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Algal symbionts of corals can influence host stress resistance; for example, in the Pacific

Ocean, whereas Cladocopium (C-type) is generally dominant in corals, Durusdinium

(D-type) is found in more heat-resistant corals. Thus, the presence of D-type symbiont

likely increases coral heat tolerance, and this symbiotic relationship potentially provides a

hint to increase the stress tolerance of coral–algal symbioses. In this study, transcriptome

profiles of Cladocopium- and Durusdinium-harboring Acropora solitaryensis (C-coral

and D-coral, respectively) and algal photosystem functioning (Fv/Fm) under bleaching

conditions (high temperature and light stress) were compared. Stress treatment caused

algal photoinhibition that the Fv/Fm value of Symbiodiniaceae was immediately reduced.

The transcriptome analysis of corals revealed that genes involved in the following

processes were detected: endoplasmic reticulum (ER) stress, mitophagy, apoptosis,

endocytosis, metabolic processes (acetyl-CoA, chitin metabolic processes, etc.), and

the PI3K-AKT pathway were upregulated, while DNA replication and the calcium

signaling pathway were downregulated in both C- and D-corals. These results suggest

that unrepaired DNA and protein damages were accumulated in corals under high

temperature and light stress. Additionally, some differentially expressed genes (DEGs)

were specific to C- or D-corals, which includes genes involved in transient receptor

potential (TRP) channels and vitamin B metabolic processes. Algal transcriptome

analysis showed the increased expression of gene encoding photosystem and molecular

chaperone especially in D-type symbiont. The transcriptome data imply a possible

difference in the stress reactions on C-type and D-type symbionts. The results reveal

the basic process of coral heat/light stress response and symbiont-type-specific coral

transcriptional responses, which provides a perspective on the mechanisms that cause

differences in coral stress tolerance.
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INTRODUCTION

Mass coral bleaching, which mainly occurs due to elevated sea
surface temperatures, is a state in which algal symbionts (family
Symbiodiniaceae, hereinafter referred to as “symbionts”) are
decreased in host corals over a wide area. Bleaching phenomena
cause fatal impact in the most cases to host corals because the
loss of alga does not provide the expected amount of energy
source to the host (Baker et al., 2008; Baird et al., 2017). Coral
bleaching, caused by high temperatures and strong irradiance,
is accompanied by photoinhibition of Symbiodiniaceae (Lesser
and Shick, 1989; Warner et al., 1999; Gorbunov et al., 2001;
Lesser, 2011). Photoinhibition refers to light-induced reduction
of the photosynthetic rate as a result of the generation of reactive
oxygen species (ROS) from the excess light energy over the limits
of the CO2 fixation process (Murata et al., 2007). ROS damage the
reaction center of photosystem II (PSII), and high temperatures
inhibit the repair of this damage, which results in a decline of the
photosynthetic rate of symbiont algae (Takahashi et al., 2009).
Symbiont-produced ROS can also damage lipids, proteins, and
DNA of host corals and increase expression and/or activity of the
antioxidant enzymes superoxide dismutase and catalase in corals
(Lesser, 1997; Higuchi et al., 2009). In addition, the generation
of nitric oxide (NO) has also been reported as a key factor of
bleaching phenomena (Trapido-Rosenthal et al., 2005; Perez and
Weis, 2006; Bouchard and Yamasaki, 2008; Hawkins et al., 2013).

The underlying process of coral bleaching has been studied
at the molecular level and the expression changes of heat shock
proteins (Hsp, DnaJ) (Császár et al., 2009; Meyer et al., 2011;
Yuyama et al., 2012; Maor-Landaw and Levy, 2016), antioxidant
enzymes (catalase, thioredoxin, MnSOD) (Edge et al., 2005;
Császár et al., 2009; Seneca et al., 2010; Maor-Landaw and
Levy, 2016), immune system-related genes (TNF receptors, TNF
receptor-associated factors) (Voolstra et al., 2009; Barshis et al.,
2013), and metabolic process-related genes (carbonic anhydrase,
adenine transporter, and calcium channels) (Edge et al., 2005;
Meyer et al., 2011) have been reported. Furthermore, the
involvement of apoptosis and autophagy-related proteins, such
as Bcl-2 and caspase, in the bleaching response was also revealed
by the studies using inhibitors and by investigating their gene
expression patterns (Dunn et al., 2007; Kvitt et al., 2016). The
recent large-scale transcriptome analyses using Exaiptasia and
Acropora hyacinthus have highlighted ER stress as an associated
pathway involved in bleaching phenomena (Oakley et al., 2017;
Ruiz-Jones and Palumbi, 2017). With the development of next-
generation sequencing analysis, the number of reports on the
molecular response to bleaching is increasing. Transcriptome
analysis in hospite Symbiodiniaceae has also been carried out, and
light-harvesting complex (LHC), heat-shock, and photosystem-
constitutional proteins have been reported as the heat stress-
responsive transcripts (Rosic et al., 2011; Gierz et al., 2017).

Although symbiont type has a large effect on the bleaching

sensitivity of corals, less is known about how different symbiont

types contribute to coral stress tolerance. There are seven genera
in Symbiodiniaceae, among which Cladocopium is ubiquitous
genus associated with corals, while Durusdinium is associated
with high-temperature stress tolerance in corals. It has been

reported that during a bleaching event, the dominant symbiont
type in the coral shifts from the general symbiont Cladocopium
(previously classified as Symbiodinium clade C, hereafter referred
to as C-type) to a stress-resistant type, Durusdinium (previously
Symbiodinium clade D, hereafter referred to as D-type) (Baker,
2003; Baker et al., 2004; Berkelmans and van Oppen, 2006;
LaJeunesse et al., 2018). The influence of each symbiont on
the stress sensitivity of corals has been revealed by genotyping
the symbionts of corals that survive a bleaching event (Baker,
2003; Berkelmans and van Oppen, 2006) and by the physiological
studies using corals associated with each symbiont type (Rowan,
2004; Abrego et al., 2008; Mieog et al., 2009; Yuyama and
Higuchi, 2014; Yuyama et al., 2016). D-type colonized corals
(hereafter referred to as D-corals) have a higher survival ratio
under temperature stress than C-type-colonized corals (hereafter
referred to as D-corals). At higher temperatures, the C-type
shows a more pronounced photoinhibitory response, which
negatively impacts coral viability (Mieog et al., 2009; Yuyama
et al., 2016). The C-type has a higher carbon fixation rate than
does the D-type, and it promotes coral growth to a greater
extent (Cantin et al., 2009). The efficiency of nitrogen acquisition
also differs between C- and D-types; the C-type has a higher
acquisition rate at normal temperatures, but a lower rate than that
of the D-type at higher temperatures (Baker et al., 2013). Thus,
the contributions of the D-type and C-type to coral growth and
nutrient sources vary with the temperature (Cunning et al., 2015).

However, there are knowledge gaps in the difference in
bleaching sensitivity derived from each symbiont due to
the difficulty of preparing corals associated with symbionts,
although there are a few molecular studies recently reported
(Cunning and Baker, 2020; Rodriguez-Casariego et al., 2022).
To address this gap, we first attempted to prepare a model
symbiosis system suitable for gene expression analysis, namely,
juvenile corals harboring cultured monoclonal C-type or D-
type Symbiodiniaceae (Yuyama and Higuchi, 2014; Yuyama
et al., 2018). The advantages of using such juvenile corals
are as follows: (1) the prevention of contamination by other
organisms, because juvenile corals can be kept in filtered seawater
or artificial seawater, (2) selected alga can be introduced, and
(3) a more homogenous response can be detected (Yuyama
et al., 2005) (adult colonies have large variations in physiological
responses). To clarify the different influences of C- and D-type
symbionts on coral bleaching as well as a common molecular
mechanism of coral bleaching, we exposed the coral associated
with each symbiont to high temperature and light stress. Then,
the maximum quantum yield of PSII (Fv/Fm) of symbiont was
measured by pulse amplitude-modulated (PAM) fluorometry
and performed large-scale gene expression analysis of coral–
algal associations.

MATERIALS AND METHODS

Symbiodiniaceae and Coral Samples
Symbiodiniaceae strains CCMP 2556 (D-type, genus
Durusdinium) and CCMP 2466 (C-type, genus Cladocopium)
were purchased from the Bigelow Laboratory for Ocean Sciences
(West Boothbay Harbor, ME, USA; https://ccmp.bigelow.org).
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Acropora solitaryensis larvae were generated from ∼5 different

colonies located in the area of 32◦48
′

16.5
′′

N 132◦39
′

11.1
′′

E
(permit number 106, Kochi Prefecture) as described by Omori
and Iwao (Omori and Iwao, 2014). Planula larvae were induced
to metamorphose into polyps with neuropeptide Hym248 (Iwao
et al., 2002) and infected with the two Symbiodiniaceae alga as
described by Yuyama et al. (2016, 2018). Each Symbiodiniaceae
strain (∼1,000 cells per polyp) was introduced to corals
1 week after metamorphosis; polyps were grown in petri
dishes (55mm) at 26–27◦C with a 12-h light–dark cycle at 80
µmol m−2 s−1. As C-type algae take ∼3 months to colonize
corals, corals maintained for 3 months were used in the stress
experiments (Yuyama and Higuchi, 2014; Yuyama et al., 2016)
(Figure 1, Supplementary Figure S1). To verify the genotypes
of Symbiodiniaceae colonizing corals, Restriction Fragment
Length Polymorphism (RFLP) analysis was performed with
five corals, each, as described in Yuyama and Higuchi (2014)
(Supplementary Figure S3). Corals were maintained without
feeding. During this 3-month incubation period, the corals
associated with D-type (D-corals) tended to be larger than those
associated with C-type (C-corals) (data not shown), as previously
reported in Acropora tenuis (Yuyama and Higuchi, 2014).

Stress (High Temperature and Strong Light)
Exposure Experiments
A number of two separate experiments were performed using the
same conditions to avoid the effects of photography and FvFm
measurements on RNA-seq samples (Supplementary Figure S2).
First, each five C- and D-corals were incubated under bleaching
conditions (high temperature and strong light) to monitor the
coral bleaching states including photosynthetic responses of the
endosymbiotic algae. The corals were incubated under a 12-
h light–dark cycle at high irradiance (1,500 µmol m−2 s−1)
and the water temperature was increased gradually from 27 to
31◦C over 21 h. The temperature was controlled by a thermo-
controller (TC-101; Eaton, Tokyo, Japan). We confirmed that
the temperature accuracy was within ± 0.5◦C by thermometer
under digital microscope (VHX2000; Keyence, Osaka, Japan).
This bleaching condition was determined in the preliminary
experiments conducted with juvenileA. solitaryensis corals. Coral
polyps were photographed with a stereomicroscope (LZ; Kenis,
Osaka, Japan) mounted on a CMOS camera (Tucsen Photonics,
Fuzhou, China). These photographs enabled us to confirm the
symbiont cell densities in the coral tissue, and to visualize the
decrease therein (Supplementary Figure S1). A number of two
containers for the experimental control population (each with
five corals associated with C-type or D-type) were maintained
at 27◦C under a 12-h light/dark cycle at 80–100 µmol m−2 s−1

(Figure 1).
Second, other corals were exposed to the same stress

conditions described above and fixed after 6 (29◦C) or 30 h
(31◦C) to prepare the samples for transcriptome analysis.
Approximately 90 colonies each were prepared for C- and D-type
corals as the samples for RNA-seq. Among them, 30 corals each
were used for the control, stress day 1 and stress day 2 treatments.
These 30 corals were divided into two containers and prepared

FIGURE 1 | (A) Experimental design for stress experiments and stereoscopic

microscope images of Acropora solitaryensis during temperature increase

from 27 to 31◦C. The upper pictures show A. solitaryensis colonized by C-type

algae (C-coral); lower pictures show A. solitaryensis colonized by D-type algae

(D-coral). The graph shows the transition of the temperature setting during the

experiment. Arrows indicate the time of fixation for RNA-seq analysis. The

samples derived from each time point are referred to as day 1 (at 29◦C,

collected before setting 30◦C), day 2 (at 31◦C), and control. For RNA-seq

analysis, we prepared two replicates (each replicate with 15 pooled colonies)

for each treatment (stress conditions and control conditions)

(Supplementary Figure S2). Scale bars = 0.5mm. (B,C) Maximum quantum

yield (Fv/Fm) of C-type (Cladocopium) and D-type (Durusdinium)

Symbiodiniaceae associated with corals in stress (B) and control treatments

(C). No significant difference was found between C-type and D-type in same

treatment; however, there were significant differences between control and

stress treatments in both C-type and D-type (Turkey–Kramer HSD, p < 0.05).

Values are means ± SE.

as the two biological replicates. For the control condition for
RNA-seq analysis, corals were maintained at 27◦C and 80 µmol
m−2 s−1 for ∼2 months and then fixed at the same time as the
stress day 2 corals. Due to the limited number of samples, the
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control coral for the second day of stress (stress day 2) treatment
was also used as the control for the first day of stress (stress day
1) treatment. Here, it was assumed that the expression pattern
would not change even if the fixation time for RNA-seq was
shifted by 1 day, since the condition is stable after 2 months of
culture. Corals were fixed on day 1 (after 6 h, at 29◦C) and on day
2 (after 30 h at 31◦C) in RNAlater (Ambion, Austin, TX, USA)
and stored at −80◦C. The control population was maintained at
27◦C and 80 µmol m−2 s−1 (12-h light–dark cycle) and fixed
after 30 h.

Measurement of Photosynthetic Parameter
(Fv/Fm)
The photosynthetic parameter (Fv/Fm) of endosymbiotic
algae was monitored by PAM fluorometry (MiniPAM; Walz
GmbH, Effeltrich, Germany) (Yuyama et al., 2016). All Fv/Fm
measurements were taken after a 15-min dark adaptation period.
In the measurement, PAM probes were fixed near the coral body
wall. Fv/Fm values for the symbiotic C-type and D-type were
compared for the different treatments. Post-hoc differences were
assessed using the Tukey–Kramer honestly significant difference
test (Anaconda 3-5.2.0, Python version 3.6.5; Continuum
Analytics, Austin, TX, USA).

Counting Algal Symbiont (Estimating
Symbiont Density)
After the end of the stress experiment, corals were fixed in 3%
formaldehyde to count symbiont cells inside corals (corals from
the control and stress day 2 treatments were fixed to investigate
the symbiont density). The fixed corals were decalcified in
solution containing 0.5M EDTA and homogenized in 0.01%
Triton X using the method described by Yuyama and Higuchi
(2014). Then, symbiont cells in the coral homogenate were
counted using a hemocytometer (Thomas Scientific, Swedesboro,
NJ, USA) under a digital microscope (VHX2000; Keyence,
Osaka, Japan). To estimate symbiont density (cells/ mm2), the
surface area of photographed corals was calculated using ImageJ
software. These corals do not differ in height; thus, only the
surface area was estimated. To clarify that a bleaching response
was occurring, algal cell density ratios of “stress day 2” / “control”
were calculated.

Transcriptome Analysis
Each treatment was performed in two replicates, and a total
of 12 RNA libraries were prepared. Total RNAs were extracted
from each replicate using the PureLink RNA Mini Kit, and
Poly(A) RNA isolation from total RNA was performed with a
protocol of Next Poly(A) mRNA Magnetic Isolation Module
(New England Biolabs, Ipswich, MA, USA). The RNA quality
of each sample was checked using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) before producing
the libraries. The sequencing libraries were generated from
poly(A) mRNA using the NEBNext Ultra RNA Library Prep
Kit (New England Biolabs). All libraries were sequenced on
the HiSeq 4000 platform (Illumina, San Diego, CA, USA) by
Macrogen Japan. The resulting 101-bp paired-end reads were
first pre-processed [trimming of low-quality bases using a Phred

quality score (Qv) <20 from the 5
′

and 3
′

ends of each read, and
removing short reads (<25 bp) and low-quality reads (30% of
bases with Qv ≤15)] using the DNA Data Bank of Japan (DDBJ)
Read Annotation Pipeline (Nagasaki et al., 2013).

Transcriptome Analysis of Host Corals
Trimmed reads from all samples were assembled de novo
using trinity in the DNA Data Bank of Japan (DDBJ) Read
Annotation Pipeline (Nagasaki et al., 2013). Assembled contigs
were translated using TransDecoder (Haas et al., 2013) to isolate
likely coding sequences. The peptide sequences were filtered for
redundancy using CD-Hit (v4.6.1; Fu et al., 2012) specifying
a 95% similarity threshold and then obtained 168,491 contigs.
To detect contig sequences originating from the host coral, we
built custom coral and Symbiodiniaceae databases. The contigs
derived from A. solitaryensis were isolated by the alignment
to coral databases, and symbiont sequences were removed, as
previously described (Yuyama et al., 2018). Reads were mapped
to the A. solitaryensis contigs using the Bowtie2—very-sensitive
algorithm (run with options: -D 20 -R 3 -N 0 -L 20 -i S,1,0.50)
(Langmead and Salzberg, 2012). The eXpress was used to
quantify the transcript abundances. To identify differentially
expressed genes (DEGs) between the control and stress
conditions (days 1 and 2), the edgeR method in the TCC package
of R (Sun et al., 2013) was used (Supplementary Figure S2).
Genes were determined to be significantly differentially expressed
based on a false-discovery rate < 0.05. All A. solitaryensis contigs
were annotated using the public Swiss-Prot database and the
non-redundant protein database (NCBI-nr) by BLASTx search
with an e-value cutoff of 1e-4. Gene Ontology (GO) enrichment
analyses were performed on the annotated dataset of DEGs
using the Database for Annotation, Visualization, and Integrated
Discovery (Huang et al., 2009b) (https://david.ncifcrf.gov/). In
the analysis, annotatedDEGswere compared with the annotation
of the whole transcriptome, and GO terms enriched among
the DEGs were identified. To summarize the major pathways
involved in corals exposed to high-temperature/light, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
(Kanehisa and Goto, 2000) of the DEGs detected in both C- and
D-type corals were also performed. As the background for the
GO enrichment analysis, the Swiss-Prot annotation results of all
A. solitaryensis contigs were used.

Transcriptome Analysis of Algal Symbiont
Transcriptome analyses of Cladocopium and Durudsinium was
performed using same RNA-seq short reads with the coral
analysis. De novo assembly of C-type and D-type was performed,
respectively, using FASTQ data of C- and D-type corals, obtained
in this study. To detect coding sequences of the assembled
contigs, TransDecoder (v. 2.0.1) was used (Haas et al., 2013). In
total, 157,584 and 156,284 contigs were obtained from the C- and
D-type coral datasets. Subsequently, contigs with more than 95%
nucleotide sequence identity were removed using CD-HIT (v. 4.7;
Fu et al., 2012). The contigs derived fromC-type and D-type were
isolated by alignment to coral databases and symbiont sequences
were removed, as previously described (Yuyama et al., 2018).
As a result, 98,707 and 97,948 contigs (clusters) were obtained
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from the C- and D-type corals (Supplementary Figure S3).
The contigs derived from Cladocopium and Durusdinium were
isolated by the alignment to custom Symbiodiniaceae databases
and coral sequences using BLASTn (v. 2.2.30; NCBI, Bethesda,
MD, USA). The Symbiodiniaceae database included the genomes
of Symbiodiniumminutum (Shoguchi et al., 2013), Symbiodinium
kawagutii (Lin et al., 2015), Symbiodinium tridacnidorum and
Cladocopium sp. (Shoguchi et al., 2018), and the transcriptomes
of Cladocopium sp. and Durusdinium sp. (Ladner et al., 2012).
The coral database included the Acropora digitifera genome
(Shinzato et al., 2011) and transcriptomes of non-symbiotic
Acropora hyacinthus (https://matzlab.weebly.com/data--code.
html) and A. tenuis (Yuyama et al., 2018). Reads were mapped to
Cladocopium- or Durusdinium-derived contigs with the Bowtie2
(v. 2.2.4) very-sensitive algorithm. Then, the quantification
of transcript abundances and identification of DEGs were
performed by the same method used for the identification
of coral transcripts. The eXpress (v. 1.5.1) program was used
to quantify transcript abundances and estimate fragments per
kilobase of transcript per million mapped reads (FPKM) values
(Roberts and Pachter, 2013). To identify transcripts expressed
differentially between the control and stress conditions, analysis
using iDEGES/edgeR in the TCC package (Sun et al., 2013)
was performed. The differentially expressed transcriptome was
annotated using Swiss-Prot and the non-redundant protein
database. GO enrichment was also performed on the DAVID
website (https://david.ncifcrf.gov/) (Huang et al., 2009a). In the
analysis, all Cladocopium or Durusdinium transcripts annotated
with GO terms were used as the background.

RESULTS

Stress Response
During the increase in temperature, the appearances of both
corals (C-coral and D-coral) remained largely unchanged until
6 h, and the color of the body gradually became white over
the following 24 h (Figure 1, Supplementary Figure S4). To
investigate the responses of endosymbiotic algae under high
temperature and light stress, their photosynthetic efficiencies
were measured (Figure 1). The photosynthetic ratios (Fv/Fm) of
the C- and D-types were 0.582± 0.002 and 0.57± 0.013 (average
± standard error [SE]), at the beginning of the experiment; these
values decreased to 0.042 ± 0.009 and 0.099 ± 0.002 (average
± SE), in the first 3 h. After this point, the photosynthetic
activity of algae remained low until the end of the experiment.
At 3 h, when the temperature was increased to 28◦C under
strong light, the D-type tended to show more photosynthetic
activity than did the C-type. In the control treatment (27◦C,
80 µmol m−2 s−1), no significant fluctuation of Fv/Fm was
observed in either type; the Fv/Fm values were∼0.6. Fv/Fm values
were significantly decreased under stress compared with control
conditions, in both C- and D-types (p < 0.05), although no
significant difference was observed between the two types. At the
end of the experiment, the corals were fixed and decalcified to
measure the symbiont densities. Cell density tended to decrease
during the experimental period, with a 51% decrease in C-type

and a 28% decrease in D-type compared to control conditions
(Supplementary Figure S4).

Transcriptomic Change in Corals
For RNA-seq analysis, samples were fixed at 6 h (day 1, at 29◦C)
and 30 h (day 2, at 31◦C) after the start of the experiment.
We sequenced cDNA libraries derived from each sample, and
∼40 million reads were obtained from each. Sequence data
were deposited in the DDBJ Read Archive (DRA008078).
As a result of the de novo assembly using reads from all
samples, 663,795 contigs were generated. Subsequently, the
protein-coding regions were estimated, and redundant sequences
were removed, which resulted in 168,491 sequences. Among
them, 40,036 contigs (DDBJ/ENA/GenBank accession codes
ICPH01000001-ICPH01040036) assigned to the coral database
by BLASTN search were used as a reference gene set of corals
for subsequent analyses (Supplementary Tables S1, S2). All of
the reads from each population were aligned to the reference
using Bowtie2; we then attempted to detect DEGs in the two
biological replicates. In the Bowtie2 analysis, ∼14–16 million
reads were mapped to reference contigs. The expression levels in
the control population were compared with those in the stress
day 1 or day 2 treatment in each coral, and DEGs under the
stress conditions, as compared to controls, were detected. Of
these DEGs, 9,537 were annotated by BLASTX searches against
the UniProt/Swiss-Prot database. In the stress day 1 treatment,
1,685 and 1,081 DEGs were detected in C- and D-type corals,
and in stress day 2, 2,954 DEGs and 3,516 DEGs were detected
(Supplementary Figure S5).

Next, the UniProt accession IDs assigned to each DEG were
used for GO enrichment analysis. DEGs from stress days 1 and 2
were subjected to GO enrichment analysis, and the top enriched
GO terms with low p-values were selected and shown in Figure 2.
GO terms related to the organs not found in cnidarians and
GO terms with duplicate meanings were deleted. GO analysis
revealed that the up-regulated genes are significantly enriched
in protein folding, oxidation-reduction process, and immune
response, whereas the down-regulated genes are highly involved
in skeletal system development, DNA replication, and telomere
maintenance via recombination (Figure 2). Their expression
patterns indicated that the gene expression response of D-coral
was slower than that of C-coral. Some metabolic systems, such
as glucose, metabolic processes, and ammonium ion metabolic
processes, were upregulated at 29◦C (day 1) in C-corals, while
they were hardly changed in D-corals; similar cases were also
detected among downregulated genes.

Kyoto Encyclopedia of Genes and Genomes pathway
analysis was also performed to identify the major molecular
processes among the DEGs. Transcriptome data at 31◦C
(day 2) were mainly used for KEGG pathway analysis.
Figure 3 shows several upregulated genes, which include those
involved in endocytosis, lysosome organization, acetyl-CoA,
NO, chitin metabolic process, and the PI3K-AKT pathway, and
downregulated genes, which include those involved in DNA
replication and the calcium signaling pathway. In addition,
specific DEGs for C- and D-type corals were detected from
DEG gene list (Figure 4). As a result, inflammatory mediator
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regulation of transient receptor potential (TRP) channels was
identified as a pathway specifically upregulated in D-type corals.
Additionally, different types of vitamin B metabolic pathways
were identified as downregulated under stress conditions in the
two corals: riboflavin in C-coral, and folate and thiamine in
D-coral.

Transcriptomic Change in Algal Symbiont
De novo assembly of C- and D-type symbionts was performed,
respectively, using FASTQ data of C-andD-corals, which resulted
in the identification of 44,446 contigs (DDBJ/ENA/GenBank
accession codes ICPI01000001–ICPI01003338) from C-
type and 20,368 contigs (DDBJ/ENA/GenBank accession
codes ICPJ01000001–ICPJ01004504) from D-type
(Supplementary Tables S1, S2). FASTQ reads of C- and D-
corals were aligned to candidate each symbiont (C-type and
D-type) derived contigs, respectively. Then, the expression
levels of each contig were estimated from FPKM values. The
expression pattern of each contig was then compared between
the control and stress conditions (day 1 or 2) using edgeR and
the TCC program (false discovery rate < 0.05). In total, 117
and 56 algal DEGs were detected in C- and D-type in stress day
1, and in stress day 2, 109 DEGs and 296 DEGs were detected
(Supplementary Figure S6). Of them, 204 C-type and 321
D-type DEGs had protein functional annotations (BLASTX
e-value < 10e-4). GO enrichment analysis was performed
based on the DEG annotations detected for each treatment

and algae type. The 29 enriched GO terms (p-value < 0.05,
Fisher’s exact test) are shown in Figure 5. Figure 6 shows
typical GO terms of C-type and D-type symbionts and their
related genes (since the same contigs were shared by GO terms
with similar names, representative GOs with high originality
were summarized in Figure 6). The stress response of the
C-type was characterized by GO terms related to “regulation
of translation” and “proteolysis.” For the D-type, GO terms
associated with “photosynthesis” were upregulated, while
those associated with “ion transport” and “protein folding”
were downregulated. The DEGs indicated that several types
of transcripts coding chaperon proteins were downregulated
in both C-type and D-type. In addition, D-type had many
DEGs related to photosynthesis that were upregulated under
stress conditions.

DISCUSSION

In this study, corals associated with C-type or D-type
symbionts were incubated under coral bleaching conditions
(increasing temperature and strong light conditions), and
their stress response patterns and transcriptomic changes
were investigated. By the stress treatment, a decrease in
symbiotic cell density, which is a typical coral bleaching
phenomenon, was observed. Photosynthetic activity (Fv/Fm) of
both Symbiodiniaceae immediately decreased, and the D-type

FIGURE 2 | Heatmap of enrichment scores [–log10 (p-value)] from GO enrichment analysis using upregulated coral DEGs (A) and using downregulated coral DEGs

(B). The detected significantly (p < 0.05) enriched GO terms in biological process are shown.
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maintaining a slightly higher Fv/Fm than the C-type under stress
conditions. This is similar to the reports that the degree of
Fv/Fm decline in the D-type was smaller than in the C-type
under strong light conditions (Yuyama et al., 2016). These results
were suggested that D-corals have slightly more stress-resistant
properties than C-corals. To examine the difference in stress
response between C- and D-corals, we performed transcriptome
analyses and investigated DEGs between stress treatments and
non-stressed control. As a result, we identified 9,884 annotated
DEGs derived from corals and 204 and 321 annotated DEGs
derived from Cladocopium and Durusdinium. First, we focus on
coral genes and discuss the major pathways commonly detected
in C- and D-type coral (Figure 3), and then, we focused on the
unique gene expression changes of each coral (Figure 4). Our
RNA-seq results were limited by insufficient replication (two
replicates, each containing ∼15 corals). For that reason, rather
than focusing on the response of a single gene, we mainly focused
on the phenomena detected by GO enrichment analysis of the

DEGs. Algal DEGs detected from RNA-seq analyses were lower
than the number of host corals, but typical stress-responsive
genes, such as genes coding molecular chaperon proteins, were
detected. The final section of the discussion focused on the
response of symbiotic algae. Transcriptome data on day 2 were
mainly used for discussion, because the data on day 1 are in the
process of temperature increasing and a lesser number of DEGs
were detected.

Common Transcriptomic Reactions of
Corals Between C- and D-Type Corals
ER Stress, Apoptosis, and Mitophagy
A total of 107 DEGs involved in “Protein processing in
endoplasmic reticulum” were detected in the corals exposed
to stresses. These genes have been reported in the previous
studies and are considered to be a major molecular response
associated with the bleaching response (Oakley et al., 2017;
Ruiz-Jones and Palumbi, 2017). These enormous changes in

FIGURE 3 | Schematic presentation of several gene pathways involved in high temperature and strong light stress based on RNA-seq data of host corals. Common

changes in gene expression between C-coral and D-corals at 31 ◦C are indicated. Each pathway is described based on the KEGG pathway database (Kanehisa and

Goto, 2000). Upregulated transcripts during high temperature and/light stress are shown in red; downregulated transcripts are indicated in blue. Each gene

expression pattern is also shown in Supplementary Figure S1.
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FIGURE 4 | Heatmap displaying the relative expression values (z-score of TMM-normalized FPKM values) of contigs, which shows the different expression patterns of

C- and D-corals during treatment with high temperature and strong light. As representative examples, the expression patterns of contigs encoding TRP channels and

genes involved in vitamin B metabolism are shown. Expression values were converted into z-scores and plotted by heatmap.2 in R.

gene expression associated with the unfolded protein response
(ER-stress) indicate that corals suffer from increased protein
denaturation during the bleaching process. In addition, other
processes related to ER stress, such as mitophagy and apoptosis-
like responses, were also detected by GO enrichment and KEGG
pathway analyses. Mitophagy is a response in which damaged
mitochondria are degraded by autophagy and a similar response
has been observed in Exaiptasia (a model animal of coral–algal
endosymbiosis) under high temperature conditions (Dunn et al.,
2012). The caspase-mediated apoptosis has also been reported to
be involved in bleaching phenomena (Tchernov et al., 2011). This
series of responses, such as ER stress, mitophagy, and apoptosis,
is likely caused by ROS generated from the photoinhibition of
endosymbiotic alga under high temperature and strong light
conditions (Lesser, 2011). These ROS attack protein in corals, and
this might increase the expression of genes involved in ER stress,
mitophagy, and apoptosis, which leads to the coral bleaching.

Endocytosis
Expression of genes related to ER stress or mitophagy could also
link to the upregulation of Rab 7 protein, which is responsible
for the fusion of lysosomes and endosomes (Figure 3). In

Aiptasia, a Rab 7 homolog is located in putative late endocytic
and phagocytic compartments containing either heat-killed
or photosynthesis-impaired symbionts (Chen et al., 2003).
The Rab 7 homolog may be involved in the digestion of
denatured alga; our results that show the upregulation of Rab
7 might be a sign of the bleaching process. In addition to
Rab 7, various endocytosis-related DEGs were identified. The
expression of Rab proteins, charged multivesicular body proteins
(CHMPs), and vacuolar protein sorting (VPS) proteins, which
are involved in endocytic trafficking and endosomal sorting,
increased under the stress conditions. Less is known about
the functions of endocytosis-related genes involved in coral
bleaching except for the fact that Rab protein is localized in the
symbiosome membrane (Chen et al., 2003, 2005; Song et al.,
2015). In plant–microbe symbioses, however, the regulation
of the expression of membrane trafficking proteins, such as
VPS, causes shrinkage of vacuoles and, in turn, is involved in
maturation of the symbiosome membrane (Gavrin et al., 2014).
In the case of corals, these fluctuations in endocytosis-related
genes such as VPS, Rab, and CHMP will be also important
for understanding the status of symbiosome membranes during
coral bleaching.
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FIGURE 5 | GO functional analysis of Symbiodiniaceae DEGs detected using DAVID. The detected significantly (p < 0.05) enriched GO terms in biological process are

shown. The legend shows the color scaling with negative log10 p-value. In the C-type (Cladocopium), no significantly enriched GO term was detected in the

upregulated DEG, while in D-type (Durusdinium), some photosynthesis-related GO terms were detected as upregulated DEGs. Among the downregulated DEGs, a

GO term related to protein folding was enriched in both Symbiodiniaceae.

Metabolic Processes
Stress exposure reduces the expression of genes involved in
the generation of acetyl-CoA from glycolysis (Figure 3). It also

reduces the expression of the fatty acid biosynthetic pathway that
consumes acetyl-CoA; by contrast, it increases the expression
of L-lysine and fatty acid metabolism pathways that generate
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FIGURE 6 | Schematic presentation of representative genes involved in high temperature and strong light stress based on RNA-seq data of symbiont, Cladpcopium

(C-type) and Durusdinium (D-type). The representative enriched GO and their related genes were shown. Upregulated transcripts during bleaching are shown in red;

downregulated transcripts are indicated in blue.

acetyl-CoA. In other words, the expression levels of L-lysine
and fatty acid metabolism-related genes increase to enhance
the production of acetyl-CoA under stressed conditions in
which less acetyl-CoA is generated through glycolysis. These
findings suggest that during bleaching, corals maintain their
energy-producing pathway, in which acetyl-CoA enters the TCA
cycle, by supplementing acetyl-CoA production using metabolic
pathways other than glycolysis. In addition to those mentioned
above, other stress response processes, which include cytochrome
c release, the heme biosynthetic pathway, arginine and proline
metabolism, valine isoleucine, and the chitin metabolic pathway
degradation, were also detected. Our results suggest that
these metabolic processes are susceptible to coral bleaching or
symbiotic state with algae.

DNA Replication
The expression of genes involved in DNA replication decreased
under stress conditions; that is, genes encoding enzymes such
as DNA polymerase, helicase, RNase, and ligase were drastically
decreased. The downregulation of DNA replication-related genes
can be associated with the “DNA-damage response” induced by
heat stress or oxidative stress reported as shown in the study
of Kantidze et al. (2016). Corals reportedly suffer DNA damage
under oxidative stress caused by photoinhibition of symbionts at
high temperatures (Nesa and Hidaka, 2009; Nesa et al., 2012).
Our results indicate that, during coral bleaching, DNA damage
becomes more serious due to the reduced ability to repair DNA
(Supplementary Figure S7).

Signaling Pathways
The calcium signaling pathway is a typical gene set known to
change in corals at high temperatures (Desalvo et al., 2008; Rosic
et al., 2015; Weston et al., 2015). Our RNA-seq data showed
decreased expression of genes involved in the calcium signaling
pathway, which indicated that under high temperature and
strong light conditions, the expression levels of molecules that
sense calcium were deceased, and expression levels of calmodulin
kinase, which involved in modification of cell functions, also
decreased. In addition, signaling systems that control cell
proliferation that includes PI3K-AKT, insulin signaling, and
mTOR pathways were upregulated under the stress conditions.
The PI3K-AKT and mTOR pathways are known to relieve the
stress induced by ROS (Yu and Cui, 2016). The upregulation
of these gene sets in bleached corals may be attributable to the
corals’ response to damage caused by ROS stress. The expression
of similar pathways has been reported to increase in corals
under the influence of light pollution (Rosenberg et al., 2019),
and therefore, the upregulation of these pathways could be an
indicator of coral stress.

Unique Gene Expression Changes in
C-Corals and D-Corals
Vitamin B Biosynthesis
Various genes involved in vitamin B metabolism were specifically
downregulated in each of the two corals; DEGs related to
riboflavin metabolism were detected in C-corals, while DEGs
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related to folate and thiamine metabolism were detected in D-
corals. Vitamin B is an essential supplement for growing alga
(Croft et al., 2005; Agostini et al., 2009; Helliwell et al., 2016),
which includes Symbiodiniaceae. These unique DEGs involved
in vitamin B metabolism, whose expression levels were decreased
with decreasing symbiont density on day 2 (although changes
in symbiont density are not statistically significant), imply that
each symbiont requires different B vitamins. The present results
support the connection between symbiont alga and host vitamin
B metabolism and revealed symbiote specificity for various
B vitamins.

TRP Channels
The expression change of TRP channels is noteworthy
because the channels have been extensively characterized as
thermosensors (Schepers and Ringkamp, 2009; Samanta et al.,
2018). The coral TRP channel, homologous to TRPA1, TRPV5/6,
and TRPM3, increased in stress-tolerant D-corals under high
temperature and strong light conditions, while C-corals showed
few changes regarding these proteins. In general, these channels
are known to control the entry of calcium that causes an
internal signal to regulate cell activities (Schepers and Ringkamp,
2009; Samanta et al., 2018). The symbiont-associated altered
expression levels of TRP and their function in corals are the
interesting issues to be addressed in the future and may help
us to understand the connection between symbiont type and
temperature resistance of the host.

Transcriptomic Changes of Symbiont
The different stress responsiveness between C- and D-type
Symbiodiniaceae in corals was also detected by RNA-seq
analysis. The photosynthesis-related GO term was enriched in
upregulated DEGs in the D-type (Figure 5). By contrast, in the
C-type, only a few photosynthesis-related were differentially
expressed (Figure 6). The altered expression of transcripts
related to the photosynthetic reaction center suggested
that algae are affected by photoinhibition, which damages
the photosynthetic system under strong light conditions
(Constant et al., 1997). In addition, several genes involved in
ion transport were downregulated in the D-type (Figures 5,
6). These gene expression changes are likely to reflect an
increase or decrease in the amount of substances transported
from corals, and downregulation of ammonia transport
proteins may reflect a decrease in the transport of ammonia
received by symbiotic algae from the host (Pernice et al.,
2012). Other transporter that includes zinc transporter and
cationic amino acid transporter is also downregulated in
D-type, which suggested that D-type cells usually utilize
these substances, but their utilization is reduced under
stress conditions.

The RNA-seq analysis that focusses on the in hospite
Symbiodiniaceae detected protein-folding-related transcripts
as DEGs in both the C- and D-types, most of which were
downregulated by stress exposure (Figure 6). The expression
pattern of these transcripts was previously reported in the
symbiont of Acropora millepora and is considered to be a
general symbiont response (Gierz et al., 2017). Interestingly,

our results showed that a few protein-folding-related
transcripts were upregulated. The upregulation of these
heat shock proteins might be associated with increased
stress tolerance of Symbiodiniaceae (Mayer and Bukau,
2005; ul Haq et al., 2019). In the bleaching situation,
these upregulated chaperone transcripts are thought to be
involved in maintaining the functional stability of C- and
D-type symbionts.

In summary, the differential expression of many bleaching
stress-related genes in corals was detected, and representative
changes included upregulation of genes associated with ER
stress, apoptosis, mitophagy, endocytosis, PI3K/AKT/mTOR
signaling, and metabolic processes related to acetyl-CoA, as
well as decreased DNA replication. In addition, the use of
corals colonized with two different types of symbionts revealed
differences in the expression patterns of TRP channel genes
and vitamin B metabolic genes, which shows the influence of
symbiont algal type on the coral host. In the algal DEGs, typical
stress response genes, such as gene related to molecular chaperon
proteins and gene related to photosystem, were detected. Some
of those DEGs were frequently detected in the D-type, which
has relatively stress-resistant properties. To reveal how the
above-mentioned genes are involved in coral bleaching, further
examination of the localization of the proteins encoded by each
gene and the confirmation of their functions by gene knockdown
will be needed. We have summarized typical pathways, but
the published transcriptomic data include more information
than discussed here. It is expected that these data will help
to reveal the underlying mechanisms of coral bleaching in the
future studies.
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