanisms. For example, cross presentationmechanisms in
DCs can disrupt lysosome trafficking pathways viamediation
of endosomal pH leading to higher delivery efficiencies [55].
But, on the other hand, intracellular trafficking pathways
of nonprofessional antigen presenting cells often terminate
at the lysosomes. When mRNA nanoparticles are delivered
without specific DC-targeting ligands, they will also transfect
bystander cells. The latter provide an alternative source of
antigens by secreting them (if the antigens are secretory
in nature or designed with a secretory signal) into the
extracellular space for capture by DCs. Finally, according to
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the consensus genetic vaccination, the other indirect delivery
mechanism occurs when transfected bystander cells become
apoptotic due to significant stress caused by viral or tumor
infection. DCs then acquire antigen through phagocytosis of
these apoptotic cells.

Sufficient literature exists to suggest that indirect delivery
mechanisms via bystander cells does not play a significant
role in targeted delivery systems since targeted genetic
nanoparticle vaccines consistently improve immunization
outcomes [32–34, 56–58]. DC-specific receptors that not
only increase uptake but also enhance transfection via less
degradative intracellular trafficking pathways will be attrac-
tive for mRNA nanoparticle tumor vaccination [59]. While
a long list of DC receptors has been discovered to possess
immunemodulating function, only a fewmay benefit mRNA
delivery beyond uptake enhancements because they are also
targeted towards less degradative intracellular trafficking
pathways [60]. They are type I C-type lectins such as CD205
(DEC-205) and CD206 (macrophage mannose receptor) and
type II C-type lectins such as CD370 (CLEC9A/DNGR-1).
These will be briefly described.

3.1. DEC-205. DEC-205 is ubiquitous receptor found on
almost every conventional dendritic cell [61]. It is a type I C-
type lectin-like molecule consisting of a single polypeptide
chain that functions as recycling endocytic receptor and
caters for awide range of cargos that include, notwithstanding
lectin-like molecules, apoptotic cells [62], necrotic cells [63],
and CpG [64]. DEC-205 is an attractive target receptor
because antigens delivered via this receptor are presented
on both MHC-I and MHC-II molecules [63]. Furthermore,
engagement of DEC-205 does not lead to proinflammatory
response, making it an attractive receptor target for tolerance
immunization [65]. The anti-DEC-205 ligand is one of the
most developed ligands in immunotherapy. While ligands
targeting most of the other DC-specific receptors continue
to manifest in antibody molecules, anti-DEC-205 ligands in
form of scFv [26, 27] and aptamer [66] have been reported.

Functional properties of DEC-205 will benefit mRNA
vaccination via higher transfection efficiencies. For example,
being a cognate endocytic receptor for apoptotic cells, DEC-
205 will efficiently uptake both nano- and microparticles it
comes into close contact with. Hence, given mRNA nanopar-
ticles tendency to aggregate in vivo (increased particle sizes),
administered dose will have higher bioavailability when
targeted towards DEC-205. In addition, cross presenting
properties of DEC-205, thought to be results of “leaky endo-
somes” or less degradative endocytic pathway, will facilitate
endosome escape of mRNA nanoparticles into the cytoplasm
and avoid the lysosomes.

3.2. Mannose Receptor. The mannose receptor, another type
I C-type lectin receptor with a well-established role in tissue
homeostasis [67], recognizes sulfated carbohydrates, colla-
gen, and oligosaccharides through its cysteine-rich domain
[68, 69], fibronectin domain [70], and C-type lectin domains
[71, 72], respectively. The mannose receptors have been
well-known endocytic receptors for decades in part because
they are extensively studied as scavenging receptors in

macrophages, which were initially thought to be the major
antigen presenting cells before DCs were discovered. The
ligand for this receptor ismannose residue grafted on the gene
carrier [29–36] as previously described. Its role in antigen
presentation was conclusively determined through the use
of DCs derived from mannose receptor negative transgenic
mice [73].This study confirmed that DCs’ mannose receptors
not only serve as uptake receptors [74–77], but also mediate
cross presentation of soluble mannosylated antigens [78–
80]. Since payload taken up via mannose receptor stably
accumulates in the early endosome and is excluded from
lysosomes for up to 6 hours [78, 79], this intracellular
trafficking pathway is expected to be less degradative and
highly attractive for mRNA nanoparticle delivery.

3.3. CLEC9A/DNGR-1. CLEC9A (C-type lectin domain fam-
ily 9, a.k.a. DNGR-1 or CD370) is a recently discovered endo-
cytic receptor that is implicated in the clearance of damaged
[81] and dead [82, 83] cells. This receptor, currently targeted
via antibody, is restricted to a very small population of blood
BDCA3+ DCs [84] (in humans) and its equivalent in mice
models is CD8+ DCs. Due to its endocytic nature, antigen
delivery properties of CLEC9A are rapidly investigated [85,
86]. Recent reports show that CLEC9A are effective in cross
presenting antigens for cell mediated immunity [83, 87] and
can be as effective T cell activators compared to Langerin
and DEC-205 [88]. Similar to other receptors capable of
cross presenting soluble antigens, nanoparticles targeted to
CLEC9A are expected to enter a less degradative intracellular
trafficking pathway, leading to higher transfection efficiency.
Restricted expression of CLEC9A to blood DCs may limit
it as a practical receptor compared to the mannose receptor
and DEC-205 for targeted delivery to conventional DCs.
Nevertheless, CLEC9A remains an attractive receptor for
targeting plasmacytoid DCs [86].

4. Conclusion

As a late bloomer, development of mRNA therapeutics
benefits from a plethora of related knowledge on similar
delivery systems. Advancing from passive targeting strategies
employed for most mRNA nanoparticle tumor vaccine to
date, active targeting of mRNA nanoparticles to DCs will fur-
ther improve current therapeutic outcome for the treatment
of cancer. Practicable conjugation strategies as well as target
receptors reviewed in this paper will provide a convenient
reference to facilitate future development of targeted mRNA
nanoparticle vaccine.
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