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Abstract

Background: Triple-negative breast cancer is a subtype of breast cancer with aggressive tumor behavior and distinct
disease etiology. Due to the lack of an effective targeted medicine, treatment options for triple-negative breast cancer are
few and recurrence rates are high. Although various multi-gene prognostic markers have been proposed for the prediction
of breast cancer outcome, most of them were proven clinically useful only for estrogen receptor-positive breast cancers.
Reliable identification of triple-negative patients with a favorable prognosis is not yet possible.

Methodology/Principal Findings: Clinicopathological information and microarray data from 157 invasive breast carcinomas
were collected at National Taiwan University Hospital from 1995 to 2008. Gene expression data of 51 triple-negative and 106
luminal breast cancers were generated by oligonucleotide microarrays. Hierarchical clustering analysis revealed that the
majority (94%) of triple-negative breast cancers were tightly clustered together carrying strong basal-like characteristics. A
45-gene prognostic signature giving 98% predictive accuracy in distant recurrence of our triple-negative patients was
determined using the receiver operating characteristic analysis and leave-one-out cross validation. External validation of the
prognostic signature in an independent microarray dataset of 59 early-stage triple-negative patients also obtained statistical
significance (hazard ratio 2.29, 95% confidence interval (CI) 1.04–5.06, Cox P= 0.04), outperforming five other published
breast cancer prognostic signatures. The 45-gene signature identified in this study revealed that TGF-b signaling of
immune/inflammatory regulation may play an important role in distant metastatic invasion of triple-negative breast cancer.

Conclusions/Significance: Gene expression data and recurrence information of triple-negative breast cancer were collected
and analyzed in this study. A novel set of 45-gene signature was found to be statistically predictive in disease recurrence of
triple-negative breast cancer. The 45-gene signature, if further validated, may be a clinically useful tool in risk assessment of
distant recurrence for early-stage triple-negative patients.
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Introduction

Triple-negative breast cancer, immunohistochemically defined

by lack of expression of estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor receptor 2

(HER2), is an important phenotype of breast cancer that accounts

for approximately 10–15% of all breast cancers [1–3]. The

absence of ER, PR, and HER2 protein receptors on triple-

negative breast tumors precludes many therapeutic options that

incorporate hormonal drugs or monoclonal antibodies. As a result,

triple-negative breast cancer is often associated with a worse

prognosis and higher death rate than other subtypes of breast

cancers [4–6].

The term ‘‘triple-negative breast cancer’’ is often used in-

terchangeably with ‘‘basal-like breast cancer’’ due to strong

histological similarities between the two breast cancer subtypes

[7–10]. Basal-like breast tumors are preferentially low in ER and

HER2 expression, and are significantly associated with several

basal cytokeratin (CK) markers, including CK 5/6, CK 14, CK

17, and epidermal growth factor receptor (EGFR) [11]. Gene

expression profiling pioneered by Perou et al. and Sorlie et al.
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showed that breast cancer can be reliably reclassified into five

major subtypes (luminal A, luminal B, HER2/neu, basal-like, and

normal breast-like) based on gene expression patterns from the

intrinsic gene set [12,13]. In their hierarchical clustering analyses,

basal-like breast tumors were grouped together within a tight

cluster showing high expression of basal cytokeratin genes (KRT5

and KRT17) and low expression of luminal estrogen receptor gene

(ESR1).

Although triple-negative breast cancer possesses many basal-like

characteristics, equating triple-negative breast cancer with basal-

like breast cancer is not fully supported by many studies [11,14–

17]. In an investigation of the association between triple-negative

phenotype and basal cytokeratin markers, Tan et al. reported that

6 out of 31 (19.4%) triple-negative breast tumors were negative for

basal makers (CK 5/6, CK 14, CK 17, and EGFR), while 15 out

of 207 (6.3%) non-triple-negative tumors expressed basal makers

[11]. An immunohistochemical validation of basal-like breast

cancer by Nielsen et al. showed that the microarray-defined basal-

like breast cancer could be effectively identified using a panel of

four immunohistochemical markers (ER-, HER2-, CK 5/6+ and

HER1+) with 100% specificity and 76% sensitivity [9].

Prognostic impact of gene expression profiling has also been

widely studied in human breast cancer, and various multi-gene

signatures have been proposed for breast cancer prognosis [18–

22]. However, they were proven to be clinically accurate only for

hormone receptor positive cases. The underlying molecular

mechanisms driving distant metastatic invasion of triple-negative

breast cancer are poorly understood. This study thus aimed to

establish prognostic correlations between gene expression profiling

and recurrence outcome of triple-negative breast cancer using

oligonucleotide microarray technology. A 45-gene prognostic

module was found to be statistically predictive of recurrence

outcome of triple-negative breast cancer. Functional network

analysis of the 45 genes revealed that deregulated TGF-b immune/

inflammatory signaling may profoundly participate in metastatic

invasion of triple-negative breast cancer.

Methods

Selection of Breast Cancer Specimens
Specimens of breast cancer tissues were collected and snap-

frozen from breast cancer patients who had surgery between 1995

and 2008 at National Taiwan University Hospital (NTUH,

Taipei, Taiwan). Clinicopathological information was obtained

for all breast cancer patients along with informed consent. The

American Joint Committee on Cancer (AJCC) TNM system

(version 6) was used for breast cancer staging classification.

Histological classification of breast cancer was determined by

professional pathologists. Treatment procedure of all breast cancer

patients followed National Comprehensive Cancer Network

(NCCN) guideline. All breast tumor samples were neoadjuvant-

free and were collected before systemic chemotherapy treatments.

Selection of breast tumor samples aimed to avoid bias. A total of

157 breast tumor specimens, including 51 triple-negative (ER-,

PR-, HER2-) and 106 luminal (ER/PR+, HER2+/2) breast

tumors, were selected for microarray analysis. All triple-negative

breast tumors were invasive ductal carcinomas (IDC). Use of

human breast tumors in microarray experiments was approved by

the Institutional Review Board at NTUH, and was performed in

accordance with the policies of the hospital.

Oligonucleotide Microarray Experiment
Total RNA from each specimen was extracted using Trizol

Reagent (Invitrogen, Carlsbad, CA, USA) and then purified as the

starting material for first strand cDNA synthesis (SuperScript II

RNase H Reverse Transcriptase, Invitrogen) followed by second

strand cDNA synthesis. The synthesized cDNA was used as

templates to produce cRNA targets during the in vitro transcription

process (MEGAscript T7 Kit, Applied Biosystems Ambion, Austin,

TX, USA). A human reference RNA pool from 10 cell lines

(Stratagene, La Jolla, CA, USA) served as the control reference in

array signal comparison. RNA targets from tumor specimens were

labeled with Cy5, and RNA reference targets were labeled with

Cy3. The microarray platform used in this study was Agilent

Human 1A (version 2) oligonucleotide microarray (Agilent

Technologies, Santa Clara, CA, USA). After labeling and

fragmentation, labeled cRNA targets from each tumor specimen

and reference were pooled and hybridized to an oligonucleotide

microarray at 60uC for 17 hours. Upon completion of hybridiza-

tion, the arrays were washed and dried in nitrogen, and then

scanned by an Agilent microarray scanner at 535 nm for Cy3 and

at 625 nm for Cy5. Scanned images were analyzed using the

feature extraction software (Agilent Technologies).

Microarray Data Analysis
Microarray data from 157 breast cancer samples were collected

and organized in an Excel data sheet, with 20,140 genes eligible

for analysis. All microarray data were deposited in the Gene

Expression Omnibus [GEO:GSE33926] of the National Center

for Biotechnology Information (NCBI, Bethesda, MD, USA).

Gene expression data of 157 microarrays were normalized using

quantile normalization. In the analysis of association between

triple-negative and basal-like breast cancer, 261 intrinsic genes

[12,13] were first identified on our microarray platform. Average-

linkage hierarchical clustering was performed on all 157 breast

tumors using the intrinsic gene subset with Genesis software

(version 1.7.4) (Figure S1).

In the search for metastasis predictor genes, 9 out of 48 triple-

negative patients who developed distant metastases in the follow-

up period were classified as the metastasis-positive group (n= 9;

mean time to metastasis: 2.161.2 years), and the remaining 39

patients who were free of distant metastasis during the follow-up

period were classified as the metastasis-negative group (n= 39).

The median follow-up period of the triple-negative patients was

4.4 years. Clinicopathological information of the 48 triple-negative

patients is shown in Table S1. Differentially expressed genes

between the two groups were first identified by using the two-sided

Student’s t-test (P,0.005) and fold change comparison ($1.5 fold).

Fifty significantly expressed genes were determined after perform-

ing the Benjamini and Hochberg method for multiple-testing

correction. To establish a multi-gene signature, combinations of

the fifty genes were tested by adding one gene at a time based on

the fold change magnitude of each gene. Receiver operating

characteristic (ROC) analysis was performed with each combina-

tion using the IBM SPSS software (version 16.0). The combination

of 45 marker genes was found to provide the highest area under

curve (AUC) value in prediction of distant recurrence (Figure S2).

Leave-one-out cross validation was performed to examine the

prediction power of the 45-gene signature using the support vector

machine algorithm.

External Validation
The prognostic performance of the 45-gene signature was

validated using an independent microarray dataset

[GEO:GSE25065] from the Gene Expression Omnibus. The

validation cohort contained 59 early-stage triple-negative breast

cancer patients annotated for recurrence events and relapse-free

survival time. Microarray data of 59 triple-negative tumors were

Prognostic Genes of Triple-Negative Breast Cancer
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normalized using quantile normalization. Thirty-two out of the 45

predictor genes were identified in the validation microarray

platform (Table S2). Kaplan-Meier survival curves of recurrence-

free survival in good/poor prognosis groups of triple-negative

patients were plotted using the IBM SPSS software.

Figure 1. Hierarchical clustering analysis of 157 breast tumors (51 triple-negative and 106 luminal) using 261 intrinsic genes. The
breast tumors were classified into two dominant clusters based on similarities in expression patterns. (A) The dendrogram depicts similarities in gene
expression patterns of the breast tumors divided into two dominant clusters. Triple-negative tumors were colored red, and luminal tumors were
colored blue. (B) Gene expression data from 261 intrinsic genes. Each row represents a gene and each column represents a breast tumor. As shown in
the color bar, red indicates up-regulation; green indicates down-regulation; black indicates no change; and grey indicates no data available. (C) The
estrogen receptor (ESR1) and ERBB2 oncogene were markedly up-regulated in luminal breast tumors (ER/PR+, HER2+/2). (D) KRT5 and KRT17 were
markedly up-regulated in triple-negative breast tumors.
doi:10.1371/journal.pone.0045831.g001
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Pathway Analysis
Functional classification linked to the 45 metastasis predictor

genes was identified by the Ingenuity Pathway Analysis (IPA)

software (version 8.8). Gene symbols were used as input for the

search of biological functions and molecular networks associated

with the 45-gene signature. The contexts of functional analysis

were delineated by gene ontology. Molecular networks harboring

at least five metastasis predictor genes were selected and analyzed

with the Ingenuity software.

Results

Clinicopathological Characteristics
Clinicopathological information of 157 invasive breast carcino-

mas composing the study sample is shown in Table 1. Forty-eight

(94%) triple-negative patients were diagnosed at early stages (I-III)

with no signs of distant metastasis. Association between the

clinicopathological characteristics and triple-negative phenotype of

breast cancer was investigated by compared with luminal breast

cancer (Table S4). High histologic grade (P,0.001) was more

commonly observed in triple-negative breast tumors (68.1%) than

in luminal breast tumors (23.5%). High mitotic count (P,0.001)

and high nuclear pleomorphism (P,0.001) were more prevalent in

triple-negative breast cancer, as 44.7% and 78.7% of the triple-

negative patients were diagnosed with high mitotic count and high

nuclear pleomorphism, respectively, and 14.7% and 34.7% of the

luminal breast cancer patients were with high mitotic count and

high nuclear pleomorphism, respectively. Low tubule formation

(P=0.012; i.e., less than 10% carcinoma composed of tubular

structure) was more commonly observed in triple-negative tumors

(83.0%) than in luminal breast tumors (62.1%).

Transcriptomic Portrait
Molecular similarities between triple-negative breast cancer and

basal-like breast cancer were investigated at the mRNA expression

level using the intrinsic genes previously determined as the

molecular classifiers of luminal A, luminal B, HER2/neu, basal-

like, and normal breast-like subtypes of breast cancer [12,13].

Hierarchical clustering analysis was performed on 157 breast

tumors with 261 intrinsic genes using the average-linkage

clustering algorithm (Figure 1A and 1B). The breast tumors were

distinctively classified into two dominant clusters based on the

expression patterns of the intrinsic genes. The luminal cluster

predominantly harboring luminal breast tumors (ER/PR+,
HER2+/2) was associated with strong overexpression of the

estrogen receptor (ESR1) and the ERBB2 oncogene (Figure 1C).

Forty-eight (94%) triple-negative breast tumors and 18 (17%)

luminal breast tumors were clustered together, showing prominent

basal-like characteristics where basal marker genes KRT5 and

KRT17 were markedly up-regulated (Figure 1D).

Metastasis Predictor Genes of Triple-negative Breast
Cancer
Microarray data from the 48 triple-negative breast cancer

patients (mean age: 54611) who had no signs of distant metastasis

at initial diagnosis were used for the search for metastasis predictor

genes. The patients were divided into two groups (metastasis-

positive vs. metastasis–negative) based on disease outcome. A

panel of 45 significantly expressed genes (Table 2) was determined

as the metastasis predictor set as described in the Methods section.

The accuracy of prediction with the 45-gene signature was further

evaluated by leave-one-out cross validation using the support

vector machine algorithm, and 45 out of 48 patients were

predicted correctly in distant recurrence outcome (accuracy: 94%).

Centroid classification of 48 patients was performed using gene

expression data of the 45-gene signature (Figure 2A). The 48

triple-negative patients were arranged in order according to their

Pearson correlation coefficients to the centroid (mean expression)

profile of the metastasis-positive group (Figure 2B). The yellow line

represents the optimal classifier that predicted correctly the actual

disease outcome for 47 out of 48 triple-negative patients

(sensitivity: 89%; specificity: 100%; accuracy: 98%). Disease

outcomes of 39 metastasis-negative patients and 8 metastasis-

Figure 2. Classification of 48 triple-negative breast cancer patients using the 45-gene metastasis predictor set. (A) Gene expression
data of the 45 genes from 48 triple-negative patients in a heat map. Each row represents a gene and each column represents a patient. Triple-
negative breast cancer patients who developed distant metastases during the three years of follow-up were indicated with a black bar at the bottom
of each column (white: distant-metastasis negative, black: distant-metastasis positive). The yellow line represents the metastasis predictor with
optimal accuracy (sensitivity: 89%; specificity: 100%). The poor prognosis group (left) and the good prognosis group (right) were separated by the
yellow line. (B) Rank-ordered Pearson correlation coefficients of 48 triple-negative patients with respect to the centroid profile of the metastasis-
positive group (n = 9).
doi:10.1371/journal.pone.0045831.g002
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Figure 3. Comparative assessment of six breast cancer prognostic signatures. (A) TN-45, triple-negative metastasis predictor (45 genes). (B)
NCI-70, breast cancer prognostic signature (70 genes) from the Netherlands Cancer Institute. (C) IR-7, immune response signature (7 genes). (D) IFN
cluster-12, interferon cluster (12 genes). (E) Erasmus MC-16, breast cancer prognostic signature (16 genes) from Erasmus Medical Center. (F) Buck
Institute-14, triple-negative metastasis predictor (14 genes) from Buck Institute. In the analysis of each multi-gene prognostic signature, 59 early-stage
triple-negative patients from the validation cohort were first rank-ordered according to the proposed method in each study and then divided into
two groups of opposite prognosis at the fortieth percentile cut-point. Patients with index values above the fortieth percentile cut-point were
classified as the poor prognosis group (n = 23) and patients with index values below it were classified as the good prognosis group (n = 36).
doi:10.1371/journal.pone.0045831.g003
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positive patients were correctly predicted, with only one metas-

tasis-positive patient assigned incorrectly to the opposite category.

External Validation
Prognostic performance of the 45-gene signature was further

evaluated in an independent microarray dataset

[GEO:GSE25065] that contains microarray data of 59 early-

stage triple-negative breast cancer patients (AJCC stage I-IIIB;

mean age: 49.5610.9). This validation dataset was chosen because

the immunohistochemical statuses of ER, PR, and HER2, clinical

stage and recurrence information of all patients were completely

documented. Twenty-five patients in this dataset who had disease

recurrence (mean time to recurrence: 1.460.8 years) in the follow-

up years were classified as the recurrence-positive group. Using

gene expression data of our prognostic signature, 59 patients were

rank-ordered based on correlation coefficients with the centroid

profile of the recurrence-positive group. In order to ensure fair

comparison, a cut-point at the fortieth percentile was chosen in

correspondence with the actual recurrence rate. The 23 patients

within the top 40% were classified as the poor prognosis group,

and the remaining 36 patients were classified as the good prognosis

group. Fourteen recurrence-positive cases were assigned correctly

to the poor prognosis group, and 25 recurrence-negative cases

were assigned correctly to the good prognosis group.

The predictive power of our 45-gene signature was compared

with five other published breast cancer prognostic signatures in the

same validation cohort using Kaplan-Meier survival analysis

(Figure 3) and Cox hazard regression analysis (Table 3). The

signatures used for comparative assessment were tested according

to the published original methods. Kaplan-Meier survival analyses

showed that, among the six breast cancer prognostic signatures,

only our 45-gene signature was able to accurately predict the

recurrence outcome of the 59 early-stage triple-negative patients

(log-rank P=0.035). The Cox proportional hazard ratio between

the poor prognosis group and the good prognosis group, as

predicted by our 45-gene signature, was 2.29 (95% CI 1.04–5.06).

In addition, 22 node-negative triple-negative patients in the

validation cohort were used again to evaluate the prognostic

performance of our metastasis predictor gene set (Figure 4 and

Table S3). The result showed that 18 (6 recurrence-positive

patients and 12 recurrence-negative patients) out of 22 patients

were assigned correctly to the prognostic categories, while 4

patients were predicted incorrectly (log-rank P=0.003).

Figure 4. Prognostic performance of the metastasis predictor
genes was evaluated with node-negative triple-negative
patients. Recurrence-free survival analysis of 22 node-negative triple-
negative patients in the validation cohort was performed using the
metastasis predictor genes. The patients were divided into the good
prognosis group (n = 13) and the poor prognosis group (n = 9) at the
fortieth percentile cut-point.
doi:10.1371/journal.pone.0045831.g004

Figure 5. Molecular network analyses by IPA. Deregulated genes from the 45-gene signature are colored in red. The direction of the arrows
indicates a functional relationship between an upstream regulator and a downstream element. (A) The cellular proliferation network comprising five
metastasis predictor genes (TGFB1, MYBL1, NNMT, UGCG, and SUPT16H) from the 45-gene signature. (B) Network diagram linking five metastasis
predictor genes (MRAS, CLCA2, CHAF1B, POLR1B, and PRMT2) associated with TNF regulatory pathway.
doi:10.1371/journal.pone.0045831.g005

Prognostic Genes of Triple-Negative Breast Cancer
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Functional Network Analysis
The underlying biological mechanisms of the 45-gene metastasis

predictor set were investigated by IPA. A molecular network

incorporating five marker genes (TGFB1, MYBL1, SUPT16H,

NNMT, and UGCG) that promotes proliferation of triple-negative

breast tumors was identified by the Ingenuity software (Figure 5A).

TGFB1 is a common regulator of a variety of downstream kinases,

growth factors, and transcription factors, including mitogen-

activated protein kinase 1, mitogen-activated protein kinase 3,

P38MAPK complex, MYC, insulin-like growth factor binding

protein 5, vascular endothelial growth factor A, IgG, CHI3LI, and

interleukin 6. Deregulation of MYC, vascular endothelial growth

factor A, and interleukin 6 has been reported to be strongly

associated with tumor growth [23,24] and metastatic invasion

[25,26]. Five marker genes (CHAF1B, CLCA2, MRAS, POLR1B,

and PRMT2) were found to be involved in the tumor necrosis

factor (TNF) regulatory network (Figure 5B).

Discussion

Clinicopathological information gathered from 51 triple-nega-

tive and 106 luminal breast cancers in this study showed that

triple-negative breast cancer was markedly associated with high

histological grade (P,0.001), high mitotic count (P,0.001), strong

nuclear pleomorphism (P,0.001), and low tubule formation

(P=0.012). These clinicopathological characteristics identified in

our triple-negative samples have been similarly documented in

Table 1. Clinicopathological characteristics of 157 invasive breast carcinomas.

Characteristic N Triple-negative (n =51) Luminal (n= 106)

n (%) n (%)

Age at diagnosis 157

,50 14 (27.5) 53 (50.0)

$50 37 (72.5) 53 (50.0)

Stage 157

I 12 (23.5) 17 (16.0)

II 25 (49.0) 45 (42.5)

III 11 (21.6) 38 (35.8)

IV 3 (5.9) 6 (5.7)

Tumor size 157

1 (,2cm) 15 (29.4) 31 (29.2)

2 (2cm–5cm) 28 (54.9) 57 (53.8)

3 (.5cm) 8 (15.7) 15 (14.2)

4 (direct extension to chest wall or skin) 0 3 (2.8)

Grade 145

1 (low) 0 24 (24.5)

2 (intermediate) 15 (31.9) 51 (52.0)

3 (high) 32 (68.1) 23 (23.5)

Lymph node metastasis 156

Negative 30 (58.8) 32 (30.5)

Positive 21 (41.2) 73 (69.5)

Lymphovascular invasion 135

Negative 22 (47.8) 29 (32.6)

Positive 24 (52.2) 60 (67.4)

Mitotic count 142

1 (#7) 10 (21.3) 54 (56.8)

2 (8–14) 16 (34.0) 27 (28.4)

3 (.14) 21 (44.7) 14 (14.7)

Nuclear pleomorphism 142

1 (low) 0 8 (8.4)

2 (intermediate) 10 (21.3) 54 (56.8)

3 (high) 37 (78.7) 33 (34.7)

Tubule formation 142

1 (.75%) 0 3 (3.2)

2 (10%–75%) 8 (17.0) 33 (34.7)

3 (,10%) 39 (83.0) 59 (62.1)

doi:10.1371/journal.pone.0045831.t001
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Table 2. 45-gene metastasis predictor module for triple-negative breast cancer.

Agilent probe Gene symbol Fold change Gene description

Up-regulated genes in triple-negative patients with poor prognosis

A_23_P420348 ANKRD21 2.1 POTE ankyrin domain family, member D

A_23_P397248 CLCA2 4.8 Chloride channel accessory 2

A_23_P133475 GPX3 1.9 Glutathione peroxidase 3 (plasma)

A_23_P340333 KIAA1754 1.6 Inositol 1,4,5-triphosphate receptor interacting protein

A_23_P110430 MSX1 1.6 Msh homeobox 1

A_23_P127584 NNMT 2.0 Nicotinamide N-methyltransferase

A_23_P98731 SBF2 1.5 SET binding factor 2

A_23_P4323 SCRN2 1.6 Secernin 2

A_23_P412335 TGFB1 1.5 Transforming growth factor, beta 1

A_23_P313380 UGCG 1.6 UDP-glucose ceramide glucosyltransferase

Down-regulated genes in triple-negative patients with poor prognosis

A_23_P157569 ADHFE1 1.6 Alcohol dehydrogenase, iron containing, 1

A_23_P251701 ARHGEF9 1.7 Cdc42 guanine nucleotide exchange factor (GEF) 9

A_23_P412409 BAT2D1 1.5 Proline-rich coiled-coil 2C

A_23_P135123 BG216229 1.7 FERM domain containing 3

A_23_P353614 C8orf46 3.2 Chromosome 8 open reading frame 46

A_23_P57306 CHAF1B 2.0 Chromatin assembly factor 1, subunit B (p60)

A_23_P68669 CHODL 1.5 Chondrolectin

A_23_P113482 COQ2 1.5 Coenzyme Q2 homolog, prenyltransferase

A_23_P122655 FLJ13744 1.9 Hypothetical protein FLJ13744

A_23_P59613 FZD9 1.8 Frizzled homolog 9 (Drosophila)

A_23_P11915 GDAP2 1.5 Ganglioside induced differentiation associated protein 2

A_23_P143512 HSF2BP 1.5 Heat shock transcription factor 2 binding protein

A_23_P19364 LRRC16 1.6 Leucine rich repeat containing 16A

A_23_P153920 MAP2 2.2 Microtubule-associated protein 2

A_23_P112512 MCART1 1.5 Mitochondrial carrier triple repeat 1

A_23_P11874 MPZL1 2.0 Myelin protein zero-like 1

A_23_P41188 MRAS 1.5 Muscle RAS oncogene homolog

A_23_P43157 MYBL1 2.4 V-myb myeloblastosis viral oncogene homolog (avian)-like 1

A_23_P216448 NFIB 1.9 Nuclear factor I/B

A_23_P7791 OGFRL1 2.0 Opioid growth factor receptor-like 1

A_23_P20420 OR7E5P 1.8 Olfactory receptor, family 7, subfamily E, member 5 pseudogene

A_23_P307540 PLXNA2 1.7 Plexin A2

A_23_P209987 POLR1B 1.7 Polymerase (RNA) I polypeptide B, 128kDa

A_23_P211247 PRMT2 1.5 Protein arginine methyltransferase 2

A_23_P258310 PXDNL 2.2 Peroxidasin homolog (Drosophila)-like

A_23_P70384 RNF8 1.6 Ring finger protein 8

A_23_P383227 S100A1 3.0 S100 calcium binding protein A1

A_23_P167159 SCRG1 5.0 Stimulator of chondrogenesis 1

A_23_P114057 SEMA4C 1.6 Sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short
cytoplasmic domain, (semaphorin) 4C

A_23_P151625 SUPT16H 1.5 Suppressor of Ty 16 homolog (S. cerevisiae)

A_23_P52147 TBCE 1.9 Tubulin folding cofactor E

A_23_P93629 TRIM24 1.5 Tripartite motif containing 24

A_23_P72747 UGT8 2.1 UDP glycosyltransferase 8

A_23_P103795 VANGL1 1.6 Vang-like 1 (van gogh, Drosophila)

A_23_P83714 ZNF707 1.5 Zinc finger protein 707

Fold change value was obtained by comparing the mean expression of each gene between the good and the poor prognosis groups of triple-negative patients (n = 48).
doi:10.1371/journal.pone.0045831.t002
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previous studies of basal-like breast cancer [2,8,11]. Livasy et al.

reported that basal-like breast cancer was significantly associated

with high histologic grade, lymphocytic infiltrate, and high mitotic

counts in a morphologic evaluation of 23 basal-like carcinomas

[8]. In addition, triple-negative tumors had larger variations in

nuclear shape and size as compared with luminal breast tumors, as

78.7% of triple-negative tumors were diagnosed as having high

nuclear pleomorphism, while only 34.7% of luminal breast tumors

had high nuclear pleomorphism in our data.

Hierarchical clustering analysis of 157 breast cancers using the

intrinsic gene subset also revealed that 94% of triple-negative

tumors were clustered together, harboring high expression of basal

marker genes and low expression of the ESR1 gene. Several basal-

related genes directly corresponding to expression levels of

cytokeratins and EGFR protein marker, including KRT5, KRT6C,

KRT6E, KRT14, and EGFR genes, were found to be extensively

up-regulated in triple-negative breast cancer (Figure S3). However,

triple-negative breast cancer is not a complete surrogate of basal-

like breast cancer, as 6% of triple-negative tumors were sparsely

intertwined within the luminal-rich cluster carrying low basal-like

mRNA expression in our data.

Association between each clinical variable and metastasis

outcome of triple-negative breast cancer was analyzed in our

dataset by using the Fisher’s exact test (Table S1) and Cox

regression model for univariate and multivariate analyses (Table

S5). None of the traditional measures were found to be statistically

prognostic for distant recurrence of triple-negative breast cancer in

our data. The disease outcome of 48 triple-negative patients in our

training cohort showed that lymph node status was not a strong

clinical determinant of distant metastasis recurrence (Table S1;

distant metastasis-positive group (6 node-positive and 3 node-

negative) versus distant metastasis-negative group (13 node-

positive and 26 node-negative); Fisher’s exact test P=0.073). Both

node-positive and node-negative triple-negative patients were

included in our sample body in the assessment of prognostic

genes for distant metastatic invasion of triple-negative breast

cancer.

The functional pathway analysis revealed that the 45-gene

signature was mostly characterized by genes related to cellular

proliferation, cell cycle, and DNA replication. The MRAS gene

encodes the M-Ras protein, which directly interacts with androgen

receptor in the cell cycle and cellular development pathways. The

CLCA2 gene interacts with ITGB4, which also participates in

cellular growth and the cell cycle. The CHAF1B and SBF2 genes

are involved in DNA replication, recombination, and repair

pathways. The TGFB1, MYBL1, NNMT, SUPT16H, and UGCG

genes are within a focused cellular proliferation network regulated

by cytokines TNF and IL1B. Several downstream effectors of

TGFB1 are known for oncogenic characteristics, including

vascular endothelial growth factor A, c-Myc (MYC), c-Jun N-

terminal kinase (JNK), mitogen-activated protein kinases, and

P38MAP complex [27]. Thus it appears that many genes in our

45-gene prognostic module, and their downstream targets, are

predominantly involved in biological functions promoting tumor

progression.

This study documented the first evidence that deregulated genes

within the TGF-b signaling pathway were markedly involved in

distant recurrence of triple-negative breast cancer. The TGF-

b signaling pathway has been reported as a key regulator of the

epithelial-to-mesenchymal transition (EMT) process that converts

primary tumors to metastases in advanced malignancy of human

cancers [28–31]. Overexpression of TGFB1 in those triple-negative

tumors with poor prognosis may thus induce EMT and enhance

the aggressiveness of tumor behavior. Noticeably, TNF and IL1B,

two upstream regulators of TGFB1, are mediators of immune/

inflammatory response, and TGFB1 itself is particularly crucial in

the regulation of T cell-mediated immune mechanisms [32]. A

total of ten differentially expressed genes in our 45-gene module

were found to be within the TNF regulatory pathway. Altogether,

our data suggests that distant metastatic invasion of triple-negative

breast cancer may be potentially induced by immune/inflamma-

tory deregulation.

To our knowledge, most multi-gene prognostic signatures that

have been proposed to date for prediction of breast cancer

recurrence were not tailored for triple-negative patients. To be

noticed that in our comparative assessment, NCI-70 was derived

from primary breast tumors and IR-7 and Erasmus MC-16 were

derived from ER- patient cohorts. The Buck institute-14 signature

was derived from 199 hormone-negative breast cancer cases

curated from three microarray datasets, and 154 ER-HER2-

patients of them were claimed to be triple-negative cases despite

the lack of PR status. The 45-gene prognostic signature identified

in this study was derived from a homogeneous population of triple-

negative patients, thus giving less opportunity for confounding by

breast cancer heterogeneity.

According to the St Gallen consensus for chemotherapy

guidelines, all triple-negative patients are recommended to receive

adjuvant systemic chemotherapy. For example, a combination of

anthracycline-based regimens with taxanes is a common treatment

option for triple-negative patients. However, this combination of

Table 3. Performance comparison of six breast cancer prognostic signatures in the validation cohort of 59 early-stage triple-
negative breast cancer patients.

Breast cancer prognostic signature Univariate Cox regression Kaplan-Meier analysis

Hazard ratio (95% CI) Cox P value Log-rank P value

TN-45 2.29 (1.04–5.06) 0.040 0.035

NCI-70 [18] 1.01 (0.45–2.25) 0.978 0.978

IR-7 [19] 1.14 (0.51–2.54) 0.748 0.748

IFN cluster-12 [20] 1.27 (0.57–2.82) 0.564 0.563

Erasmus MC-16 [21] 0.77 (0.34–1.75) 0.537 0.536

Buck Institute-14 [22] 1.41 (0.64–3.11) 0.393 0.391

CI, confidence interval; TN-45, triple-negative metastasis predictor (45 genes); NCI-70, breast cancer prognostic signature (70 genes) from the Netherlands Cancer
Institute; IR-7, immune response signature (7 genes); IFN cluster-12: interferon cluster (12 genes); Erasmus MC-16, breast cancer prognostic signature from Erasmus
Medical Center (16 genes); Buck Institute-14, triple-negative metastasis predictor from Buck Institute (14 genes).
doi:10.1371/journal.pone.0045831.t003
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treatment regimens often brings serious side effects to the patients.

Our 45-gene prognostic predictor, if further confirmed, may

become a clinically useful tool that identifies triple-negative

patients at low risk of distant recurrence, allowing them to receive

moderate doses of the combined regimens or even only the

anthracycline-based regimens to reduce side effects for the

patients. Recently a number of pathway target agents, including

EGFR inhibitors, DNA repair pathway inhibitors, anti-angiogenic

agents, etc., are under vigorous clinical trials for target therapies of

triple-negative breast cancer [33], and they may be used along

with traditional chemotherapy treatment for those triple-negative

patients with unfavorable prognosis. On the other hand, currently

the presence of axillary lymph node metastasis of a triple-negative

patient is considered to be determinant for giving aggressive

chemotherapy (third-generation chemotherapy; i.e., paclitaxel,

docetaxel, gemcitabine, etc.). However, it is unable to identify

those node-negative triple-negative patients who are at high risk of

developing distant metastasis, and those patients are in need of

aggressive chemotherapy treatment. Our 45-gene prognostic

signature may help identify this group of triple-negative patients

and assist in treatment recommendation to enhance their chances

of survival.

Supporting Information

Figure S1 Hierarchical clustering diagram of 157 breast cancers

(51 triple-negative and 106 luminal breast cancers) using the 261

intrinsic genes. Each row represents a gene and each column

represents a breast tumor. On top of each column, tumors were

marked with red and blue to indicate triple-negative and luminal

subtypes of breast cancers, respectively. Genes and tumor samples

were clustered together according to their similarities of expression

patterns as depicted by the dendrogram.

(PDF)

Figure S2 Establishment of the 45-gene prognostic predictor set

for triple-negative breast cancer. (A) Area under the curve (AUC)

values of each receiver operating characteristic (ROC) curve

obtained with different numbers of genes ranked by the magnitude

of fold change between the metastasis-positive group (n = 9) and

the metastasis-negative group (n= 39). (B) ROC curve of the 45-

gene prognostic signature with optimal AUC value (0.994).

(PDF)

Figure S3 Distributions of gene expression intensities of five

basal marker genes (KRT5, KRT6C, KRT6E, KRT14, and

EGFR) within triple-negative (n = 51) and luminal (n = 106) breast

cancers. The P value of each basal marker gene was calculated

with the two-sided Student’s t-test. Mean6SD were shown.

(PDF)

Table S1 Association between clinical characteristics and

metastasis outcome of 48 triple-negative breast cancer patients in

our dataset were investigated. The P values were calculated by

using the Fisher’s exact test.

(PDF)

Table S2 Affymetrix probe ID, gene symbol, and description of

32 metastasis predictor genes identified in the validation dataset

[GEO:GSE25065].

(PDF)

Table S3 Clinical characteristics, recurrence information, and

Pearson correlation coefficient (with respect to the recurrence-

positive group (n= 7) using the 32 metastasis predictor genes) of 22

node-negative triple-negative breast cancer patients in the

validation dataset [GEO:GSE25065].

(PDF)

Table S4 Association between clinical features and triple-

negative phenotype of breast cancer as compared with luminal

breast cancer.

(PDF)

Table S5 Univariate and multivariate analyses for distant-

metastasis-free survival were performed with each prognostic

factor in our triple-negative patient dataset by using the Cox

regression model. The multivariate analysis included 45 triple-

negative breast cancer patients, owing to missing values in 3

patients.

(PDF)
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