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Abstract

Background: More studies based on gene expression data have been reported in great detail,
however, one major challenge for the methodologists is the choice of classification methods. The
main purpose of this research was to compare the performance of linear discriminant analysis
(LDA) and its modification methods for the classification of cancer based on gene expression data.

Methods: The classification performance of linear discriminant analysis (LDA) and its
modification methods was evaluated by applying these methods to six public cancer gene
expression datasets. These methods included linear discriminant analysis (LDA), prediction analysis
for microarrays (PAM), shrinkage centroid regularized discriminant analysis (SCRDA), shrinkage
linear discriminant analysis (SLDA) and shrinkage diagonal discriminant analysis (SDDA). The
procedures were performed by software R 2.80.

Results: PAM picked out fewer feature genes than other methods from most datasets except
from Brain dataset. For the two methods of shrinkage discriminant analysis, SLDA selected more
genes than SDDA from most datasets except from 2-class lung cancer dataset. When comparing
SLDA with SCRDA, SLDA selected more genes than SCRDA from 2-class lung cancer, SRBCT and
Brain dataset, the result was opposite for the rest datasets. The average test error of LDA
modification methods was lower than LDA method.

Conclusions: The classification performance of LDA modification methods was superior to that
of traditional LDA with respect to the average error and there was no significant difference
between theses modification methods.

Background
Conventional diagnosis of cancer has been based on the
examination of the morphological appearance of stained
tissue specimens in the light microscope, which is
subjective and depends on highly trained pathologists.
Thus, the diagnostic problems may occur due to inter-

observer variability. Microarrays offer the hope that
cancer classification can be objective and accurate. DNA
microarrays measure thousands to millions of gene
expressions at the same time, which could provide the
clinicians with the information to choose the most
appropriate forms of treatment.
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Studies on the diagnosis of cancer based on gene
expression data have been reported in great detail,
however, one major challenge for the methodologists
is the choice of classification methods. Proposals to solve
this problem have utilized many innovations including
the introduction of sophisticated algorithms for support
vector machines [1] and the proposal of ensemble
methods such as random forests [2]. The conceptually
simple approach of linear discriminant analysis (LDA)
and its sibling, diagonal discriminant analysis (DDA)
[3-5], remain among the most effective procedures also
in the domain of high-dimensional prediction. In the
present study, our main focus will be solely put on the
LDA part and henceforth the term “discriminant
analysis” will stand for the meaning of LDA unless
otherwise emphasized. The traditional way of doing
discriminant analysis is introduced by R. Fisher, known
as the linear discriminant analysis (LDA). Recently some
modification of LDA have been advanced and gotten
good performance, such as prediction analysis for
microarrays (PAM), shrinkage centroid regularized dis-
criminant analysis(SCRDA), shrinkage linear discrimi-
nant analysis(SLDA) and shrinkage diagonal
discriminant analysis(SDDA). So, the main purpose of
this research was to describe the performance of LDA and
its modification methods for the classification of cancer
based on gene expression data.

Cancer is not a single disease, there are many different
kinds of cancer, arising in different organs and tissues
through the accumulated mutation of multiple genes.
Many previous studies only focused on one method or
single dataset and gene selection is much more difficult
in multi-class situations [6,7]. Evaluation of the most

commonly employed methods may give more accurate
results if it is based on the collection of multiple
databases from the statistical point of view.

In summary, we investigate the performance of LDA and
its modification methods for the classification of cancer
based on multiple gene expression datasets.

Methods
Procedure for the classification of cancer is shown as
follows. First, a classifier is trained on a subset (training
set) of gene expression dataset. Then, the mature classifier
is used for unknown subset (test set) and predicting each
observation’s class. The detailed information about
classification procedure is shown in Figure 1.

Datasets
Six publicly available microarray datasets [8-14] were
used to test the above described methods and we call
them 2-class lung cancer, colon, prostate, multi-class
lung cancer, SRBCT and brain following the naming
there. Due to the fact that microarray-based studies may
report findings that are not reproducible, after reviewing
literature we selected these above public datasets with
the consideration of our research topic and cross-
comparison with other similar studies. The main features
of these datasets are summarized in Table 1.

Data pre-processing
To avoid the noise of the dataset, pre-processing was
necessary in the analysis. Absolute transformation was
first performed on the original data. The data was
transformed to have a mean of 0 and standard deviation

Figure 1
Framework for the procedure of classification.
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of 1 after logarithmic transformation and normalization.
When the original data had already experienced the
above transformation, it entered next step directly.

Algorithms for feature gene selection
Notation
Let xij be the expression level of gene j in the sample i, and yi
be the cancer type for sample i, j = 1,...,p and response
yiŒ{1,...,K}. Denote Y = (y1,...,yn)

T and xi = (xi1,...,xip)
T, i =

1,...,n. Gene expression data on p genes for nmRNA samples
may be summarized by an n × p matrix X = (xij)n × p. Let Ck

be indices of the nk samples in class k, where nk denotes the
number of observations belonging to class k, n = n1+...+nK.
A predictor or classifier for K tumor classes can be built from
a learning set L by C(.,L); the predicted class for an
observation x* is C(x*,L). The jth component of the

1centroid for class k is x x nkj ij

i C

k

k

=
∈
∑ / , the jth component

of the overall centroid is x x nj ij

i

n

=
=
∑ /

1

.

Prediction analysis for microarrays/nearest shrunken centroid
method, PAM/NSC
PAM [3] algorithm tries to shrink the class centroids
( xkj ) towards the overall centroid x j .

Let d
xkj x j

mk s j skj =
−

⋅ +( )0
(1)

where dkj is a t statistic for gene j, comparing class k to
the overall centroid, and sj is the pooled within-class
standard deviation for gene j:

s
n K

x xj ij kj

i Ck k

2 1=
−

−
∈
∑∑ ( ) (2)

and m n nk k= +1 1/ / , s0 is a positive constant and
usually equal to the median value of the sj over the set of
genes.

Equation(1) can be transformed to

x x m s s dkj j k j kj= + +( )0 (3)

PAM method shrinks each dkj toward zero, and giving
′dkj yielding shrunken centroids

′ = + + ′x x m s s dkj j k j kj( )0 (4)

Soft thresholding is defined by

′ = − +d sign d dkj kj kj( )( )Δ (5)

where + means positive part (t+ = t if t > 0 and zero
otherwise). For a gene j, if dkj is shrunken to zero for all
classes k, then the centroid for gene j is x j , the same
for all classes. Thus gene j does not contribute to the

Table 1: Characteristics of the six microarray datasets used

Dataset No. of
samples

Classes (No. of samples) No. of
genes

Original
ref.

Website

Two-class lung
cancer

181 MPM(31), adenocarcinoma(150) 12533 [8] http://www.chestsurg.org

Colon 62 normal(22), tumor(40) 2000 [9] http://microarray.princeton.edu/oncology/affydata/index.html
Prostate 102 normal(50), tumor(52) 6033 [10] http://microarray.princeton.edu/oncology/affydata/index.html
Multi-class lung
cancer

68(66) a adenocarcinoma(37), combined(1),
normal(5), small cell(4), squamous
cell(10), fetal(1), large cell(4),
lymph node(6)

3171 [11,12] http://www-genome.wi.mit.edu/mpr/lung/

SRBCT 88(83) b Burkitt lymphoma (29), Ewing
sarcoma (11), neuroblastoma (18),
rhabdomyosarcoma (25), non-
SRBCTs(5)

2308 [13] http://research.nhgri.nih.gov/microarray/Supplement/

Brain 42(38) c medulloblastomas(10), CNS AT/
RTs(5), rhabdoid renal and
extrarenal rhabdoid tumours(5),
supratentorial PNETs(8), non-
embryonal brain tumours
(malignant glioma) (10), normal
human cerebella(4)

5597 [14] http://research.nhgri.nih.gov/microarray/Supplement/

Note: Some samples were removed for keeping adequate number of each type.
a. One combined and one fetal cancer samples were removed, and real sample size is 66;
b. Five non-SRBCT samples were removed, and real sample size is 83;
c. Four normal tissue samples were removed, and real sample size is 38.
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nearest-centroid computation. Soft threshold Δ was
chosen by cross-validation.

Shrinkage discriminant analysis, SDA
In SDA, Feature selection is controlled using higher
criticism threshold (HCT) or false non-discovery rates
(FNDR) [5]. The HCT is the order statistic of the
Z-score corresponding to index i maximizing

( ( )) / ( )i
p

i
p

i
pi− −π 1 , πi is the p-value associated with

the ith Z-score and π(i) is the ith order statistic of the
collection of p-values(1 ≤ i ≤ p). The ideal threshold
optimizes the classification error. SDA consists of
Shrinkage linear discriminant analysis (SLDA) and
Shrinkage diagonal discriminant analysis (SDDA)
[15,16].

Shrunken centroids regularized discriminant analysis, SCRDA
There are two parameters in SCRDA [4], one is a
(0<a<1), the other is soft threshold Δ. The choosing the
optimal tuning parameter pairs (a, Δ) is based on cross-
validation. A “Min-Min” rule was followed to identify
the optimal parameter pair (a, Δ):

First, all the pairs (a, Δ) that corresponded to the
minimal cross-validation error from training samples
were found.

Second, the pair or pairs that used the minimal number
of genes were selected.

When there was more than one optimal pair, the average
test error based on all the pairs chosen would be
calculated. As traditional LDA is not suitable to deal
with the “large p, small N” paradigm, so we did not
adopt it to select feature genes.

Algorithms of LDA and its modification methods
for classification
Linear discriminant analysis, LDA
Fisher linear discriminant analysis (FLDA, or for short,
LDA) [17] projects high dimension data x into one
dimension axle to find linear combinations xa with large
ratios of between-group to within-group sums of
squares. Fisher’s criteria can be defined as:

max
’
’

a Ba
a Wa

(6)

Where B and W denote the matrices of between-group
and within-group sums of squares and cross-products.

Class k sample means x x xk k kp= ( ,..., )1 can be gotten
from learning set L, and for a new tumor sample with
gene expression x*, the predicted class for x* is the class

whose mean vector xk is closest to x* in the space of
discriminant variables, that is

C x L d x
k

k( , ) arg min ( )* *= (7)

where d x x x vk k l
l

s
2 2

1
( ) [( ) ]* *= −

=
∑ , vl is eigenvector, s is the

number of feature genes.

When numbers of classes K = 2, FLDA yields the same
classifier as the maximum likelihood (ML) discriminant
rule for multivariate normal class densities with the same
covariance matrix.

Prediction analysis for microarrays/nearest shrunken centroid
method, PAM/NSC
PAM [3] assumes that genes are independent, the target
classes correspond to individual (single) clusters and
classify test samples to the nearest shrunken centroid,
again standardizing by sj +s0. The relative number of
samples in each class is corrected at the same time. For a
test sample (a vector) with expression levels x*, the
discriminant score for class k was defined by,

δ πk

j

P

kx
x xkj

s j s
( )

( * ’ )

( )
log( )* =

−

+
−

=
∑

2

0
2

2
1

(8)

where πk = nk/n or πk = 1/K is class prior probability,

π k
k

K
=

=
∑ 1

1
. This prior probability gives the overall frequency

of class k in the population. The classification rule is

x k x x x D x x
k

k
k

k
T

k
* * * *, ( ( ) ( ) ( ) l∈ − ′ − ′ −

′
′

′
′

−
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(9)

Here D̂ was the diagonal matrix taking the diagonal
elements of Σ̂ . If the smallest distances are close and
hence ambiguous, the prior correction gives a preference
for larger classes, because they potentially account for
more errors.

Shrinkage discriminant analysis, SDA
The corresponding discriminant score [5] was defined by

Δ k
LDA

k
T

k kx x( ) ( ) log( )* *= +ω δ π (10)

Where ω δ σ σk k k pP V x x P V x V diagxk x= − = − =
− − − − +1

2
1
2

1
2

1
2

2 1
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P = (rij) and x x
n j
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j

k
=
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∑

1

Algorithm of SCRDA
A new test sample was classified by regularized dis-
criminant function [4],
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d x x x x xk
T

k k
T

k k( ) ( ) log* *= − +− −Σ Σ1 11
2

π (11)

Covariance was estimated by

Σ Σ= + −α αˆ ( )1 I P (12)

where 0 ≤ a ≤ 1

In the same way, sample correlation matrix ˆ ˆ ˆR D D=
− −1

2
1
2Σ

was substituted by R R IP= + −α αˆ ( )1 .

Then the regularized sample covariance matrix was
computed by Σ =

−
D̂ RD

1
2

1
2 .

Study design and program realization
We used 10-fold cross-validation (CV) to divide the pre-
processed dataset into 10 approximately equal-size parts
by random sampling. It worked as follows: we fit the
model on 90% of the samples and then predicted the
class labels of the remaining 10% (the test samples). This
procedure was repeated 10 times to avoid overlapping
test sets, with each part playing the role of the test
samples and the errors on all 10 parts added together to
compute the overall error [18]. R software (version 2.80)
with packages MASS, pamr, RDA, SDA was used for the
realization of the above described methods [19]. A
tolerance value was set to decide if a matrix is singular. If
variable had within-group variance less than tol^2, LDA
fitting iteration would stop and report the variable as
constant. In practice, we set a very small tolerance value
1 × 10-14, and no singular was detected.

Results
Feature genes selection
As shown in Table 2, PAM picked out fewer feature genes
than other methods from most datasets except from
Brain dataset. For the two methods of shrinkage
discriminant analysis, SLDA selected more genes than
SDDA from most datasets except from 2-class lung
cancer dataset. When comparing SLDA with SCRDA,
SLDA selected more genes than SCRDA from 2-class lung
cancer, SRBCT and Brain dataset, the result was opposite
for the rest datasets.

Performance comparison for methods based
on different datasets
The performance of the methods described above was
compared by average test error using 10-fold cross
validation. We ran 10 cycles of 10-fold cross validation.
The average test errors were calculated based on the
incorrectness of the classification of each testing samples.
For example, for the 2-class lung cancer dataset, using the
LDA method based on PAM as the feature gene method,
30 samples out of 100 sample test sets were incorrectly
classified, resulting in an average test error of 0.30.

The significance of the performance difference between
these methods was judged depending on whether or not
their 95% confidence intervals of accuracy overlapped.
Here, if the upper limit was greater than 100%, it was
treated as 100%. If two methods had non-overlapping
confidence intervals, their performances were signifi-
cantly different. The bold fonts in Table 3 shows the
performances of PAM, SDDA, SLDA and SCRDA, when
they were used both for feature gene selection and
classification. As shown in Table 3, the performance of
LDA modification methods is superior to traditional
LDA method, while there is no significant difference
between theses modification methods (Figure 2).

Discussion
Microarrays are capable of determining the expression
levels of thousands of genes simultaneously and hold
great promise to facilitate the discovery of new biological
knowledge [20]. One feature of microarray data is that
the number of variables p (genes) far exceeds the number
of samples N. In statistical terms, it is called ‘large p,
small N’ problem. Standard statistical methods in
classification do not work well or even at all, so
improvement or modification of existing statistical
methods is needed to prevent over-fitting and produce
more reliable estimations. Some ad-hoc shrinkage
methods have been proposed to utilize the shrinkage
ideas and prove to be useful in empirical studies [21-23].
Distinguishing normal samples from tumor samples is
essential for successful diagnosis or treatment of cancer.
And, another important problem is in characterizing
multiple types of tumors. The problem of multiple
classifications has recently received more attention in the
context of DNA microarrays. In the present study, we first
presented an evaluation of the performance of LDA and
its modification methods for classification with 6 public
microarray datasets.

The gene selection method [6,24,25], the number of
selected genes and the classification method are three
critical issues for the performance of a sample classifica-
tion. Feature selection techniques can be organized into

Table 2: Numbers of feature genes selected by 4 methods for
each dataset

Dataset PAM SDDA SLDA SCRDA

2-class lung cancer 7.98 422.74 407.83 118.72
Colon 25.72 65.67 117.08 214.87
Prostate 83.13 120.53 187.91 217.47
Multi-class lung cancer 45.26 57.98 97.27 1015.00
SRBCT 30.87 114.32 131.24 86.22
Brain 69.11 115.04 182.01 26.83
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three categories, filter methods, wrapper methods and
embedded methods. LDA and its modification methods
belong to wrapper methods which embed the model
hypothesis search within the feature subset search. In the
present study, different numbers of gene have been
selected by different LDA modification methods. There is
no theoretical estimation of the optimal number of
selected genes and the optimal gene set can vary from
data to data [26]. So we did not focus on the
combination of the optimal gene set by one feature
gene selection method and one classification algorithm.
In this paper we just describe the performance of LDA
and its modification methods under the same selection
method in different microarray dataset.

Various statistical and machine learning methods have
been used to analyze the high dimensional data for
cancer classification. These methods have been shown to
have statistical and clinical relevance in cancer detection
for a variety of tumor types. In this study, it has been
shown that LDA modification methods have better
performance than traditional LDA under the same gene
selection criterion. Dudoit also reported that simple
classifiers such as DLDA and Nearest Neighbor per-
formed remarkably well compared with more

sophisticated ones, such as aggregated classification
trees [27]. It indicates that LDA modification methods
did a good job in some situations. Zhang et al [28]
developed a fast algorithm of generalized linear dis-
criminant analysis (GLDA) and applied it to seven public
cancer datasets. Their study included 4 same datasets
(Colon, Prostate, SRBCT and Brain) as those in our study
and adopted a 3-fold cross-validation design. The
average test errors of our study were less than those of
their study, while there was no statistical significance of
the difference. The results reported by Guo et al [4] are of
concordance with ours except for the colon dataset. Their
study also included the above mentioned 4 same
datasets and they found that in the colon dataset the
average test error of SCRDA was as same as PAM, while
in the present study we found that the average test error
of SCRDA was slightly less than that of PAM.

There are several interesting problems that remain to be
addressed. A question is raised that when comparing the
predictive performance of different classification meth-
ods on different microarray data, is there any difference
between various methods, such as leave-one-out cross-
validation and bootstrap [29,30]? And another interest-
ing further step might be a pre-analysis of the data to

Table 3: Average test error of LDA and its modification methods (10 cycles of 10-fold cross validation)

Dataset Gene selection methods Performance

LDA PAM SDDA SLDA SCRDA

2-class Lung cancer data(n = 181, p = 12533, K = 2) PAM 0.30 0.26 0.15 0.16 0.42
SDDA 0.17 0.11 0.1 0.11 0.1
SLDA 0.47 0.3 0.3 0.3 0.32
SCRDA 0.73 0.20 0.19 0.17 0.19

Colon data(n = 62, p = 2000, K = 2) PAM 1.30 0.82 0.8 0.86 0.86
SDDA 2.25 2.09 1.33 1.29 1.25
SLDA 1.12 0.74 0.75 0.77 0.80
SCRDA 1.19 0.77 0.77 0.75 0.78

Prostate data(n = 102, p = 6033, K = 2) PAM 2.87 0.89 0.82 0.81 1.00
SDDA 2.53 0.71 0.72 0.68 0.74
SLDA 1.75 0.7 0.64 0.64 0.70
SCRDA 2.15 0.57 0.59 0.57 0.61

Multi-class lung cancer data(n = 66, p = 3171, K = 6) PAM 2.13 1.16 1.21 1.28 1.19
SDDA 1.62 1.32 1.32 1.31 1.30
SLDA 1.62 1.31 1.32 1.26 1.34
SCRDA 1.63 1.43 1.45 1.58 1.35

SRBCT data(n = 83, p = 2308, K = 4) PAM 0.17 0.01 0.01 0.03 0.01
SDDA 2.45 0.03 0.02 0 0.03
SLDA 2.87 0 0 0 0
SCRDA 2.32 0.03 0.03 0.02 0.03

Brain data(n = 38, p = 5597, K = 4) PAM 1.14 0.57 0.57 0.58 0.61
SDDA 1.09 0.61 0.62 0.63 0.55
SLDA 0.89 0.60 0.60 0.57 0.58
SCRDA 0.84 0.56 0.54 0.54 0.57
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choose a suitable gene selection method. Despite the
great promise of discriminant analysis in the field of
microarray technology, the complexity and the multiple
choices of the available methods are quite difficult to the
bench clinicians. This may influence the clinicians’
adoption of microarray data based results when making
decision on diagnosis or treatment. Microarray data’s
widespread clinical relevance and applicability still need
to be resolved.

Conclusions
An extensive survey in building classification models
from microarray data with LDA and its modification
methods has been conducted in the present study. The

study showed that the modification methods are super-
ior to LDA in the prediction accuracy.

List of abbreviations
CV: Cross-validation; DDA: diagonal discriminant ana-
lysis; FNDR: False non-discovery rates; GLDA: general-
ized linear discriminant analysis; HCT: Higher criticism
threshold; LDA: linear discriminant analysis; NSC:
nearest shrunken centroid method; PAM: prediction
analysis for microarrays; SCRDA: Shrinkage centroid
regularized discriminant analysis; SDA: Shrinkage dis-
criminant analysis; SDDA: Shrinkage diagonal discrimi-
nant analysis; SLDA: Shrinkage linear discriminant
analysis.

Figure 2
Comparison of classification performance for different datasets. The y-axis shows the average error and the x-axis
indicates the gene selection methods: PAM, SDDA, SLDA and SCRDA. Error bars (± 1.96 SE) are provided for the
classification methods.

Journal of Experimental & Clinical Cancer Research 2009, 28:149 http://www.jeccr.com/content/28/1/149

Page 7 of 8
(page number not for citation purposes)



Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions
DH conceived the study and drafted the manuscript. DH
and YQ performed the analyses. MH provided guidance
and discussion on the methodology. BZ attracted partial
funding and participated in the design of the analysis
strategy. All authors read and approved the final version
of this manuscript.

Acknowledgements
This study was partially supported by Provincial Education Department of
Liaoning (No.2008S232), Natural Science Foundation of Liaoning province
(No.20072103) and China Medical Board (No.00726.). The authors are
most grateful to the contributors of the datasets and R statistical software.
The authors thank the two reviewers for their insightful comments which
led to an improved version of the manuscript.

References
1. Guyon I, Weston J, Barnhill and Vapnik V: Gene Selection for

Cancer Classification using Support Vector Machines. Mach
Learn 2002, 46:389–422.

2. Breiman L: Random Forests. Mach Learn 2001, 45:5–32.
3. Tusher VG, Tibshirani R and Chu G: Significance analysis of

microarrays applied to the ionizing radiation response. Proc
Natl Acad Sci USA 2001, 98:5116–5121.

4. Guo Y, Hastie T and Tibshirani R: Regularized linear discrimi-
nant analysis and its application in microarrays. Biostatistics
2005, 8:86–100.

5. Schäfer J and Strimmer K: A shrinkage approach to large-scale
covariance matrix estimation and implications for func-
tional genomics. Stat Appl Genet Mol Biol 2005, 4.

6. Yeung KY, Bumgarner RE and Raftery AE: Bayesian model
averaging: development of an improved multi-class, gene
selection and classification tool for microarray data. Bioinfor-
matics 2005, 21:2394–2402.

7. Li T, Zhang C and Ogihara M: A comparative study of feature
selection and multiclass classification methods for tissue
classification based on gene expression. Bioinformatics 2004,
20:2429–2437.

8. Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE,
Ramaswamy S, Richards WG, Sugarbaker DJ and Bueno R:
Translation of microarray data into clinically relevant
cancer diagnostic tests using gene expression ratios in lung
cancer and mesothelioma. Cancer Res 2002, 62:4963–4967.

9. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D and
Levine AJ: Broad patterns of gene expression revealed by
clustering analysis of tumor and normal colon tissues
probed by oligonucleotide arrays. Proc Natl Acad Sci USA 1999,
96:6745–6750.

10. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P,
Renshaw AA, D’Amico AV, Richie JP, Lander ES, Loda M,
Kantoff PW, Golub TR and Sellers WR: Gene expression
correlates of clinical prostate cancer behavior. Cancer Cell
2002, 1:203–209.

11. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P,
Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ,
Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ and
Meyerson M: Classification of human lung carcinomas by
mRNA expressionprofiling reveals distinct adenocarcinoma
subclasses. Proc Natl Acad Sci USA 2001, 98:13790–13795.

12. Parmigiani G, Garrett-Mayer ES, Anbazhagan R and Gabrielson E: A
cross-study comparison of gene expression studies for the
molecular classification of lung cancer. Clin Cancer Res 2004,
10:2922–2927.

13. Khan J, Wei JS, Ringnér M, Saal LH, Ladanyi M, Westermann F,
Berthold F, Schwab M, Antonescu CR, Peterson C and Meltzer PS:
Classification and diagnostic prediction of cancers using
gene expression profiling and artificial neural networks. Nat
Med 2001, 7:673–679.

14. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M,
McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, Allen JC,
Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T,
Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN,
Mesirov JP, Lander ES and Golub TR: Prediction of central
nervous system embryonal tumour outcome based on gene
expression. Nature 2002, 415:436–442.

15. Opgen-Rhein R and Strimmer K: Accurate ranking of differen-
tially expressed genes by a distribution-free shrinkage
approach. Stat Appl Genet Mol Biol 2007, 6:Article9.

16. Schäfer J and Strimmer K: A shrinkage approach to large-scale
covariance matrix estimation and implications for func-
tional genomics. Stat Appl Genet Mol Biol 2005, 4:Article32.

17. Fisher RA: The Use of Multiple Measurements in Taxonomic
Problems. Annuals of Eugenics 1936, 7:179–188.

18. Hastie T, Tibshirani R and Friedman J: The elements of statistical
learning; data mining, inference and prediction. New York:
Springer; 2001, 193–224.

19. R Development Core Team R: A language and environment
forstatistical computing. R Foundation for StatisticalComputing,
Vienna, Austria; 2009 http://www.R-project.org, ISBN 3-900051-07-0.

20. Campioni M, Ambrogi V, Pompeo E, Citro G, Castelli M, Spugnini EP,
Gatti A, Cardelli P, Lorenzon L, Baldi A and Mineo TC: Identifica-
tion of genes down-regulated during lung cancer progres-
sion: a cDNA array study. J Exp Clin Cancer Res 2008, 27:38.

21. Tusher VG, Tibshirani R and Chu G: Significance analysis of
microarrays applied to the ionizing radiation response. Proc
Natl Acad Sci USA 2001, 98:5116–5121.

22. Tibshirani R: Regression shrinkage and selection via the lasso.
J Royal Statist Soc B 1996, 58:267–288.

23. Xie Y, Pan W, Jeong KS and Khodursky A: Incorporating prior
information via shrinkage: a combined analysis of genome-
wide location data and gene expression data. Stat Med 2007,
26:2258–2275.

24. Li Y, Campbell C and Tipping M: Bayesian automatic relevance
determination algorithms for classifying gene expression
data. Bioinformatics 2002, 18:1332–1339.

25. Diaz-Uriarte R: Supervised methods with genomic data: a
review and cautionary view. Data analysis and visualization in
genomics and proteomics. Hoboken: John Wiley & Sons, Ltd: Francisco
Azuaje, Joaquín Dopazo 2005, 193–214.

26. Tsai CA, Chen CH, Lee TC, Ho IC, Yang UC and Chen JJ: Gene
selection for sample classifications in microarray experi-
ments. DNA Cell Biol 2004, 23:607–614.

27. Dudoit S, Fridlyand J and Speed TP: Comparison of Discrimina-
tion Methods for the Classification o Tumors Using Gene
Expression Data. J Am Stat Assoc 2002, 97:77–87.

28. Li H, Zhang K and Jiang T: Robust and accurate cancer
classification with gene expression profiling. Proc IEEE Comput
Syst Bioinform Conf: 8-11 August 2005; California 2005, 310–321.

29. Breiman L and Spector P: Submodel selection and evaluation in
regression: the x-random case. Int Stat Rev 1992, 60:291–319.

30. Efron B: Bootstrap methods: Another look at the jackknife.
Ann Stat 1979, 7:1–26.

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Journal of Experimental & Clinical Cancer Research 2009, 28:149 http://www.jeccr.com/content/28/1/149

Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/11309499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11309499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15713736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15713736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15713736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15087314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15087314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15087314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12208747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12208747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12208747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10359783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10359783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10359783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12086878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12086878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11385503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11385503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11807556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11807556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11807556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17402924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17402924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17402924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646851?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646851?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646851?dopt=Abstract
http://www.R-project.org
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/pubmed/18793406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18793406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18793406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11309499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11309499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16958153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16958153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16958153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12376377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12376377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12376377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15585118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15585118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15585118?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Datasets
	Data pre-processing
	Algorithms for feature gene selection
	Notation
	Prediction analysis for microarrays/nearest shrunken centroid method, PAM/NSC
	Shrinkage discriminant analysis, SDA
	Shrunken centroids regularized discriminant analysis, SCRDA

	Algorithms of LDA and its modification methods for classification
	Linear discriminant analysis, LDA
	Prediction analysis for microarrays/nearest shrunken centroid method, PAM/NSC
	Shrinkage discriminant analysis, SDA
	Algorithm of SCRDA

	Study design and program realization

	Results
	Feature genes selection
	Performance comparison for methods based on different datasets

	Discussion
	Conclusions
	List of abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

