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Abstract

Motivation: The use of single-cell methods is expanding at an ever-increasing rate. While there are established algo-
rithms that address cell classification, they are limited in terms of cross platform compatibility, reliance on the avail-
ability of a reference dataset and classification interpretability. Here, we introduce Pollock, a suite of algorithms for
cell type identification that is compatible with popular single-cell methods and analysis platforms, provides a set of
pretrained human cancer reference models, and reports interpretability scores that identify the genes that drive cell
type classifications.

Results: Pollock performs comparably to existing classification methods, while offering easily deployable pretrained
classification models across a wide variety of tissue and data types. Additionally, it demonstrates utility in immune
pan-cancer analysis.

Availability and implementation: Source code and documentation are available at https://github.com/ding-lab/pol
lock. Pretrained models and datasets are available for download at https://zenodo.org/record/5895221.

Contact: lding@wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

The use of single-cell methods continues to expand at ever-increas-
ing rates (Tsoucas and Yuan, 2017; Wang and Navin, 2015). Single-
cell RNA-sequencing (scRNA-seq) has the capacity to quantify a
variety of cell states and biological variability within cells. However,
the identification of these cell states for specific datasets is often
challenging. In many single-cell workflows, cells are clustered and
manually annotated based on known marker gene expression, which
can be time consuming and introduce annotator biases.
Furthermore, these marker genes are usually derived from bulk
RNA-seq data, which can be affected by additional issues, such as
limitations of signature matrices used in deconvolution (Aliee and
Theis, 2021).

Multiple algorithms for annotating single-cell data currently
exist, but are limited in various respects. For example, many single-
cell integration methods, such as Seurat (Hao et al., 2020), Scanpy
(Wolf et al., 2018) and SingleR (Aran et al., 2019), require a refer-
ence dataset for the transfer of cell type annotations, which is not

always available or feasible to obtain. Additionally, access to these
methods is typically limited to one language (typically R or Python),
or modality (API or command line tool), which limits their usability.
Perhaps the main scientific impediment is that most current methods
do not typically report which features most impact cell classifica-
tions, which could provide meaningful insight into biological vari-
ation between cells.

Here, we present Pollock, a single-cell classifier aimed at addressing
the above concerns. Pollock is an end-to-end, fully differentiable deep
learning framework that pairs a variational autoencoder (VAE) with an
attached classification head to make cell type predictions. It is highly
versatile, being available as a command line tool with Seurat and
Scanpy integration, a Python library, and can be installed in container-
ized form via Docker. To allow for easier pan-disease and pan-tissue
analyses, Pollock also ships with a library of pretrained cancer type spe-
cific and agnostic models that were trained on expertly curated single-
cell data. That is, Pollock pretrained models are ready to ‘plug and
play’, with no additional annotation or training required. These
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pretrained models were fitted on manually curated and annotated sin-
gle-cell data from eight different cancer types spanning three single-cell
technologies: scRNA-seq, single nuclei RNA-seq (snRNA-seq) and sin-
gle nuclei ATAC-seq (snATAC-seq). Conversely, Pollock allows for the
training of custom classification models if an annotated reference sin-
gle-cell dataset is available. Pollock also provides feature importance
scores that allow for cell type classifications to be traced back to the
genes influencing a particular cell type classification, further promoting
biological interpretability. These scores could allow for new,
technology-specific biomarker discovery. We demonstrate the utility of
Pollock by applying it in a pan-cancer single-cell immune analysis.

2 Methods

2.1 Pollock framework
Pollock is an end-to-end, fully differentiable VAE (Kingma and
Welling, 2013) with an attached classification head. In general, the
Pollock model creation pipeline can be broken down into three main
steps: (i) dimensionality reduction and cell type classification, (ii)
validation and (iii) model saving (Fig. 1).

Dimensionality reduction algorithms are integral to most single-
cell workflows (Sun et al., 2019). This step transforms multi-
feature, high dimensional single-cell data into a low dimensional
manifold of fewer, information-dense features. Typically, this is
done with linear methods such as PCA (Lever et al., 2017), nonlin-
ear graph-based methods such as UMAP (McInnes et al., 2018) or t-
SNE (Van der Maaten and Hinton, 2008) or a combination of the
two. However, an emerging body of literature suggests that neural
network-based methods are a better alternative to traditional dimen-
sionality reduction approaches (Lopez et al., 2018). In particular,
VAEs preserve local and global structure in the low dimensional
manifold (Grønbech et al., 2020; Lopez et al., 2018). VAEs have
also demonstrated an ability to generalize well between single-cell
datasets (Lotfollahi et al., 2019), making them an attractive option,
since single-cell classifiers must address variations that exist in dif-
ferent input datasets. Further, VAEs using a zero-inflated negative
binomial (ZINB) loss function parameterized by mean, dispersion
and dropout probability to model gene expression reconstruction
have been shown to better address issues intrinsic to single-cell data,
such as dropout and over-dispersion (Eraslan et al., 2019; Tian
et al., 2021).

The gene expression matrix of all cells in a dataset is denoted as
m and the expression profile of cell x in the matrix is mx. Now, de-
fine the conditional distribution P(mxjzx) as the probability that a
cell mx is drawn from a latent representation stored in vector zx. We
use a VAE to model P(mxjzx), which allows us to obtain an embed-
ding representing each cell’s position on the low dimensional mani-
fold in matrix m. Simultaneously, we condition a classification head
on the latent representation zx that is responsible for producing cell
type annotations (Fig. 1.1a). To aid the user in the biological inter-
pretation of Pollock’s cell type predictions, it provides interoperabil-
ity scores that are derived via axiomatic attribution from the
Integrated Gradients algorithm (Sundararajan et al., 2017). The
interpretability score represents an overall impact score for each
feature in the input dataset for each predicted cell. Trained models
can then be validated and saved for ‘plug and play’ cell state classifi-
cation at a later date (Fig. 1.2, 3).

2.2 Model implementation
Implementation of the VAE architecture was inspired by scGen
(Lotfollahi et al., 2019) for the problem of modeling cellular re-
sponse to perturbations and scDCC for scRNA-seq clustering (Tian
et al., 2021) (Supplementary Fig. S1). Briefly, this is a neural net-
work having both an encoder (embedding component) and a de-
coder (reconstruction component) that work together in an
unsupervised fashion to learn how subject data are generated.
Specifically, the network derives an approximation, Q, to the true
posterior generating function, P, for the output, given the input. The
encoder and decoder are mirrors of one another, with the encoder
consisting of a feature input layer of the same size as the number of
genes in the single-cell input, followed by two fully connected layers
of size 512 and 128, respectively. Each of these layers is followed by
a rectified linear unit (ReLU) activation function. The size of the la-
tent cell embedding layer is 64. Single-cell inputs are normalized to
total transcript count, logged and converted to standard Z-scores
(normalized by standard deviation and mean centered) prior to in-
put into the model. The loss for the VAE portion of the network is
the sum of two parts: the ZINB loss of the dropouts, dispersions and
means calculated from the raw count inputs and their respective
decoder produced values, as implemented in Tian et al. (2021),
and the conventional b-weighted Kullback–Leibler (KL) distance
between P and Q.

Fig. 1. Pollock overview schema. Overview of Pollock model architecture, training, cell type prediction and pretrained models usage. During training, single-cell inputs are split

into training and validation sets. (1a and b) A VAE with a classification head is fit with the training partition of the single-cell data. The model is trained with contributions

from three loss functions: KL divergence loss on the latent embedding, ZINB gene expression reconstruction loss and cross-entropy loss on the cell type predictions. (2)

Evaluation metrics are then computed on a validation set of withheld single-cell data. In addition to cell type prediction, Pollock also outputs feature importance’s for the input

features of each predicted cell. (3) Following the training, Pollock models are saved and can be used for cell type inference at a later date
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Additionally, a classification head takes as input the latent
embedding produced by the VAE and is trained in parallel with the
VAE. The classification head consists of a linear layer (ReLU activa-
tion) of size 64, followed by a linear layer (Softmax activation) of
size equal to the number of possible predicted cell types. The result-
ing probabilities are compared with manual cell type annotations
via cross-entropy loss. The three loss functions are then summed to
produce the overall loss used to train the network in the following
manner:

Loverall ¼ cklLkl þ czinbLzinb þ cclfLclf

where Loverall is the overall loss and ckl, czinb and cclf are weights for
the respective KL divergence (Lkl), ZINB gene expression recon-
struction (Lzinb) and cross-entropy cell type classification (Lclf)
losses. The model is implemented in the PyTorch Python library
(Paszke et al., 2017).

2.3 Feature interpretability
We built on previous work to produce explainable outputs via axio-
matic attributions. Specifically, we used Integrated Gradients
(Sundararajan et al., 2017) to produce a feature importance score
for each gene in each predicted cell. In the case of most expression
datasets, the features scored are genes. The feature scores, Emodel,
are constructed by taking the absolute value of attributions calcu-
lated by the Captum (Kokhlikyan et al., 2020) implementation of
Integrated Gradients. The value of the feature importance score cor-
responds to the magnitude of impact for that particular input feature
on the predicted cell type classification.

2.4 Benchmarking preparation and comparison
We used three data types for benchmarking; scRNA-seq was used
for pancreatic ductal adenocarcinoma (PDAC), melanoma, multiple
myeloma (MMY), breast cancer (BRCA), head and neck squamous
cell carcinoma (HNSCC) and cervical squamous cell carcinoma
(CESC); snRNA-seq was used for BRCA, clear cell renal cell carcin-
oma (CCRCC) and glioblastoma multiforme (GBM), and snATAC-
seq was used for BRCA, CCRCC and GBM (Supplementary Table
S1). Both types of RNA-seq data were maintained as raw, unnor-
malized counts and normalized according to the documentation for
each respective method used for benchmarking. Data were gener-
ated and processed as in Zhou et al. (2021) and Liu et al. (2021).
For benchmarking, gene activity, as computed by Signac (Stuart,
2020), was used for snATAC-seq datasets. Gene activity was used
for benchmarking because (i) some of the selected benchmarking
tools expect input at the gene level and (ii) better performance was
seen with gene activity than using peaks directly as input features
(Supplementary Fig. S2). Datasets were annotated using cluster as-
signment based on known markers in the literature (Supplementary
Table S2) and are available for download from the CERN Zenodo
open-access repository at https://zenodo.org/record/5895221.

We evaluated Pollock against six established cell type classifica-
tion methods (Supplementary Table S3), namely two popular
reference-based approaches, Seurat and Scanpy and four additional
top-performing methods from Ma et al. (2021) and Abdelaal et al.
(2019): SingleCellNet (Tan and Cahan, 2019), ACTINN (Ma and
Pellegrini, 2020), Linear Support Vector Machines (SVM-linear)
and a Multi-layer Perceptron (MLP). For running benchmarks, we
set the following Pollock parameters: ckl¼0.001, czinb¼0.5,
cclf¼1.0, epochs¼20, batch size¼64, embedding size¼64 and
learning_rate¼1e�4. ACTINN was benchmarked using default
parameters. Performance metrics are not available for ACTINN on
scRNA-seq MMY and Melanoma datasets due to tool runtime
errors. SingleCellNet was run with its own recommended parame-
ters: nTopGenes¼100, nRand¼100, nTrees¼1000,
nTopGenePairs¼100, Stratify¼True and limitToHVG¼True. The
linear SVM and MLP were implemented as in Ma et al. (2021).
Training and validation cells were identical for all tools.
Specifically, the training dataset was generated by randomly select-
ing the number of cells for each cell type as Min(500, 0.8� total
number of cells for that cell type). The validation dataset was then

generated by selecting Min(500, 0.2� total number of cells for cell
type) cells that were not part of the training dataset for each cell
type. To ensure robustness of results due to random sampling, we

also performed inter-dataset validation on five randomly selected
folds generated by the criteria described above. Performance of the

methods was compared using the standard F1 metric, which is the
harmonic mean of precision and recall.

Robustness to dropout in prediction datasets was also measured.
To simulate datasets with higher dropout rates, additional dropout
was computationally added to each scRNA-seq validation dataset.

For each dataset, a random selection of 0%, 20%, 40%, 60%, 80%
and 90% of positions in the gene expression matrix were set to zero.

Performance of Pollock on each of the resulting datasets was com-
pared using the F1 metric.

2.5 Pretrained models
We have pretrained and packaged models within Pollock for the fol-

lowing data and cancer types: PDAC, Melanoma, MMY, BRCA,
HNSCC, CESC (scRNA-seq), BRCA, CCRCC, GBM (snRNA-seq)

and BRCA, CCRCC, GBM (snATAC-seq gene activity). We also
provide generalized models for each of the three data types: scRNA-
seq, snRNA-seq and snATAC-seq. These models were trained with

single-cell data from all diseases that were available for their given
data type. We removed normal epithelial cells from the training data
for the generalized models to alleviate conflict with malignant cells

from different disease types. Pollock also includes a model trained
on annotations from Hay et al. (2018) on data from the Human Cell

Atlas (HCA) (Regev et al., 2017). All pretrained models were
trained with identical hyperparameters to those used in the bench-
marking procedure. Models are available for download from the

Zenodo repository at https://zenodo.org/record/5895221, with
instructions and documentation on usage available from GitHub at

https://github.com/ding-lab/pollock.

2.6 Pan-immune pathway analysis
We applied Pollock for pan-immune analysis to illustrate its utility
for larger pan-disease analyses with scRNA-seq data by annotating

immune cell types. Highly specific immune-cell references were gen-
erated via cell type assignment based on known expression markers

(Supplementary Table S4).
We then excluded all non-immune cells, leaving 17 cell types,

subsequently training a Pollock model on these data. The model was
then applied to six diseases having available scRNA-seq data
(BRCA, CESC, HNSCC, Melanoma, MMY and PDAC). Pollock

hyperparameters during training were identical to those used during
benchmarking.

Feature interpretability scores were then calculated for Min(500,
# of cells) randomly selected cells not present in the training set for
each predicted immune cell state (Supplementary Table S5).

Differentially weighted genes (DWGs) were identified by testing for
enrichment in feature interpretability scores for each cell state versus

all other cell states with the Scanpy rank_genes_groups function
with default parameters (Supplementary Table S6). Pathway enrich-
ment analysis for gene feature importance scores was done with

ToppFun (Chen et al., 2009). Significant GO: Molecular Function
pathways were selected based on enrichment of the top 20 DWGs

for natural killer (NK), CD8 T cell-proliferating, T regulatory (Treg)
and CD8 T cell-exhausted. Top pathways were rank-ordered by
their �log10 FDR corrected P-values. Overlap with PanglaoDB ver-

sion 27_Mar_2020 (Franz�en et al., 2019) marker gene sets were
computed between the genes in PanglaoDB with human support and

the top 100 DWGs for each cell state (Supplementary Table S7). If
no direct match for cell state in PanglaoDB was found, the next
most macrocell state present in the database was used. Percentage

overlap between PanglaoDB marker genes and DWGs for a given
cell state was calculated as the ratio of number of overlapping genes
to the number of genes in the PanglaoDB marker gene set.
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3 Results

3.1 Pollock provides seamless cell classification across

computational platforms
Pollock is designed as an automated solution for long and manual sin-
gle-cell workflows. To support this aim, we implemented a large set of
features to aid in cell annotation and in biological interpretability
(Fig. 2A). Existing single-cell classification tools, such as Scanpy and
Seurat, use label transfer techniques, partially addressing this issue, but
they still require a reference dataset that may be impractical or difficult
to obtain. Instead, Pollock provides pretrained models that are avail-
able immediately for cell type classification, with no manually labeled
dataset or additional model training required. These pretrained models
are readily downloadable and seamlessly invoked for use. Additionally,
the API allows users to train new models on user-annotated single-cell
datasets that may contain unique or domain-specific cell types relevant
to their areas of research.

Pollock also incorporates existing single-cell analysis toolkits, includ-
ing Seurat and Scanpy objects. In terms of usage, it is highly versatile. It
provides a command line interface (CLI), making it compatible with
command line dependent pipelines and workflow management systems,
such as Galaxy (Afgan et al., 2018), CWL (Crusoe et al., 2021) and
Snakemake (Köster and Rahmann, 2012). Additionally, Pollock has

been containerized, and is available as a Docker container that is port-
able across Linux, Windows and Mac OS operating systems.

3.2 Benchmarking against existing models across a

variety of disease and single-cell data types
There are a variety of existing tools for single-cell classification.
Here, we compare Pollock against six well-established cell type clas-
sification methods. We compared against two popular reference-
based approaches, Seurat and Scanpy, as well as four additional top-
performing methods from Ma et al. (2021) and Abdelaal et al.
(2019): SingleCellNet (Tan and Cahan, 2019), ACTINN (Ma and
Pellegrini, 2020), SVM-linear and an MLP. Training and testing
occur on the same dataset, i.e. training data and test samples are
sampled from the same cancer and data type. In total, we used 12
single-cell datasets from eight different cancer types (six scRNA-seq,
three snRNA-seq and three snATAC-seq) (Fig. 2B). Pollock per-
formance was comparable to existing tools, being within an F1-
score of 0.02 of the top-performing tool in 11/12 datasets (Fig. 3A,
Supplementary Figs S3A–C and S4).

For additional validation, we used a leave-one-out procedure to
validate models trained on each cancer type against other datasets of
the same data type to test how well Pollock transfers to datasets of

Fig. 2. Pollock feature comparison and benchmarking dataset overview. (A) Comparison of Pollock features against features implemented in other popular single-cell classifica-

tion tools. (B) Datasets used for benchmarking and the training of disease-specific models

Fig. 3. Pollock benchmarking and performance. (A) Pollock cell type classification performance (F1-score) compared against six established single-cell classification methods

for each disease and data type. (B) Comparison of Pollock cell type classification performance between disease-specific and generalized models. Confusion matrices showing

the overlap of generalized model predicted cell types versus groundtruth cell labels for (C–E) scRNA-seq, snRNA-seq and snATAC-seq validation datasets and (F) a publicly

available HCA bone marrow dataset
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different tissue and disease types (Supplementary Fig. S5A–G).
Further, to test the robustness of Pollock to prediction datasets with
increased dropout rates, we computationally altered validation data-
sets for each scRNA-seq cancer type (Supplementary Fig. S6A). We
find that Pollock performance holds even when up to an additional
60% of dropout is added to the datasets, with performance begin-
ning to decline more steadily at additional dropout rates of >60%.

3.3 Training of generalized pan-cancer and HCA models
If they provide pretrained models at all, existing classification tools
typically rely on models trained from singleton datasets, resulting in
limited ability to annotate cell types from differing tissue and disease
types. In addition to its cancer type specific models, we trained gen-
eralized Pollock models for scRNA-seq, snATAC-seq and snRNA-
seq data types to better generalize its application to new tissue and
disease types. Each of these generalized models was trained on the
aggregation of single-cell data from all disease types available for
the particular data type: scRNA-seq (BRCA, PDAC, CESC, MMY,
HNSCC and Melanoma), snRNA-seq (BRCA, GBM and CCRCC)
and snATAC-seq (BRCA, GBM and CCRCC).

We assessed the utility of these generalized models by predict-
ing cell types and calculating validation metrics for each cancer
types validation dataset when predicted with the generalized
model for its corresponding data type. As expected, the generalized
models do not perform as well as their disease-specific counter-
parts due to increased variation introduced into the training data-
set by including multiple cancer types. However, the models still
are able to classify most cell types correctly, with 8/12 of the

models performing within an F1-score of 0.30 to their specifically
trained counterpart (Fig. 3B). Overall, the best generalizing models
were PDAC for scRNA-seq (F1-score difference of 0.03) and
BRCA for snRNA-seq and snATAC-seq (F1-score difference of
only 0.06 and 0.02, respectively). Conversely, CESC was the poor-
est for scRNA-seq (F1-score difference of 0.31) and GBM was the
poorest for snRNA-seq and snATAC-seq (F1-score difference of
0.52 and 0.43, respectively). Additionally, we also predicted cell
types on a publicly available HCA (Regev et al., 2017) dataset
with annotations by Hay et al. (2018). Consistent with known
phenotypic differences between cells, the cell types exhibiting the
most divergence between model prediction and manual annotation
were those with similar phenotypes, such as T cell subsets (CD4,
CD8, Treg), and myeloid cells, such as monocytes and dendritic
cells (Fig. 3C–F). Additionally, epithelial cells, which were not
included in generalized model training sets, are classified as malig-
nant cells which is consistent with the partially epithelial pheno-
type typically displayed by tumor cells.

3.4 Pollock in pan-disease immune analyses
To further demonstrate Pollock’s utility, we trained a Pollock model
on a scRNA-seq BRCA dataset with detailed immune cell state
annotations. Pollock did well in distinguishing the different immune
cell states on the breast validation dataset that was withheld during
model training, with the majority of cell types having been classified
accurately (Fig. 4A). Cell types with the lowest classification accur-
acy were exhausted CD8 T cells and NKT cells, which were con-
fused most often with other T and NK cell states. Additionally,

Fig. 4. Pollock cell state annotation in a pan-immune atlas. (A) Confusion matrix showing overlap of Pollock predicted versus groundtruth cell labels for a scRNA-seq BRCA

immune cell state annotated dataset. (B) Comparison of Pollock feature importance score and gene expression for literature-based single-cell marker genes. (C) Significant GO:

Molecular Function pathways enriched in the top 20 DWGs for the following NK/T cell states: NK, CD8 T cell-proliferating, CD8 T cell-exhausted and Treg. Pathways are

rank-ordered by their �log10 FDR corrected P-values. (D) Heatmap displaying feature importance scores for the top 20 DWGs for each immune cell state
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using Pollock feature interpretability scores, we can identify genes
important to the cell type classification, which also show remarkable
overlap with known markers in the literature, such as FOXP3
in regulatory T cells (Roncador, 2005) and LAG3 and PDCD1 in
exhausted CD8 and CD4 T cells, respectively (Yang et al., 2017;
Zhang et al., 2020) (Fig. 4B). This observation indicates that
Pollock is focusing on genes known to be associated with specific
cell types when making predictions.

Additionally, we identified the most enriched genes for each cell
state in terms of their interpretability score, which we designate here
as DWGs (Fig. 4C and D; Supplementary Table S6). We performed
a pathway enrichment analysis on these genes with GO: Biological
Process pathways (The Gene Ontology Consortium, 2000). We
highlight the results of the enriched pathways in four T/NK cell
states: Treg, CD8 T cell-proliferating, CD8 T cell-exhausted and
NK. We see significant enrichment of pathways that are concordant
with expected pathways for the cell states, with cell cycle related
pathways in the proliferating CD8 T cells, regulation of leukocyte
activation in Tregs, cell activation and response to stress in
exhausted CD8 T cells and cell killing in NK cells. We further inter-
rogate overlap with known marker genes by comparing Pollock
DWGs against the PanglaoDB database of single-cell marker genes
(Franz�en et al., 2019). We find overlap in the majority of immune
cell states with cell types in PanglaoDB, where B, pDC and Treg cells
show the most overlap, with 25–29% of Panglao marker genes pre-
sent in the top DWGs for those cell states (Supplementary Table S7).
Less distinct cells in terms of expression profile, such as T cell sub-
sets, show less overlap, potentially due to smaller expression profile
differences and the absence of directly overlapping cell states in
PanglaoDB (where, for instance, exhausted T cell subsets are not
present).

4 Discussion

Pollock offers a variety of interfaces (command line and API) while
integrating with existing single-cell analysis tools (Seurat and
Scanpy). Additionally, existing cell annotation algorithms typically
require the use of a reference annotated dataset when making new
classifications and do not ship with pretrained models. With
Pollock, we include a set of pretrained models that eliminate the
usual requirements of either having a reference dataset or training
new models for additional datasets. Further, these models score the
input features based on their model importance, allowing for greater
biological interpretability. These features allow for wide conveni-
ence in classifying single-cell data and quickly moving pan-disease
atlas projects.

To increase utility to single-cell pipelines, we also trained gener-
alized models for each available training dataset data type (scRNA-
seq, snRNA-seq and snATAC-seq). We envision these pretrained
models allowing for easier annotation of single-cell datasets due to
the removal of the requirement that a user’s single-cell dataset tissue
and disease type match with training dataset tissue and disease type.
Additionally, in cases where user dataset type matches those used
for Pollock training, we provide disease and data type specific mod-
els with increased performance for eight cancer types across scRNA-
seq, snRNA-seq and snATAC-seq data types.

We showed the utility of pretrained models by demonstrating
their efficacy in a pan-cancer single-cell analysis. We also found that
a model trained on detailed immune cell states can accurately iden-
tify cell states while providing meaningful gene interpretability
scores. Overall, results suggest that Pollock should be a useful add-
ition for investigations involving cell type classification.
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