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Background: Atypical parkinsonian syndromes are rare, fatal neurodegenerative

diseases associated with abnormal protein accumulation in the brain. Examples of

these syndromes include progressive supranuclear palsy, multiple system atrophy, and

corticobasal degeneration. A common clinical feature in parkinsonism is a limited

improvement with levodopa. So far, there are no disease-modifying treatments to address

these conditions, and therapy is only limited to the alleviation of symptoms. Diagnosis

is devastating for patients, as prognosis is extremely poor, and the disease tends to

progress rapidly. Currently, potential causes and neuropathological mechanisms involved

in these diseases are being widely investigated.

Objectives: The goal of this review is to summarize recent advances and gather

emerging disease-modifying therapies that could slow the progression of atypical

parkinsonian syndromes.

Methods: PubMed and Google Scholar databases were searched regarding novel

perspectives for atypical parkinsonism treatment. The following medical subject

headings were used: “atypical parkinsonian syndromes—therapy,” “treatment of

atypical parkinsonian syndromes,” “atypical parkinsonian syndromes—clinical trial,”

“therapy of tauopathy,” “alpha-synucleinopathy treatment,” “PSP therapy/treatment,”

“CBD therapy/treatment,” “MSA therapy/treatment,” and “atypical parkinsonian

syndromes—disease modifying.” All search results were manually reviewed prior to

inclusion in this review.

Results: Neuroinflammation, mitochondrial dysfunction, microglia activation,

proteasomal impairment, and oxidative stress play a role in the neurodegenerative

process. Ongoing studies and clinical trials target these components in order to

suppress toxic protein accumulation. Various approaches such as stem cell therapy,

anti-aggregation/anti-phosphorylation agent administration, or usage of active and

passive immunization appear to have promising results.

Conclusion: Presently, disease-modifying strategies for atypical parkinsonian

syndromes are being actively explored, with encouraging preliminary results. This leads

to an assumption that developing accurate, safe, and progression-halting treatment is

not far off. Nevertheless, the further investigation remains necessary.

Keywords: atypical parkinsonism, novel therapies, α-synuclein, tau-protein, disease-modifying, multiple system

atrophy, progressive supranuclear palsy, corticobasal degeneration
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INTRODUCTION

The term “atypical Parkinsonian syndromes” (APS) refers to
chronic progressive neurodegenerative diseases with a common
primary feature, parkinsonism with a poor or waning levodopa
response and coexistence of additional “plus” features, hence,
also often referred to as Parkinson-plus disorders. Progressive
supranuclear palsy (PSP), multiple system atrophy (MSA),
and corticobasal degeneration (CBD) can be distinguished
among them. A shared pathogenetic feature of these disorders
is abnormal protein accumulation in different brain regions.
PSP and CBD are neuropathologically described as four-
repeat tauopathies, conditions characterized by deposition of
phosphorylated tau protein in neurons and glia, leading to
toxicity and cell loss. Alpha-synuclein protein, the primary
component of Lewy bodies, is also found in glial cytoplasmic

Abbreviations: AD, Alzheimer’s disease; ALCAR, acetyl-L-carnitine; AMPA,

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; AMPK, activated

protein kinase; APS, atypical parkinsonian syndromes; ASOs, antisplicing

oligonucleotides; ATF4, activating transcription factor 4; Aβ, amyloid β;

BBB, blood brain barrier; BDNF, brain-derived neurotrophic factor; BFT,

benfotiamine; BMSC, bone marrow stem cells; BtxA, botulinum toxin A;

CBD, corticobasal degeneration; CBS, corticobasal syndrome; CDK5, cyclin-

dependent kinase 5; CDK5, serine/threonine protein kinase 5; CML, chronic

myeloid leukemia; CNS, central nervous system; COX-2, cyclooxygenase-2;

CREB, cAMP response element binding; CSF, cerebrospinal fluid; CTE, chronic

traumatic encephalopathy; CX3CR1, microglial specific fractalkine receptor;

EGCG, epigallocatechin gallate; EIF2A, eukaryotic translation initiation factor;

FBS, frontal behavioral-spatial syndrome; FTD, frontotemporal dementia;

FTLD, frontotemporal lobar degeneration; GABA, γ-aminobutyric acid; GCI,

glial cytoplasmic inclusions; GDNF, glial derived neurotrophic factor; GFAP,

glial fibrillary acidic protein; GLP1, glucagon-like peptid 1 analog; GSK-3α,

glycogen synthase kinase-3α; GSK-3α/3β, glycogen synthase kinase-3α and

3β; GSK-3β, glycogen synthase kinase-3β; hASCs, human adipose derived

stem cells; Hsp70, heat shock protein 70; IGF1, insulin-like growth factor 1;

IL-1R, interleukin-1 receptor; iPDEs, inhibitors of phosphodiesterases; 5-LO,

5-lipooxygenase; LTs, leukotrienes; MAPT, microtubule-associated protein

tau; MB, methylene blue; MMSE, Mini-Mental State Examination; MOBP –

myelin-associated oligodendrocyte basic protein; MPO, myeloperoxidase; MRI,

magnetic resonance imaging; MSA-A, multiple system atrophy with dominant

autonomic symptoms; MSA-C, multiple system atrophy with dominant cerebellar

symptoms; MSA, multiple system atrophy; MSA-P, multiple system atrophy

with dominant parkinsonian symptoms; MSC, mesenchymal stem cells; MTBD,

microtubule-binding domain; NAD, nicotinamide adenine dinucleotide; NADP+,

nicotinamide adenine dinucleotide phosphate; naPPA, nonfluent variant of

primary progressive aphasia; NBMI, N,N’-bis (2-mercaptoethyl) isophthalamide;

NfL, neurofilament light chain; NMDA, N-methyl-D-aspartic acid; NMSS, Non-

Motor Symptoms Scale; NPC- neural protein cells; Nrf2/ARE, NF-E2-related

factor 2 (nuclear factor erythroid 2-related factor 2)/antioxidant responsive

element; NSAIDs, nonsteroidal antiinflammatory drugs; O-GlcNAc, O-linked β-

N-acetylglucosamine; O-GlcNAcase, OGA, β-N-acetylglucosaminidase; 6-OHDA,

6-hydroxydopamine; p38-MAPK, p38-mitogen activated protein kinase; PD,

Parkinson’s disease; PERK, phosphorylated endoplasmic reticulum kinase; PET,

positron emission tomography; PGRN, progranulin gene; PKA, cAMP-dependent

protein kinase A; PP2A, protein phosphatase 2A; PSD-95, postsynaptic density

protein-95; PSI, systemic proteasome suppression; PSP, progressive supranuclear

palsy; PSPRS, Progressive Supranuclear Palsy Rating Scale; PSPS, progressive

supranuclear palsy like syndrome; RA, retinoic acid; RNS, reactive nitrogen

species; ROS, reactive oxygen species; 4RT, primary four repeat tauopathies;

siRNA, short-interfering RNA; sMAPT, symptomatic MAPT mutation carriers;

TA, tolfenamic acid; TBI, traumatic brain injury; TES, traumatic encephalopathy

syndrome; TLR-4, toll-like receptor 4; TNFα, tumor necrosis factor α; UA, uric

acid; UMSARS, Unified MSA Rating Scale; UPR, unfolded protein response; UPS,

ubiquitin-proteasome system; YKL-40, chitinase-3-like protein-1.

inclusions characteristic of MSA (Dickson, 2012; Levin et al.,
2016). APS are severe and tend to progress rapidly. Diagnosis of
APS may be difficult, especially at the early stages of the disease,
because of overlapping clinical manifestation with PD. This
can have detrimental consequences considering that prognosis
and life expectancy are substantially worse among atypical
parkinsonian disorders (McFarland, 2016). Despite increasing
knowledge of the neuropathological mechanisms of these
disorders, there are no available disease-modifying treatments
for APS, and current therapy is limited to alleviating clinical
symptoms. Each example of APS is an orphan disease, which,
according to its definition, affects no more than 1 in 2000 people
in the European population or is neglected. Because of limited
financial incentives, APS-targeted treatments have long been
ignored in the pharmaceutical market. With recent advances in
research, changing demographics, and the increasing prevalence
of APS in the aging population, APS-targeted interventions are
gaining the attention of pharmaceutical companies, which brings
hope for novel therapeutic approaches.

Studies assessing the use of dopaminergic drugs in the
pharmacotherapy of atypical parkinsonism have shown
ambiguous results. While some describe modest clinical
improvement, the general therapeutic effect is rather insignificant
(Kuran, 2007; Greene, 2019). For example, some studies suggest
that levodopa responsiveness is a sign of a more beneficial course
of MSA (Ishida et al., 2021). The use of dopamine agonists,
such as rotigotine, in PSP was shown to possibly preserve some
cognitive abilities (Schirinzi et al., 2019). However, only 6 out
of 7 participants completed this study, and its protocol did
not include placebo-controlled group. Another clinical trial
showed improvement after pramipexol administration among
MSA patients with no response to levodopa; however, this is
only a single report (Ueda et al., 2013). In a study evaluating
the effectiveness of amantadine (100mg twice daily) in PSP and
MSA, 42.9% of the PSP patients and 61.5% of the MSA patients
showed partial improvement (Rajrut et al., 1997). A more recent
post-hoc analysis of the role of amantadine (227.9mg daily)
in PSP did not show any positive correlation between the use
of amantadine and cognition or gait efficiency (Dale et al.,
2020). Atypical parkinsonism symptoms were also evaluated
following treatment with the monoaminoxidase inhibitor
rasagiline, showing neuroprotection in transgenic MSA models
(Stefanova et al., 2008). However, in a 48-week study examining
174 participants, no therapeutic efficacy was shown in humans
with daily administration of 1mg rasagiline as measured by the
Unified Multiple System Atrophy Rating Scale (Poewe et al.,
2015).

Since there is no disease-modifying treatment for progressive
supranuclear palsy, therapy is currently focused on relieving
clinical symptoms. Current approaches include botulinum toxin
A (BtxA) injections used in focal dystonia (Müller et al., 2002)
and a combination of levodopa and dopamine agonists, which
may mildly improve motor symptoms such as bradykinesia and
hypokinesia, tremor, and gait impairment, but usually only at
the beginning of the disease (Birdi et al., 2002). Education about
safe swallowing, balance-keeping, and strategies for proper falling
are important protective approaches for patients to minimize the
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FIGURE 1 | Potential novel therapies for atypical parkinsonian syndromes.

risk of further complications and accidents (Agarwal and Gilbert,
2020). Nevertheless, searching for disease-modifying treatments
is of great scientific interest for many groups. Thus, this review
summarizes recent progress and perspectives regarding novel
therapies for APS (Figure 1).

PROGRESSIVE SUPRANUCLEAR PALSY

Progressive supranuclear palsy is an akinetic-rigid form of
parkinsonism caused by intracerebral accumulation of the
hyperphosphorylated microtubule-associated protein tau
(MAPT). Abnormal aggregation of tau, a microtubule-binding
protein, results in defective microtubule activity, a significant
feature of this disease (Liu and Gong, 2008). The 4R-form of
tau is most prevalent pathologically and is morphologically
defined as neurofibrillary tangles and tufted astrocytes (Borroni
et al., 2011; Höglinger et al., 2017; Agarwal and Gilbert, 2020).
Due to this pathology, modification of tau protein is a potential
therapeutic in PSP treatment (Schneider and Mandelkow, 2008).
The clinical phenotype of PSP varies. Moreover, there is no
histological basis providing the correct and accurate distinction
between different PSP phenotypes, excluding assessment of the

distribution of tau aggregates (Dickson et al., 2010; Agarwal
and Gilbert, 2020). Diagnosing PSP as early as possible seems
to play a significant role not only in estimating the prognosis
of the patient but also in conducting innovative therapeutic
trials (Borroni et al., 2011). Ongoing research is focused on
potential disease triggers, such as oxidative stress and genetic
mutations, since the primary cause of the disease remains
unknown (Rampello et al., 2005; Borroni et al., 2011).

Epidemiology
The prevalence of progressive supranuclear palsy is estimated by
different studies to be approximately 6 per 100,000 (Schrag et al.,
1999; Kawashima et al., 2004), with a general trend to increase
with age from 1.7 cases per 100,000 people aged 50–59 to 14.7
per 100,000 in people aged 80–89 (Agarwal and Gilbert, 2020).
The average time of disease-onset is 65-69 years (Coyle-Gilchrist
et al., 2016) withmale predominance globally (Bower et al., 1997).

Treatment
Novel PSP therapeutic approaches are focused on slowing or
halting disease progression, beyond only managing its physical,
behavioral, and emotional symptoms. Recent studies have
focused on treatment at the molecular level, not only examining
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genes responsible for tau protein synthesis and aggregation but
also controlling molecules that participate in the degradation of
misfolded-tau and prevention of oxidative stress (Boxer et al.,
2017). Another approach that has the potential to be effective in
PSP is the transfer of autologous mesenchymal cells derived from
bonemarrow (US National Library of Medicine, 2016) or adipose
tissue (Choi et al., 2014).

Targeting Inflammation
Microglia are the most important immune modulator in the
human nervous system (Maphis et al., 2015); these cells release
cytokines crucial for processes related to nervous system activity
and immune responses (Hanisch, 2002). They also have a
capacity to respond to neuronal stimulation, leading to increased
expression of receptors for glutamate and γ-aminobutyric acid
(GABA) (Färber and Kettenmann, 2005).

In vivo studies suggest that microglial activity leads to the
activation of p38-mitogen activated protein kinase (p38-MAPK),
which triggers phosphorylation and aggregation of tau protein
(Maphis et al., 2015). In addition, tau accumulation appears to be
connected with the expression of microglial-specific fractalkine
receptor (CX3CR1), toll-like receptor 4 (TLR4), and receptors
activated by interleukin-1 (IL-1R). The authors suggest that these
proteins, such as CX3CR1 and IL-1/p38MAPK, may be novel
targets for human tauopathy treatment (Bhaskar et al., 2010).

Inflammation may also play a role in PSP, as it is
commonly associated with tauopathies, despite limited evidence
assessing the pathologic connection (Vagnozzi et al., 2017).
5-Lipooxygenase (5-LO) is a critical enzyme in the onset of
inflammation that acts by inducing leukotrienes (LTs) activation
(Kim et al., 2008) and is broadly expressed in the central
nervous system (Vagnozzi et al., 2017). Trials conducted
on an Alzheimer’s disease (AD) Tg2576 mouse model with
overexpression of the 5-LO gene showed not only increased level
of biomarkers, indicating astrocytes and microglia activation
[by elevation of glial fibrillary acidic protein (GFAP) and CD45
concentration], but also enhanced amyloid-β (Aβ) aggregation
(Chu et al., 2012). Further investigations performed on tau
transgenic mice demonstrated a significant effect of 5-LO
inhibition, resulting in a reduced number of tau aggregates and
cognitive improvement. Mechanisms of tau elimination were
correlated with cyclin-dependent kinase 5 (CDK5) activation
(Giannopoulos et al., 2015).

A case-control study verifying the relationship between
nonsteroidal anti-inflammatory drug (NSAID) intake and
progressive supranuclear palsy symptoms showed no meaningful
results. The authors emphasized that in order to obtain
information on the correlation between NSAID use and change
in the severity of PSP symptoms, a larger study should be
conducted (Marras et al., 2018).

Reduction of thiamine and thiamine-dependent enzyme
activity resulted in tau phosphorylation, Aβ accumulation, and
oxidative stress exacerbation, leading to increased interest in
benfotiamine (BFT) as a potential PSP therapy (Tapias et al.,
2018). BFT is a synthetic lipophilic derivative of thiamine (Raj
et al., 2018). BFT reduces amyloid aggregates, decreases tau levels,

and activates the phosphorylation of glycogen synthase kinase-
3α and 3β (GSK-3α/β), leading to attenuation of its activity in
AD transgenic mice (Pan et al., 2010). Thiamine deficiency is
an important factor in oxidative stress regulation, since it has
been shown to cause progression of neurodegeneration and,
subsequently, has become a target for future therapies (Lin and
Beal, 2006; Tapias et al., 2018). Thiamine deficiency activates
microglia, boosts reactive oxygen species (ROS) production,
and facilitates blood brain barrier (BBB) damage (Calingasan
et al., 1998). Although microglial cells have a protective
neuronal effect, they may also produce an enormous amount
of chemokines involved in neuronal injury response (Gyoneva
and Ransohoff, 2015). Dietary BFT in P301S tau transgenic mice
showed positive effects on physical outcomes and decreased
levels of glycated tau. BFT treatment triggers NF-E2-related
factor 2/antioxidant responsive element (Nrf2/ARE) activation,
resulting in cellular metabolic rearrangement. This includes
decreases in inflammation markers cyclooxygenase-2 (COX-
2), tumor necrosis factor α (TNFα), and proteins associated
with nitration and peroxidation processes (Tapias et al., 2018).
More recently, BFT has been identified as a modulator of
microglia-inhibitionwith anti-inflammatory facilities, such as the
alleviation of heat-shock protein 70 (Hsp70) and COX-2 release.
Because of its ability to block kinases activity and manage NF-κB
transport, BFTmay have neuroprotective properties (Bozic et al.,
2015).

Another drug believed to be important for future PSP
treatment is tolfenamic acid (TA). Classified as an NSAID, TA is
effective in pain reduction and lowering body temperature, and
it exhibits characteristics of a possible anti-neoplastic molecule
(PubChem, 2021). Recent studies demonstrated that TA alters tau
phosphorylation and reduces total tau distribution in the mouse
central nervous system, causing memory improvement (Chang
et al., 2018). Future results of a phase 2a trial evaluating the safety
and efficacy of TA oral intake (50, 300, or 600mg daily, compared
with placebo) in patients with PSP could provide evidence for
the successful application of TA in PSP therapy. The safety of
TA treatment will be measured by the number of adverse events,
changes in ECG, nasal examination, and clinical laboratory tests
over 12 weeks. The trial is planned to include 24 participants and
to be completed by December 31, 2022 (US National Library of
Medicine, 2020a).

Modulation of Oxidative Stress
Recently published data have highlighted the significance of
mitochondrial dysfunction and oxidative stress in PSP. Studies
on cells expressing mitochondrial genes found in patients with
PSP revealed decreased activity of mitochondrial complexes I
and III involved in ATP production and significant increases
in antioxidant enzyme activity and markers of lipid oxidative
damage, suggesting oxidative injury (Albers et al., 2001;
Chirichigno et al., 2002; Stamelou et al., 2010). Single nucleotide
polymorphism (rs1768208 C/T) located near the myelin-
associated oligodendrocyte basic protein (MOBP) gene and
related to the SLC25A38/appoptosin gene is also a genetic variant
connected with PSP outcome (Zhao et al., 2015). Appoptosin is
a member of a family of mitochondrial proteins located in the
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inner mitochondrial membrane involved in molecular transport
(Haitina et al., 2006; Ogunbona and Claypool, 2019). Appoptosin
is also critical for heme synthesis (Guernsey et al., 2009), and
its overexpression leads to exorbitant heme production, which
results in disruption of homeostasis, increased level of ROS,
and damage to endothelial cell structure. This disrupts the
mitochondrial membrane potential and causes oxidative stress.
Even minimal fluctuation in appoptosin can lead to cytoskeletal
lability and inflammation (Kumar and Bandyopadhyay, 2005;
Zhang et al., 2012b). Appoptosin expression in transgenic
mice leads to tau accumulation, resulting in motor impairment
and altered synaptic structures (Zhao et al., 2015). Another
consequence of SLC25A38/appoptosin upregulation is the
transfer of cytochrome C to the cytoplasm and both caspase-
3 and caspase-9 activation, which are responsible for cell
death (Zhang et al., 2012b; Brentnall et al., 2013). Caspase-
3 activation also results in decreased α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-
aspartic acid (NMDA) receptors in postsynaptic membranes
(Zhao et al., 2015). AMPA receptors are, thus, a potential target
for the treatment of neurodegenerative diseases, autism, and drug
addiction (Lee et al., 2016).

Co-enzyme Q10 is a cofactor that stabilizes the mitochondrial
respiratory chain and provides antioxidant properties (Saini,
2011). The ratio between Q10 in its reduced and oxidized form
is a measure of oxidative stress level (Lagendijk et al., 1996). Two
trials investigating the impact of Q10 in patients with PSP led
to ambiguous conclusions. During the shorter trial (6 weeks), 5
mg/kg of daily Q10 was safe and well-tolerated, and increased
metabolic activity and significantly improved clinical scores as
measured by the Progressive Supranuclear Palsy Rating Scale
(PSPRS) and Frontal Assessment Battery (FAB) (Stamelou et al.,
2008). Another Q10 trial over a period of 12 months showed no
statistically significant differences between 2,400 mg/d Q10 dose
and placebo intake; however, there was a trend toward modest
improvement (Apetauerova et al., 2016).

Niacinamide is a form of vitamin B3, which, along with
tryptophan, serves as a source of nicotinamide adenine
dinucleotide (NAD+) and nicotinamide adenine dinucleotide
phosphate (NADP+), and their reduced forms (Makarov et al.,
2019). Studies show that NAD+ is an important cofactor in
metabolic redox reactions, and that it is involved in the regulation
of cell death processes (Dölle et al., 2013). A clinical trial
(registered as NCT00605930) on the safety and tolerance of
a 6-month treatment with creatine, pyruvate, and niacinamide
assessed their ability to penetrate the BBB, as measured by
their metabolite concentrations in the cerebrospinal fluid (CSF).
Unfortunately, study results were not published (US National
Library of Medicine, 2008–2017; Shoeibi et al., 2018).

α-Lipoic acid and L-acetyl carnitine, administered together,
are thought to have a potential benefit for patients with
PSP. This combination demonstrated neuroprotective properties
in a rotenone-induced PD mouse model. Another study
conducted with young and old rats supplemented with acetyl-
L-carnitine (ALCAR) showed that ALCAR rescued age-related
mitochondrial dysfunction, maintained inner mitochondrial
membrane stability, and contributed to a decrease in antioxidant

production (Hagen et al., 1998). However, a human trial limited
to 11 subjects using 600 mg/1.5 g α-lipoic acid and L-acetyl
carnitine intake over a 6-month period showed that the most
frequent adverse effects were restlessness, seizures, insomnia, and
dizziness (US National Library of Medicine, 2012–2017). The
results considering changes in cerebral oxidative stress markers
remain unpublished.

N,N’-bis (2-mercaptoethyl) isophthalamide acts as an
antioxidant and heavy metal chelator (Secor et al., 2011), as it
has high affinity for Hg2+, Pb2+, and Cd2+ (Clarke et al., 2012).
An N,N’-bis (2-mercaptoethyl) isophthalamide (NBMI) trial,
currently recruiting for its 2a phase, is planned to examine the
effect of NBMI on motor and non-motor symptoms of PSP
as measured by the PSPRS and Non-Motor Symptoms Scale
[NMSS], atrophy (by MRI), and neurocognitive symptoms, such
as depression and fatigue (US National Library of Medicine,
2019c).

RNA Modulation
Antisplicing oligonucleotides are a method of ribonucleic acid
modulation and are increasingly being used to regulate protein
expression in a multitude of diseases (i.e., from Alzheimer’s
disease to progressive supranuclear palsy, targeting tau).
Antisplicing oligonucleotides (ASOs) inhibit tau accumulation
and stabilize the hairpin RNA structure (Boxer et al., 2017).
Pre-mRNA, the product of tau gene transcription, is present in
neuronal axons. Altered splicing of exon 10 of tau RNA leads
to dysregulation and change in the ratio of 3 or 4 microtubule
binding domains (Rajrut et al., 1997). Many MAPT point
mutations lead to hairpin destabilization first, followed by the
splicing of exon 10 (containing missense mutation in the mature
protein), causing 3R-tau/4R-tau imbalance (Liu and Gong, 2008;
Boxer et al., 2017). When tau is not connected to microtubules,
it is prone to hyperphosphorylation and accumulation into
neurofibrillary tangles (Liu and Gong, 2008; Höglinger et al.,
2017). An increased level of 4R tau is linked to more severe
seizures and other behavioral abnormalities in mice expressing
human tau (Schoch et al., 2016). Both in vitro and in vivo studies
show that MAPT ASOs significantly reduce human tau protein
levels and neuronal loss (DeVos et al., 2017), acting as a protective
factor against seizures in an adult mouse model (DeVos et al.,
2013).

There is only one registered clinical trial investigating the
safety, tolerability, and pharmacokinetic parameters of the
intrathecally administered ASO called NIO752 in patients with
progressive supranuclear palsy (NCT04539041). This trial will
assess the adverse effects NIO752 and occurrence of suicidal
behaviors by CSF sampling. The study has already started
recruiting participants, but finalization of the trial is estimated
to be October 17, 2023 (US National Library of Medicine, 2020g).

Hairpin short-interfering RNA (siRNA) inhibits both 3α-
glycogen synthase kinase and 3β-glycogen synthase kinase (GSK-
3α and GSK-3β), resulting in increased levels of β-catenin (Yu
et al., 2003), a protein functioning as a homeostasis protector
(MacDonald et al., 2009). Simultaneous implementation of two
hairpin siRNA expression vectors, which is done in this study,
will provide important information on the development of new
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treatment combinations for tauopathies (Yu et al., 2003; Shoeibi
et al., 2018).

Kinases and Enzymes Modulation
Defects in mitochondrial DNA can lead to disruption of the
electron transport chain and exacerbation of oxidative stress,
which contributes to increased activity of kinase pathways
(Swerdlow et al., 2000; Ferrer et al., 2001). This phenomenon has
been shown in PSP neurons and glial cells (Ferrer et al., 2001),
and coincides with both detachment of tau from microtubules
and accumulation of tau (Iqbal et al., 2008; Stamelou et al.,
2010). As a result, kinase inhibition is considered as an important
element in future PSP treatment.

Phosphorylated endoplasmic reticulum kinase (PERK)
controls cellular response against unfolded or incorrectly folded
proteins. Immunostaining studies have described a type of p62
and ubiquitin-positive aggregates, where p62 is a marker of
autophagy dysfunction. Vesicles containing p62, ubiquitin, and
microtubule-associated proteins 1A/1B light chain 3B (LC3) are
evidence of lysosomal impairment (Bruch et al., 2015). PERK
is the cellular protector against protein disruption associated
with oxidative stress. There is evidence that there are different
variants of PERK. For example, the allele connected with
tauopathy is linked to decreased PERK activity, impairment
of unfolded protein response (UPR), and accumulation of
neurofibrillary tangles (Bruch et al., 2015; Yuan et al., 2018).
By phosphorylating eukaryotic translation initiation factor 2A
(EIF2A), PERK stimulates the activating transcription factor
4 (ATF4), a molecule involved in phagosome creation and
minimizing mitochondrial destruction (Bouman et al., 2011;
Yuan et al., 2018). Another gene activated by PERK is Nrf2,
which is involved in oxidative stress regulation and is crucial for
cell survival by mechanisms controlled by this kinase (Cullinan
et al., 2003; Kansanen et al., 2013).

Both in vitro and in vivo studies conducted on male wild-
type mice showed a significant effect of the pharmacological
PERK activator, CCT020312 (selective eIF2a/PERK activator).
This treatment provided neuroprotection, a decreased level of
phosphorylated tau, and motor and cognitive improvements in
a P301S tau mouse model (Bruch et al., 2017).

Rho-associated coiled-coil-containing protein kinases 1 and
2 (ROCK 1/2) are serine/threonine kinases involved in cellular
motility (Riento and Ridley, 2003). Since it was demonstrated that
the levels of ROCK1/2, p70 S6-kinase, and mTOR are increased
in PSP and CBD brains, it led to the assumption that targeting
of Rho kinases could be helpful in neurodegeneration treatment
(Gentry et al., 2016). A clinical trial using Fasudil, an oral ROCK
inhibitor, is already recruiting patients for a phase 2 investigation.
The trial will include 15 participants, and will be conducted
for 48 weeks with regular adverse effect controls, e.g., physical
examinations, MRI, and laboratory tests measuring not only
tau concentration but also neurodegeneration biomarkers, such
as neurofilament light chain (NfL). Study completion date is
estimated to be July 30, 2022 (US National Library of Medicine,
2021).

Another approach, based on genetic modifications, is altering
the chemical structure of the tau protein. Studies focusing

on traumatic brain injury (TBI), known as a risk factor for
chronic traumatic encephalopathy (CTE) and AD, showed that
neuronal damage results in an increased ratio of the cis-form
of tau, which impairs axonal transport and leads to apoptosis.
The whole phenomenon was called “cistauosis” (Kondo et al.,
2015). Mouse studies showed that blocking the cis form of
tau by specific antibodies decreases neurotoxicity and reduces
behavioral defects. If tau acts as a protective factor against
neuronal death, the greater understanding of tau could lead to
changes in histological evaluation (Kondo et al., 2015).

As shown previously, the activity of peptidyl-prolyl cis-trans
isomerase NIMA-interacting 1 (Pin1) protein is decreased in AD.
Thus, the upregulation of this protein may be considered as a
potential target for tauopathy treatment (Kondo et al., 2015).
It has been shown that Pin1 preserves neurons and exerts a
neuroprotective effect by modifying the chirality of tau and
transforming it from its toxic cis- to trans–conformation (Ghosh
et al., 2013). Increased amounts of cis-tau lead to microtubules
aggregation, cis p-tau accumulation in other neurons, and
improper axonal propagation (Ghosh et al., 2013). This suggests
that monoclonal antibodies, which offset cis-tau toxicity, could
be a promising therapy. This approach is already being used in
trials focusing on Pin1 mechanisms in transgenic mouse models
(Nakamura et al., 2012).

There are several candidate compounds analyzed
in preclinical studies in order to effectively block tau
phosphorylation, e.g., brain-specific calpain inhibitor and
serine/threonine protein kinase 5 (CDK5) (Tyer and Hill,
2020). Calpain is a calcium-dependent protease taking part
in cell death regulation (Cullinan et al., 2003). It participates
in the degradation of cellular structures, such as membrane
ion channels, adhesion molecules, receptors; and cytoskeletal
proteins such as neurofilaments, α-fodrin, and lamins A and B
located in the nucleus (Momeni, 2011; Silva and Haggarty, 2020).

CDK5 is involved in the regulation of the cell cycle and
supports the creation of new synapses and vessels (Riento and
Ridley, 2003). In studies with AD mouse models, it was shown
that CDK5, by triggering destabilization of Bcl2-associated
athanogene (BAG), leads to impairment of the Hsp70 system.
This results in increased, unselective protein degradation and
defects in glutamate-dependent paths. Improved cognitive effects
from BAG3 expression are evidence for regulating CDK5 activity
as a novel method of PSP therapy (Shupp et al., 2017; Zhou et al.,
2020).

Blocking β-N-acetylglucosaminidase (O-GlcNAcase, OGA) is
another potential method used to decrease the number of tau
deposits. OGA is a glycoside hydrolase, providing breakdown
of O-linked β-N-acetylglucosamine (O-GlcNAc) from proteins
(Wells et al., 2002). O-GlcNAc participates in signaling pathways
and regulation of protein activity by targeting their expression or
degradation (Hart et al., 2007). O-GlcNAcylation of tau decreased
the level of phosphorylated tau in both in vitro and in vivo studies
(Liu et al., 2004). Mouse studies show that O-GlcNAc attachment
to tau inhibits its aggregation and suppresses neuronal atrophy
(Yuzwa et al., 2012). By targeting p53, NF-κB, and KEAP1/NRF2
pathways, O-GlcNAc also contributes to cellular oxidative stress
level (Chen et al., 2018).
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ASN120290, an inhibitor of O-GlcNAcase, was assessed in
pre-clinical and clinical trials. In mice carrying P301L tau
mutation, the inhibition of more than 80% of O-GlcNAcase
activity led to a measurable increase in O-GlcNAcylated proteins
in the brain (Hastings et al., 2017). The first phase of a human
ASN120290 trial demonstrated that the drug was indeed safe,
and that its pharmacokinetic parameters showed similar drug
concentrations in CSF and plasma. There were no adverse
effects reported, and no patients were withdrawn from the trial
[ALZFORUM. (n.d.)]. In a recently announced trial conducted
on healthy volunteers, neuronal ASN120290 distribution will be
measured by positron emission tomography (PET). The goal of
the study is to assess data on drug dosage for future PSP treatment
(Asceneuron, 2018).

By magnetic resonance imaging, it was found that MK-
8719, another O-GlcNAcase inhibitor, reduced tau aggregates
and forebrain atrophy in transgenic tau rTg4510 mice (Wang
et al., 2020). A phase 1 study has shown that the drug is well-
tolerated, and that the plasma concentration of MK-8719 was
proportional to the dose (only in oral intake between 5 and
600mg) (Sandhu et al., 2016). In contrast, substances that showed
great potential in treating PSP such as salsalate (an NSAID that
targets acetyltransferase p300 and inhibits tau acetylation) (Min
et al., 2015; US National Library of Medicine, 2015–2018), and
plasma infusion did not provide significant therapeutic benefits
(VandeVrede et al., 2020).

One of the kinases associated with increased levels of tau
deposits, not only in progressive supranuclear palsy but also
in corticobasal degeneration and Alzheimer’s disease, is GSK-
3 (Ferrer et al., 2002). As mentioned before, GSK-3 is a
serine/threonine kinase involved in glycogen synthesis that is
important in regulating gene expression and cell survival (Grimes
and Jope, 2001). GSK-3 inhibition leads to increased stem
cell propagation and neuronal differentiation (Morales-Garcia
et al., 2012). Mice with reduced GSK-3β expression show altered
synapse condition and lower tau accumulation (Amaral et al.,
2021). Another study conducted on mice demonstrated that
blocking GSK-3 signaling with tideglusib (thiadiazolidinone)
decreases tau phosphorylation and prevents memory deficits in
an AD mouse model (Serenó et al., 2009).

Tideglusib (NP031112, NP12) is a GSK-3β inhibitor registered
as an orphan drug by the Food and Drug Administration
(FDA) and European Medicines Agency (EMA) (Medina,
2018). Tideglusib use in a clinical trial showed no significant
changes between drug and placebo in both primary and
secondary outcomes (US National Library of Medicine, 2010–
2012; Tolosa et al., 2014). According to the anti-inflammatory
and neuroprotective activity of tideglusib (Wang et al., 2016),
the drug is under investigation in patients with type 1 congenital
and childhood-onset myotonic dystrophy (Horrigan et al., 2020).
Administration of lithium, which is similar to tideglusib in
its mechanism of action, has also been considered as a way
to inhibit PSP progression (Engel et al., 2006; Boxer et al.,
2017), but the trial was terminated because of adverse effects,
including a balance disorder, tremor, fatigue, and urinary
tract infections (US National Library of Medicine, 2008–
2015).

Studies have also considered indirect mechanisms of GSK-
3 inactivation that may lead to stem cell proliferation (Nedachi
et al., 2011). Progranulin (PGRN), a growth factor induced
by estrogens, triggers GSK3β-phosphorylation and leads to
GSK3β inhibition. This results in partial proliferation of neural
progenitor cells (NPCs) dependent on GSK inhibition (Nedachi
et al., 2011). A trial focused on assessing the correlation between
estrogen exposition and PSP occurrence showed no association
(Park et al., 2018). On the other hand, the level of PGRN and
its cofactor prosaposin has been reported as increased in patients
with AD (Mendsaikhan et al., 2019). Using PGRN enhancers as
modern targets in neurodegeneration therapies requires further
investigation, since its role in pathological processes is not
fully understood.

AZP2006, a drug currently in phase 2 clinical trials, is a
small, multifunctional molecule that stabilizes the progranulin-
prosaposin complex and increases progranulin concentration
[ALZFORUM. (n.d.)]. It also inhibits tau phosphorylation and
acts to clear misfolded proteins by inducing macroautophagy
(Medina, 2018). In 2015, AZP2006 underwent a phase 1 clinical
trial, which demonstrated the tolerance of a short 10-day
AZP2006 therapy in healthy volunteers (males aged 18–55)
[Alzprotect (n.d.)]. Currently, phase 2 of this trial is registered,
and participants are being recruited. The goal of the investigation
is to evaluate the safety, tolerability, and pharmacokinetics of
AZP2006. Pharmacokinetic parameters will be measured in CSF,
plasma, and blood in a group of 36 participants either with a
placebo or different doses of AZP2006. The drug/placebo will
be administered once daily for 84 days. The estimated study
completion is planned to be 30 June, 2021 (US National Library
of Medicine, 2019a).

Another potential therapeutic progressive supranuclear palsy
target is the Src family kinase member Fyn. This non-
tyrosine receptor kinase is associated with the regulation of
the inflammatory processes, neuronal development, and cancer
development (Schenone et al., 2011). In a mouse model,
pseudophosphorylation of Fyn was related to an increased level
of tau aggregates (Briner et al., 2019). However, a phase 2a
trial investigating the safety and tolerability of the Fyn inhibitor
Saracatinib (AZD0530) showed little effect on patients with AD,
while also revealing a group of adverse effects, mostly affecting
the gastrointestinal tract, such as diarrhea and acute diverticulitis
(US National Library of Medicine, 2014–2019; van Dyck et al.,
2019).

Methylthioninum chloride (methylene blue [MB], TRx0014)
is a phenothiazine with known anti-tau accumulation activity
used in both in vitro (Wischik et al., 1996) and in vivo
(Melis et al., 2015) studies. MB crosses the BBB and alters cell
metabolism via the redox process. MB activated the expression
of (Nrf2)/ARE genes, and, consequently, reduced inflammatory
factors, oxidative stress, and tau accumulation in an animal
tauopathy model (Stack et al., 2014). By providing a mammalian
target of rapamycin (mTOR) inhibition, MB contributes to the
activation of protein phosphatase 2A (PP2A) acting as a GSK-3β
antagonist (Meske et al., 2008; Kitagishi et al., 2014; Xie et al.,
2014). A study on MB in patients with AD showed a significant
improvement in tests evaluating cognitive impairment after 24
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weeks of medium MB dose administration (138 mg/day) (US
National Library of Medicine, 20007–2008; Wischik et al., 2015).

Enhancement of Abnormal Protein
Removal
Nilotinib (AMN107) is an oral drug classified as a c-Abl
tyrosine kinase inhibitor group, primarily used in Philadelphia
chromosome-positive chronic myeloid leukemia (CML)
treatment (Kantarjian et al., 2007; Ursan et al., 2015; National
Cancer Institute, 2020). As a molecule with BBB-crossing ability
and the potential to modify autophagy, nilotinib was investigated
in animal and human studies (Medina, 2018; Shoeibi et al.,
2018). It has been mainly studied in the context of PD and MSA
and failed to show a significant benefit (Lopez-Cuina et al., 2020;
Pagan et al., 2021). In PD, the c-Abl tyrosine kinase inhibitor
reduced α-synuclein levels and induced lysosomal activity
(Hebron et al., 2013), whereas in a PSP mouse model, nilotinib
decreased phosphorylated tau concentration and improved
motor symptoms (Torres-Yaghi et al., 2017), suggesting a
potential application in the treatment of tau pathology. However,
a phase 2 study analyzing the safety of nilotinib in patients with
AD by 6 months of 150–300mg nilotinib treatment did not
produce clinically significant results (Simuni et al., 2021).

The second potential therapeutic approach in tauopathies is
the activation of proteasomes. Inhibitors of phosphodiesterases
(iPDEs) have proven to be neuroprotective (Kumar and Khanna,
2017). By increasing cellular cAMP level, providing cAMP
response element binding (CREB), and activating cAMP-
dependent protein kinase A (PKA), iPDEs lead to improvement
inmemory consolidation and enhanced degradation ofmisfolded
proteins via proteasomal activation (García-Osta et al., 2012;
Lokireddy et al., 2015). CREB is a transcription factor that
controls the expression of genes connected with neuroplasticity
and neuroprotection; CREBmodification can lead to a significant
cognitive improvement (Sakamoto et al., 2011). Targeting the
cAMP/PKA/CREB pathway brought significant results in other
neurodegeneration therapies, such as those for the treatment of
AD (Gong et al., 2004). cAMP activates the proteasome, leads
to tau removal, and modifies disease progression in tauopathies
such as PSP. Furthermore, reduced activity of AMP-activated
protein kinase (AMPK) in a PS19 mouse model led to reductions
in phosphorylated tau deposits (Domise et al., 2016).

Recent trials have shown other encouraging results,
indicating, apart from the decreased accumulation of misfolded
tau protein, anti-inflammatory effects after the application of
rolipram, a selective PDE-4 inhibitor (Zhu et al., 2001; Gong
et al., 2004). Another human study on healthy male volunteers
showed that the administration of 100mg of sildenafil, a PDE-5
inhibitor, resulted in improvement of cognitive functions.
Despite this, further investigation is needed to evaluate the
activity of sildenafil in the CNS (Schultheiss et al., 2001).
AZP2006, which stabilizes prosaposin-progranulin complexes,
is also included in a group of medicaments triggering tau
degradation. It was described in the previous section [Shoeibi
et al., 2018, ALZFORUM. (n.d.)].

Microtubule Stabilization
There are also drugs suspected to stabilize microtubules
via specific mechanisms. This group includes neomycin
(aminoglicoside antibiotic regulating exon 10 splicing but not
demonstrating enough selectivity) (Varani et al., 2000) and
mitoxantron (acting also as a stem-loop stabilizer) (Zheng
et al., 2009). Despite a promising mechanistic connection,
neither of these compounds has found its clinical application
in PSP treatment. Davunetide, which produced microtubule
stabilization and reduced tau phosphorylation in preclinical
studies, has also failed in clinical trials examining use for PSP
treatment (Boxer et al., 2014).

TPI-287, part of the taxoid family, is a tubule-binding and
microtubule-stabilizing molecule. The clinical trial, which was
conducted simultaneously with a group of patients with AD,
investigated the safety and tolerability of TPI-287 administration
in patients with primary four repeat tauopathies (4RT), PSP,
and CBS by the intravenous infusion of TPI-287 in three
cohorts (Sakamoto et al., 2011; García-Osta et al., 2012). Each
patient received an increasing dose of TPI-287 (2–6, 3–20
mg/m2 depending on the trial arm), which was preceded by
premedication that included diphenhydramine, dexamethasone,
and famotidine. The results were compared with those of the
fourth group that was given a placebo (US National Library of
Medicine, 2014–2020). Although TPI-287 was not detectable in
the CSF, the trial showed decreased chitinase-3-like protein-1
(YKL-40) levels in the 4RT arm, which suggested a reduction in
inflammation due to TPI-287 administration. In the 4RT-arm,
there were also dose-dependent cognitive impairments and an
increased amount of falls reported (Tsai et al., 2020).

Another compound demonstrating a similar mechanism of
action is epothilone D (BMS-241027), a microtubule stabilizing
agent with the ability to pass through the BBB (US National
Library of Medicine, 2014–2020). Studies on mice showed that
low epothilone D doses reduce the amount of cerebral pathologic
tau and inhibit axonal destruction, concomitantly contributing
to improved axonal transport (Barten et al., 2012; Zhang et al.,
2012a; Makani et al., 2016; Clark et al., 2020). Trial with patients
with AD by weekly epothilone D infusions (0.003, 0.01, and 0.03
mg/kg doses) evaluated safety and pharmacodynamic properties,
and included a measure of CSF drug concentration [US National
Library of Medicine, 2011–2014, ALZFORUM. (n.d.)]. Although
the trial was finished in October 2013, no data were reported
because of trial termination [ALZFORUM. (n.d.)].

Dictyostatin is also considered as a potential option in
future tauopathy treatment. Dictyostatin is a macrolide with
microtubule-stabilizing and anticancer properties (Paterson
et al., 2010), and acts like epothilone D (Makani et al., 2016).
High-dose intraperitoneal injection of dictyostatin in mice led
to significant body weight loss, gastrointestinal overgrowth,
and death. Low-dose infusions, although also induced some
deaths, resulted in the reduction of both atrophy of hippocampal
CA3 neurons and levels of mature tau markers (Makani et al.,
2016). There are no ongoing clinical trials with dictyostatin.
Studies using discodermolide, an anticancer drug with great
similarities to dictyostatin, did not show improvement, despite
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initially promising results. Moreover, discodermolide showed
high toxicity that led to pulmonary interstitial disease (Mita et al.,
2004; Falkenberg et al., 2019; Guo et al., 2020).

Stem Cell Administration
Since progressive supranuclear palsy is not only considered as a
disease of the central nervous system, it seems crucial to explore
cells that are not strictly connected with the nervous system.
For that purpose, studies have examined mesenchymal stromal
cells (MSCs) obtained from patients with PSP (Calogero et al.,
2018). The results showed deficient microtubule polymerization
and depolarization processes, which led to their inefficient
remodeling. The proliferative capacity of MSCs was also greatly
decreased in comparison with the control group. This served
as the first evidence that disruption in microtubules stability is
present not only in the nervous system. In vitro investigations
proved that the ROCK and PI3K pathways are strictly involved
in the MSCs transport within the BBB (Lin et al., 2013).

Mesenchymal stromal cells can differentiate into cells of every
germinal layer: ecto-, endo-, and mesoderm, whereas brain-
derived neurotrophic factor (BDNF) and retinoic acid (RA)
induce the transformation ofMSCs into neuronal cells (Anghileri
et al., 2008). A significant feature of MSCs for therapeutic use in
PSP is their ability to decrease oxidative stress level and influence
the apoptotic process. It has been established that MSCs of PSP
patients can penetrate the BBB and produce neurotrophins in
the same amount as MSCs obtained from healthy participants
(Giordano et al., 2014). Neurotrophins are factors with a potential
for controlling almost every important process in the cell,
including both its survival and apoptosis (Chao et al., 2006).
Factors belonging to this group, such as BDNF, are crucial for the
sustainability of daily brain activity (Houlton et al., 2019).

Studies in a transgenic Alzheimer’s disease mouse model
showed that the injection of human adipose derived stem cells
(hASCs) significantly increased the level of anti-inflammatory
interleukin-10, suggesting the neuroprotective effect of
hASCs. This manipulation also increased the concentration
of the postsynaptic density protein-95 (PSD-95) as well as
synaptophysin, markers indicating synaptic and dendritic
stabilization (Kim et al., 2012). hASCs have also been effective
against 6-hydroxydopamine (6-OHDA)-induced damage (Cova
et al., 2012).

Stem cells are an active area of clinical research, and there
have been several PSP clinical trials with promising results.
Those studies demonstrate the safety of intraarterial MSC
administration in patients with PSP and suggest that while
clinical stabilization is possible, it may be disappointingly
temporary compared with expectations (US National Library
of Medicine, 2013; Giordano et al., 2014; Canesi et al., 2016).
However, there are still no data available to definitively confirm
the efficacy of this novel therapeutic approach. Relatively small
population and short follow-up period are the main limitations
of stem cell-based therapy for PSP. This area requires further
research in order to unequivocally prove the advantages of
this approach.

Another origin of mesenchymal stromal cells could be adipose
tissue; the first case of a therapy using this cell source was

described in South Korea in 2014 (Choi et al., 2014). A
patient diagnosed with PSP at the age of 71 demonstrated no
response to benserazide and levodopa treatment; so, in order
to overcome pharmacological resistance, MSCs were taken by
liposuction from the subcutaneous tissue of the patient and
administered by five intravenous infusions by the cephalic vein
and four intrathecal depositions. There were no serious adverse
effects reported, excluding recurrent mild fever and a one-
time blood pressure increase, which were relieved after an
antipyretic medicament. Safety assessment and clinical progress
were provided regularly during the 6-month period. A short
follow-up demonstrated a significant reduction (from 69 to 63
points) in PSPRS (Golbe and Ohman-Strickland, 2007; Choi
et al., 2014). The strength and speed of activities performed with
upper limbs also improved. Although this kind of treatment was
only performed on one patient and with a short follow-up time,
this form of therapy may hold promise in the future.

A future study analyzing stem cell administration is currently
recruiting participants. It plans to transfer bone marrow stem
cells (BMSCs) to the vascular system and to the nasal cavity, with
the premise that the branches of the trigeminal nerve located in
conches and meatuses will allow stem cells to enter the CSF (US
National Library of Medicine, 2016). The assessment is based on
Activity of Daily Living Scale evaluation 3, 6, and 12 months after
administration. The trial is planned to be finished by June 2023
(US National Library of Medicine, 2016; Edemekong et al., 2020).

Specific Antibodies
There is an increasing interest in developing molecule-specific
antibodies, since neutralization of tau aggregates seems to be
a crucial step in progressive supranuclear palsy treatment, and
novel trials are suspected to bring positive results. On one
hand, the intracellular nature of tau limited the pursuit of
immunotherapy usage in patients with tau pathologies (Avila,
2010; Agadjanyan et al., 2017). On the other hand, the discovery
of tau axonal propagation and its ability to transmit into
other unaffected neurons challenged this theory, concomitantly
providing the argument for constructing monoclonal antibodies
(Clavaguera et al., 2009). Both passive (Chai et al., 2011) and some
active forms of immunization were assessed as effective (Theunis
et al., 2013).

The liposome-based amyloid vaccine (ACI-35) has had a
significant effect on a P301L tau transgenic mousemode, not only
in short-term evaluation by the sudden expression of specific tau-
antibodies but also in general improvement of motor impairment
in comparison with the control group (US National Library of
Medicine, 2020f). Studies on humans have also brought positive
results, although the primary version of the vaccine was too weak
to induce an immunological response (ALZFORUM, 2020b,
2021; US National Library of Medicine, 2020f). ACI-35.030,
the second version of the ACI-35 vaccine containing another
adjuvant, provides stronger T helper cell activation and leads
to 50 times more intense antibody production (ALZFORUM,
2020b, 2021). Infusion of increasing vaccine doses caused a
significant change in IgG-antibody titers and did not cause
adverse effects (AC Immune, 2021). The last stage of the trial,
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evaluating the effect of the highest vaccine dose, is planned to be
finished by 2023 (ALZFORUM, 2021).

Armanezumab is a monoclonal, humanized antibody that
targets the N-terminal region of the tau protein, called the
“phosphatase activation domain”. When tau is pathologically
accumulated, its N-terminal region, normally hidden in a
“paperclip” shape, becomes visible and plays a significant role in
tau propagation. Studies on tau transgenic mice demonstrated
the therapeutic activity of armanezumab, shown by decreased
levels of tau spread, aggregation, and toxicity with simultaneously
high specificity (Agadjanyan et al., 2017).

AV-1980D is an anti-tau deoxyribonucleic acid vaccine acting
against the same epitope as armanezumab (Davtyan et al.,
2017; Shoeibi et al., 2018). A study using a THY-Tau22 mouse
model demonstrated a strong humoral reaction, resulting in the
production of antibodies. Nevertheless, this powerful reaction
did not show any harmful adverse effects and, while the pool of
antibodies was restricted, its level remained stable (Davtyan et al.,
2017). In vivo trials of AV-1959R and AV-1980R, vaccines created
against Aβ and tau proteins, also demonstrated high affinity
of antibodies and significant neutralization of tau aggregates
(Davtyan et al., 2019). A human study on the safety and efficacy
of anti-tau antibody infusion was announced in 2019. Fifty-two
healthy male adults participated in phase 1 of a bepranemab
(UCB0107) intake trial, and all of them completed the study.
None of the adverse effects of the trial were serious, the most
common being a headache. UCB0107 became the next drug
candidate targeting the underlying cause of PSP and still remains
a subject of subsequent studies (UCB, 2019; ALZFORUM,
2020c).

AADvac1 is a form of an active vaccine, the production
of which was based on the specific fragment causing tau
oligomerization (Shoeibi et al., 2018). In vivo trials conducted
on a transgenic AD rat model showed the safety profile
of AADvac1 and its positive influence on clinical disease
symptoms (Kontsekova et al., 2014). Encouraging results of
animal-based studies led to human trials investigating AADvac1
efficacy in AD (US National Library of Medicine, 2013–2015,
2014–2017a, 2015–2019) and primary progressive aphasia (US
National Library of Medicine, 2017). Recently published results
of phase 2 of the AADvac1 in patients with mild Alzheimer’s
disease (ADAMANT) trial demonstrated that AADvac1 is safe
and effective. The production of specific antibodies suggests
the development of an accurate immune response (Axon
Neuroscience, 2019), providing evidence for potential AADvac1
efficacy. Finally, these specific antibodies were reported to form
peculiar complexes with tau aggregates in tau-affected human
neurons (ALZFORUM, 2020a).

Antibodies against the microtubule binding domain
(MTBD) may also be potentially useful in the treatment
of progressive supranuclear palsy. Recently published data
show the effectiveness of injections of such antibodies.
These results showed a high affinity for tau and responses
against tau aggregates in a mouse model (Croft et al., 2018).
Additionally, two other anti-tau antibodies, tilavonemab
(ABBV-8E12) (US National Library of Medicine, 2016–
2021) and gosuranemab (BIIB092), were shown to be

ineffective as PSP treatments (US National Library of
Medicine, 2017–2020). Nevertheless, one of them was also
suspected to have a therapeutic potential in other forms
of neurodegeneration (US National Library of Medicine,
2018–2019).

The BIIB092 investigation in progressive supranuclear palsy
(PASSPORT) was evaluated in a TauBasket trial, which
included patients with corticobasal degeneration, frontotemporal
dementia (FTLD), traumatic encephalopathy syndrome (TES),
symptomaticMAPT (sMAPT)mutation carriers, and progressive
nonfluent aphasia (ALZFORUM, 2019). One-hour intravenous
infusion every 4 weeks for a 20-week period was administered to
assess safety and tolerability, primarily measuring adverse events
caused by BIIB092 in comparison with placebo administration
(US National Library of Medicine, 2018–2019). The study
completion date was originally estimated to be December 19,
2019, but the trial was suspended earlier than scheduled because
the primary end point was not met (US National Library of
Medicine, 2017–2020; ALZFORUM, 2019).

Corticobasal Degeneration
Corticobasal degeneration is a form of atypical parkinsonism
histopathologically characterized by aggregates of tau protein
with four microtubule-binding repeats similar to those observed
in progressive supranuclear palsy (Reich and Grill, 2009;
Chahine et al., 2014). Because of a similar underlying
pathology, novel therapeutic approaches for both CBD and
PSP can be discussed together. Additionally, several other
clinical phenotypes related to CBD can be distinguished:
corticobasal syndrome (CBS), nonfluent/agrammatic variant of
a primary progressive aphasia (naPPA), frontal behavioral-
spatial syndrome (FBS), and progressive supranuclear palsy-
like syndrome (PSPS) (Armstrong et al., 2013). Clinically, the
diagnosis of CBD is now referred to CBS, which can be
a manifestation of pathologies beyond CBD, as it overlaps
with several forms of dementia of differing neuropathologies
(Armstrong et al., 2013). As a result of its diverse clinical
manifestations and a lack of biomarkers enabling early diagnosis,
it is estimated that only 25-56% of patients are diagnosed
correctly with CBS before death (Lee et al., 2011; Alster et al.,
2018, 2020; Svenningsson, 2019; Caixeta et al., 2020).

The causes of corticobasal degeneration are currently unclear.
The H1-haplotype of the MAPT gene expressed in CBD and PSP
is one of them (Houlden et al., 2001; Chahine et al., 2014). In
several CBS cases, a specific mutation (p.V363I) in the MAPT
gene has also been identified (Ahmed et al., 2019). The clinical
features of CBS, PSP, and frontotemporal dementia (FTD) are
included in the FTLD spectrum (Armstrong et al., 2013). It
is worth mentioning that FTLD more often manifests with
inclusions containing ubiquitin, not tau protein as seen in PSP.
Mutations in the progranulin gene (PGRN), already described
in FTLD, have also been discovered in patients with the familial
occurrence of CBS (Masellis et al., 2006). By affecting different
areas of the human brain, tau aggregation can manifest not only
by the presence of involuntary activities, such as myoclonus
and rigidity, but also as cognitive impairment (Chahine et al.,
2014). Asymmetry is a characteristic element of the physical
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examination for CBD, which is a helpful criterion for diagnosis
(Reich and Grill, 2009). Typical histopathological changes in CBS
manifest as a sparse composition of tiny filaments localized to the
cerebrum (Foltynie and Athauda, 2018). Therefore, it is preferred
to diagnose CBS based on its clinical features, and a definitive
CBD diagnosis should be reserved for postmortem histological
confirmation (Reich and Grill, 2009).

The prevalence of progressive supranuclear palsy, corticobasal
syndrome, and frontotemporal dementia is estimated to
be 10.8/100,000. Their incidence index does not diverge
remarkably from mortality (Coyle-Gilchrist et al., 2016).
Although studies comparing CBD occurrence between sexes have
been ambiguous, most have shown equal frequency (Dickson,
1999). Unfortunately, no specific treatment against CBD exists
[National Organization for Rare Disorders. (n.d.)]. Because of
the modest level of CBD incidence and non-specific symptoms,
only a small group of clinical trials have been conducted in CBD.
These trials include Fasudil (ROCK-inhibitor) (US National
Library of Medicine, 2021), TPI-287 (microtubule-stabilizing
molecule) (US National Library of Medicine, 2014–2020; Tsai
et al., 2020), and gosuranemab (anti-tau antibody) (US National
Library of Medicine, 2018–2019), mentioned in the PSP section.
Current CBD treatment is primarily based on relieving its
symptoms by pharmacotherapy (Caixeta et al., 2020). Potential
novel therapeutic approaches for PSP and CBS are summarized
in Table 1.

MULTIPLE SYSTEM ATROPHY

Multiple system atrophy is a fatal neurodegenerative disease
characterized by rapid progression and low life expectancy. Mean
survival rate is estimated to be 6–10 years (Monzio Compagnoni
and Di Fonzo, 2019). Until recently, multiple system atrophy
(MSA) was considered a sporadic disease, but some cases have
been observed among families, suggesting a potential genetic
predisposition (Gilman et al., 2008; Jellinger and Lantos, 2010;
Jellinger, 2018; Palma et al., 2018). MSA symptomatology
consists of classic parkinsonian motor symptoms accompanied
by dysautonomia and cerebellar ataxia. The onset of autonomic
symptoms occurs earlier in comparison with that of Parkinson’s
disease. Depending on the clinical manifestation, there are
two main subtypes distinguished: MSA-P and MSA-C. MSA-
P, which is diagnosed in 80% of all cases in Europe, is
characterized by predominantly parkinsonian motor symptoms.
In MSA-C, cerebellar symptoms such as gait ataxia, dysarthria,
oculomotor dysfunction, and intention tremor are predominant
(Jellinger, 2018). Rarely, the MSA-A subtype will present with
autonomic failure consisting of orthostatic hypotension, urinary
incontinence, erectile dysfunction, and constipation. According
to the current consensus criteria for the diagnosis of MSA,
a definite diagnosis can only be made through postmortem
examination of the brain showing α-synuclein cytoplasmic
inclusions in oligodendroglia cells and neurons (Gilman et al.,
2008). Based only on the clinical manifestation, a possible or
probable diagnosis can be made.

Multiple system atrophy, as one of the synucleinopathies, is
characterized by pathological accumulation and aggregation of
α-synuclein mainly in the cytoplasm of oligodendroglia cells
(Monzio Compagnoni and Di Fonzo, 2019). These so called
“glial cytoplasmic inclusions” (GCIs) consist mainly of aggregates
and some other proteins such as ubiquitin, tau protein, p62,
and heat shock protein (Jellinger and Lantos, 2010). α-Synuclein
is natively unfolded but is considered to aggregate and alter
because of oxidative stress, mutations, decrease in neurotrophic
factors, and inflammation (Monzio Compagnoni and Di Fonzo,
2019). Mitochondrial dysfunctions, especially mitochondrial-
based mutations, have also been shown to influence the
pathogenesis of neurodegenerative diseases (Schapira, 2008).
Thus, targeting those causes remains a reasonable approach for
developing novel therapies forMSA and other synucleinopathies.
Since the exact pathogenesis of MSA remains unclear, current
therapeutic approaches are again limited to controlling clinical
symptoms and improving quality of life.

α-Synuclein
α-Synuclein, a product of the alpha-synuclein (SNCA) gene
(Kisos et al., 2012; Watts et al., 2013; Djelloul et al., 2015; Burré
et al., 2018; Coon and Singer, 2020), is an aggregation-prone
protein that plays an important role in several synucleinopathies
(Surguchev and Surguchov, 2017). Since α-synuclein aggregates
in oligodendroglia, a hallmark of MSA, and the presence of
misfolded, pathological accumulation of this protein are a main
culprit for developing MSA symptoms, α-synuclein is a primary
target for potential MSA therapies. Natively, α-synuclein is
present as a soluble, unfolded protein. α-Synuclein aggregation
leads to both suppression of neurotrophic factors secretion
and neuronal loss, especially in the olivopontocerebellar and
nigrostriatal regions (Jellinger, 2018). Although its exact
function remains unclear, α-synuclein appears to play a role in
neurotransmitter release and synaptic plasticity. Physiologically,
α-synuclein is produced in neurons and is located in presynaptic
neuronal terminals (Watts et al., 2013). Although it is produced
by neurons, the mechanism of transfer of α-synuclein to
oligodendroglia cells remains undefined. There is a hypothesis
confirmed by preclinical trials showing cell-to-cell transmission
from neurons to oligodendrocytes through synapses, but the
exact origin of GCIs is still unclear (Kisos et al., 2012; Watts et al.,
2013; Burré, 2015; Djelloul et al., 2015; Brundin et al., 2017; Burré
et al., 2018; Coon and Singer, 2020).

Neutralizing α-Synuclein Aggregation
Studies with an MSA mouse model showed Anle 138b, an
oral general inhibitor of protein aggregation, to be successful
in reducing oligomeric α-synuclein concentration and glial
cytoplasmic inclusions. This leads to improvement of motor
function in Anle 138b-treated mice compared with controls
(Wagner et al., 2013; Heras-Garvin et al., 2019). This appears
to be a promising approach to suppress MSA and other
neurodegenerative diseases progress. Thus, a phase 1 clinical trial
assessing the safety and tolerance of oral administration of Anle
138ba among patients with Parkinson’s disease has been initiated
recently (US National Library of Medicine, 2020e).
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TABLE 1 | Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS): Summary of emerging novel therapies.

Type of action Drug Phase Status Outcome/end points References

Inflammation

modulation

5-lipooxygenase (5-LO) Pre-Clin Completed Overexpression of 5-LO gene showed

enhanced amyloid-β (Aβ) aggregation

Boxer et al., 2017

5-lipooxygenase (5-LO) Pre-Clin Completed 5-LO block led to decreased tau levels and

memory improvement

US National

Library of

Medicine, 2016

Benfotiamine (BFT) Pre-Clin Completed BFT reduced the level of MAPT and amyloid

plaques

Färber and

Kettenmann, 2005

Benfotiamine (BFT) Pre-Clin Completed BFT reduced the level of glycated tau and

improved mice behavior

Maphis et al.,

2015

Benfotiamine (BFT) Pre-Clin Completed BFT considered as a anti-inflammatory and

neuroprotective factor

Chu et al., 2012

Tolfenamic acid (TA) Pre-Clin Completed TA reduces the total tau-distribution

in mice central nervous systems

Marras et al., 2018

Tolfenamic acid (TA) IIa Not yet

recruiting

Safety and tolerance of tolfenamic acid in

individuals with PSP; CSF evaluation

Tapias et al., 2018

Modulation of

oxidative stress

PERK activation Pre-Clin Completed Reduction of 4R-tau level and tau

phosphorylation

Chirichigno et al.,

2002

PERK activation Pre-Clin Completed Improvement of motor and cognitive functions,

decreased tau phosphorylation

Chirichigno et al.,

2002

SLC25A38/Appoptosin

regulation

Pre-Clin Completed Increased level of Appoptosin is connected with

tau clevage and motor functions impairment

Zhao et al., 2015

Coenzyme Q10 II Completed Gentle improvement of PSP symptoms

measured by PSPRS and FAB

Stamelou et al.,

2008

Coenzyme Q10 Clinical Completed Primary outcome measures: efficacy of

Coenzyme Q10 UPDRS and PSPRS; no

significant results

Apetauerova et al.,

2016

Creatine, pyruvate,

niacinamide

Clinical Completed Primary outcome measures: clinical features of

PSP, including motor function,

neuropsychological function, and blood

chemistry; results were not published

US National

Library of

Medicine, 2019c

α-lipoic acid and

L-acetyl carnitine

Pre-Clin Completed α-lipoic acid and L-acetyl carnitine have a

neuroprotective effect

DeVos et al., 2017

α-lipoic acid and

L-acetyl carnitine

II Completed Primary outcome measures: incidence and

severity of adverse events: the most common

adverse effects were: restlessness, seizures,

insomnia and dizziness

DeVos et al., 2017

-lipoic acid and

L-acetyl carnitine

Pre-Clin Completed ALCAR led to induction of mitochondrial

restoration and was convinced to present

anti-oxidative properties

DeVos et al., 2013

NBMI - N,N’-bis

(2-mercaptoethyl)

isophthalamide

IIa Recruiting Primary goal is to evaluate NMBI influence on

motor, non-motor syndromes and check the

QoL index in PSP and MSA patients

MacDonald et al.,

2009

RNA modulation ASO Pre-Clin Completed ASO reduced tau mRNA and protein in the

brain, spinal cord, and CSF

Ferrer et al., 2001

ASO Pre-Clin Completed ASO reduced the severity of seizures observed

in these models

Iqbal et al., 2008

ASO I Recruiting Primary outcome measures: number of adverse

effects, change in severity scores for C-SSRS

and levels of infection indicators in CSF

Bruch et al., 2015

siRNA In vitro Completed siRNA leads to GSK3α and GSK3β

inhibition

Yuan et al., 2018

Kinases and

enzymes

modulation

ROCK inhibition II Recruiting Primary outcome measures: number of

adverse effects assessed in psychical

examination, imaging and laboratory tests

Bruch et al., 2017

Pin1 inhibition Pre-Clin Completed Inhibition of cis-trans cover; antibodies used

against cis-form prevented from tauopathy

development

Riento and Ridley,

2003

CDK5/BAG3/Hsp70

path targeting

In

vitro/Pre-Clin

Completed BAG3 loss resulted in loss of memory functions

and disruption of neuronal homeostasis

Silva and

Haggarty, 2020

(Continued)
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TABLE 1 | Continued

Type of action Drug Phase Status Outcome/end points References

O-GlcNAcase inhibitor Pre-Clin Completed O-GlcNAc modification decreases tau

aggregation and leads to decreased level of

neuronal loss

Wells et al., 2002

ASN120290

(O-GlcNAcase

inhibition)

I Completed Drug remained safe and well-tolerated Yuzwa et al., 2012

ASN120290

(O-GlcNAcase

inhibition)

I Recruiting? Main goal of trial is to calculate OGlcNAcase

enzyme occupancy by ASN120290 in CSF

Chen et al., 2018

MK-8719 Pre-Clin Completed Reduction of tau aggregates and diminishment

of forebrain atrophy

Hastings et al.,

2017

MK-8719 I Completed Drug was well-tolerated and its level was

proportional with the dose

ALZFORUM. (n.d.)

GSK-3β hemi-knockout Pre-Clin Completed Decrease of GSK-3β leads to inhibition of tau

phosphorylation and aggregation

Ferrer et al., 2002

Tideglusib (NP031112,

NP12)

Clinical Completed Tideglusib was acclaimed as safe, although

trial showed also no significant changes

between drug intake or placebo both in primary

and secondary outcomes

Serenó et al.,

2009; Amaral

et al., 2021

AZP2006 II Recruiting Primary outcome measures: tolerability, safety,

pharmacokinetics and effect of AZP2006; it

also includes CSF markers evaluation

Mendsaikhan

et al., 2019

Methylene blue,

TRx0014

Pre-Clin Completed MB reduced tau pathology and inflammation, it

also showed improvement in mice behavior

van Dyck et al.,

2019

Methylene blue,

TRx0014

II Completed Benefit was seen on the ADAS-cog scale in

both mild and moderate subjects

van Dyck et al.,

2019

Enhancement of

abnormal proteins

removal

Nilotinib (AMN107) Pre-Clin Completed Treatment led to decreased level of tau

aggregates and improvement in motor

symptoms

National Cancer

Institute, 2020

Rolipram (PDEs

inhibitor)

In

vitro/PreClin

Completed Rolipram is suspected to decrease level of

inflammation in CNS, although it has different

biological effects

Lokireddy et al.,

2015

Sildenafil (PDE-5

inhibitor)

I Completed Enhanced ability to focus attention and select

relevant target stimuli in the sildenafil condition;

further studies are being required

García-Osta et al.,

2012

Microtubules

stabilization

TPI-287 I Completed Trial showed decreased chitinase-3-like

protein-1 (YKL-40) levels in the 4RT arm, what

presumably evidenced reduction of

inflammation due to TPI-287 administration

Schultheiss et al.,

2001; Zhu et al.,

2001

Epothilone D

(BMS-241027)

PreClin Completed Drug reduces the amount of cerebral

pathologic tau and also inhibits axonal

destruction, concomitantly contributing to the

axonal transport improvement

Zheng et al., 2009

Dictyostatin Pre-Clin Completed Low doses infusion showed decrease of

hippocampal CA3-neurons atrophy and

lowered the level of mature-tau markers

Zheng et al., 2009

Stem cells

administration

hASCs Pre-Clin Completed hASCs significantly decrease the level of

inflammation and indicates synaptic and

dendritic stabilization

Lin et al., 2013

BMSCs II Completed Almost all treated patients were alive after one

year cell infusion, the motor function rating

scales remained stable for at least six-months

Chao et al., 2006;

Giordano et al.,

2014

AdMSCs Human study

performed on

one patient in

South Korea

using MSCs

obtained from

adipose

tissue

Completed No serious adverse effects, significant

reduction in PSPRS, strength and speed of

activities performed with upper limbs have also

improved

Schneider and

Mandelkow, 2008

(Continued)
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TABLE 1 | Continued

Type of action Drug Phase Status Outcome/end points References

BMSCs Clinical Recruiting Primary outcome measures: Activities of Daily

Living (ADL)

Höglinger et al.,

2017

Specific antibodies ACI-35 vaccine Pre-Clin Completed Sudden expression of specific tau-antibodies,

general improvement of motor impairment

compared to the placebo group

Edemekong et al.,

2020

ACI-35.030 vaccine Clinical Last stage of

trial,

evaluating

effect of the

highest

vaccine dose

is planned to

be finished in

2023

Significant change in IgG-antibodies titers and

did not cause adverse effects

Clavaguera et al.,

2009

Armanezumab Pre-Clin Completed Decreased level of tau scattering, aggregation

and toxicity with simultaneously high specificity

Canesi et al., 2016

AV-1980D Pre-Clin Completed Strong humoral reaction resulting in antibodies

production

Theunis et al.,

2013

AV-1959R and

AV-1980R

Pre-Clin Completed High affinity of antibodies and significant

reduction of tau aggregates

US National

Library of

Medicine, 2020f

Bepranemab

(UCB0107)

I Completed All participants had completed the study, there

were no serious adverse effects

ALZFORUM, 2021

AADvac1 Pre-Clin Completed Proved AADvac1 safety profile and exhibited its

positive influence on clinical disease symptoms

AC Immune, 2021

AADvac1 II Completed AADvac1 is safe and presents accurate

immunogenicity

UCB, 2019

Antibodies against

microtubule binding

domain (MTBD)

Pre-Clin Completed All of the new tau antibodies detected human

tau in whole brain lysates from PS19 mice

US National

Library of

Medicine,

2014–2017a

BIIB092 (gosuranemab) I Terminated Primary outcome measures: incidence of

Treatment-Emergent Adverse Events

Axon

Neuroscience,

2019

Themammalian target of rapamycin kinase signaling pathway
is widely known for its role in controlling cell metabolism and
stimulating cell proliferation. It is also a suppressor of catabolic
pathways and a promotor of anabolic ones, such as protein and
lipid synthesis (Kim and Guan, 2015). It has been shown in
preclinical trials that rapamycin, an mTOR inhibitor, increases
autophagy and, therefore, removal of abnormal proteins, such
as α-synuclein, inhibiting its accumulation (Lopez-Cuina et al.,
2018; Gao et al., 2019). Oral sirolimus, an mTOR inhibitor,
has been examined as a possible treatment to inhibit the
neurodegenerative process in MSA. Recently, a new randomized
placebo-controlled 2 phase trial assessing the efficacy of oral
sirolimus in suppressing MSA progression began (US National
Library of Medicine, 2018); however, the study was terminated
because of early evidence of sirolimus futility. Further research
considering modulation of the mTOR kinase signaling pathway
as a possible approach in APS treatment is required.

The administration of epigallocatechin gallate (EGCG),
a polyphenol found in green tea, was also evaluated as a
possible anti-aggregation approach. Preclinical trials with
mouse models showed that EGCG inhibited α-synuclein

aggregation and reduced its toxicity. Unfortunately,
the phase 3 clinical placebo-controlled trial showed
no improvement in disease progression (Levin et al.,
2019).

Several studies have shown that impairment of the ubiquitin-
proteasome system (UPS) contributes to the pathogenesis
of synucleinopathies such as Parkinson’s disease or multiple
system atrophy (Tanji et al., 2013). Dysfunction of this
protein degradation pathway leads to abnormal aggregation and
accumulation of α-synuclein in oligodendroglia and formation
of GCIs (Tanji et al., 2013). Studies on mice showed that systemic
proteasome suppression (PSI) resulted in increased cytoplasmic
accumulation of α-synuclein and reducedmotor function inmice
with MSA compared with wild-type mice. Neuronal loss in the
nigrostriatal and olivopontocerebellar regions of the brain, areas
typically associated with MSA neurodegeneration, also occurred
in transgenic mice after PSI (Stefanova et al., 2012b). These data
suggest that enhancing proteasome activity in patients with MSA
could act as a possible disease-modifying treatment. α-Synuclein
was shown to integrate with neuron-specific microtubule-
β-III tubulin in transgenic mice models, resulting in the
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formation of insoluble complexes that aggregated in neurons
(Nakayama et al., 2009). Furthermore, the same study revealed
that microtubule depolymerizing treatment, which decreased
α-synuclein and β-III tubulin binding, inhibited α-synuclein
accumulation (Nakayama et al., 2009). Thus, microtubule
formation-targeting treatment may be another pathway for
addressing neurodegeneration in MSA.

Immunization
Active immunization, to induce a long-lasting antibody response,
may reduce α-synuclein aggregation. Antibodies are believed
to increase alpha-synuclein destruction and, therefore, inhibit
its aggregation in oligodendrocytes. PD01 and PD03 peptide
vaccines consist of short amino acid sequences that are
complementary to a segment of α-synuclein. The short peptides
are bound to the carrier protein recognized by T-helper cells
and help to develop a long-lasting immune response. Studies
conducted on transgenic mice have shown that administration
of PD01 vaccine, which mimics the C-terminal peptide of
α-synuclein, induced a specific immune response against α-
synuclein through production of antibodies. This response
reduced α-synuclein accumulation in glial cells and decreased
demyelination in both the neocortex and striatum. Improved
motor skills were also observed in PD01-treated mice (Mandler
et al., 2015). Recently, a phase 1 randomized placebo-controlled
clinical trial has been completed to assess the safety, tolerance,
and immunogenicity of subcutaneous injections of PD01 and
PD03 in patients with early MSA. The results of the trial showed
the vaccines to be safe and well-tolerated, as well as highly
immunogenic, since the treatment with either peptide resulted in
considerable IgG antibody production against PD01 and PD03
(US National Library of Medicine, 2014–2017b; Meissner et al.,
2020). Although the outcomes appear promising, further studies
in this area are needed.

Another possible strategy is passive immunization with
specific α-synuclein-targeting antibodies. Preclinical trials
showed that injections of anti-α-synuclein antibody in transgenic
mice resulted in a decrease in α-synuclein accumulation in spinal
cord and hippocampus and lowered GCI concentration in
oligodendroglia (Kallab et al., 2018).

Addressing Neuronal Loss
Stem Cell Therapy
Recently, another potential therapeutic pathway for addressing
neuronal loss has been developed using autologous mesenchymal
stem cells (MSCs) in multiple system atrophy and other
parkinsonian syndromes therapy (Shin and Lee, 2020). MSCs
derived from human bone marrow and other tissues have the
capability to differentiate into various types of cells such as
osteoblasts, chondrocytes, fibroblasts, or neurons. MSCs secrete
some neuroprotective factors, immunomodulating cytokines,
and neurotrophic agents that exert an anti-inflammatory
effect, suppress fibrosis and apoptosis, and promote cell
differentiation and proliferation. In this way, MSCs act as tissue
microenvironment modulators (Caplan and Dennis, 2006). Non-
clinical trials with MSA mouse models confirmed that MSCs
prevent neuronal loss in striatum and nigrostriatal pathway

through the expression of neuroprotective cell survival factors.
MSCs are also able to suppress microglia activation and the
inflammatory process (Park et al., 2011; Stemberger et al., 2011).
A randomized placebo-controlled trial on patients with MSA-
C revealed that intravenous/intraarterial MSC administration
resulted in slowed disease progression compared with placebo
as shown by Unified MSA Rating Scale (UMSARS) scores (Lee
et al., 2012). A recently completed phase 1 clinical trial showed
that a single intraarterial administration of MSCs in patients
with MSA-C was safe and generally well-tolerated (Chung et al.,
2020). Currently, ongoing studies aim to collect long-term
follow-up data regarding the efficacy and adverse effects of MSC
treatments on the patients who took part in the phase 1 trial
(US National Library of Medicine, 2020d). Another possible way
of administrating MSCs has been recently assessed in a phase
1/2 placebo-controlled clinical trial. Intrathecal administration of
adipose-obtained MSC did not cause any serious adverse effects
and was also proven to be safe. Disease progression, assessed with
UMSARS scores, was slower among patients who received MSC
treatment (Singer et al., 2019). All of the above-mentioned trials
indicate that mesenchymal autologous cells could be used in the
treatment of MSA and are, thus, worth investigating further.

Insulin Resistance Targeting
Studies on mouse models and patients with multiple system
atrophy showed insulin resistance in oligodendrocytes and
neurons of the putamen and impairment of insulin/IGF-
1 signaling. These changes may affect the functioning of
oligodendrocytes and result in neurodegeneration in the
putamen (Bassil et al., 2017). Insulin has been shown to have
neuroprotective and neurotrophic effects on neurons (Shemesh
et al., 2012). Recently, a double-blind placebo-controlled study
assessing the effect of intranasal insulin injection on motor
and cognitive skills of patients with PD and MSA has been
completed. The results showed that patients who received insulin
performed better in cognitive and motor assessments compared
with the placebo group (Novak et al., 2019). Nevertheless,
further investigation is crucial to assess the safety of intranasal
insulin administration and to confirm its positive effects as a
potential treatment. Recently, glucagon-like peptides have also
been examined as a possible treatment in synucleinopathies
(Foltynie and Athauda, 2018). Preclinical studies showed that
injection of Exendin-4, a glucagon-like peptide 1 analog, lowered
insulin resistance and suppressed neuronal loss in the putamen.
This treatment also resulted in a decrease in monomeric α-
synuclein level in the striatum (Bassil et al., 2017). Currently,
phase 2 of the trial is ongoing, which is assessing the efficacy of a
weekly GLP-1 analog injection for 48 weeks in patients with early
stage MSA (US National Library of Medicine, 2020b).

Neuroprotection
Increasing Neurotrophic Factor Level
Decreased levels of neurotrophic factors such as glial derived
neurotrophic factor (GDNF), brain derived neurotrophic factor
(BDNF), and insulin-like growth factor 1 (IGF1) have been
identified in human brains with multiple system atrophy
and in mouse models (Ubhi et al., 2010). These are likely
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TABLE 2 | Multiple system atrophy (MSA): Summary of emerging novel therapies.

Type of action Drug Phase Status Outcome/end points References

Inhibition of a-

synuclein

aggregation

Anle 138b Pre-Clin Completed PLP-hαSyn mice show motor improvement,

preservation of dopaminergic neurons,

decreased microglial activation

Houlden et al.,

2001; Ahmed

et al., 2019

Anle 138b I Active

Sirolimus (oral) II Terminated Difference in UMSARS score between placebo

and treated group

Dickson, 1999

EGCG III Completed No improvement in the progression of the

disease

Gilman et al., 2008

Microtubule

depolymerizing agent

(Nocodazol)

Pre-Clin Completed Suppression of α-synuclein accumulation in

mice models

Schapira, 2008

Immunization PD01 Pre-Clin Completed Prevention of demyelination in neocortex and

striatum, production of specific antibodies,

motor improvement in transgenic mice

Surguchev and

Surguchov, 2017

PD01; PD03 I Completed Significant sustained antibody IgG response

against PDO1 and PD03, therapy safe and

well-tolerable

Watts et al., 2013;

Coon and Singer,

2020

anti-α-synuclein

antibody

Pre-Clin Completed Suppression of α-synuclein intracellular

accumulation in spinal cord and hippocampus,

lowered GCIs concentration in oligodendroglia

Djelloul et al., 2015

Stem cell therapies hMSC injection Pre-Clin Completed Prevention of neuronal loss in striatum, motor

improvement in hMSC treated mice

Burré, 2015;

Brundin et al.,

2017

hMSC

intraarterial/intravenous

administration

II Completed Suppression of disease progression assessed

by UMSARS score

Wagner et al.,

2013

autologous hMSC

intravenous

administration

I Completed Proved to be safe and well-tolerated Heras-Garvin

et al., 2019

autologous hMSC

intravenous

administration

Phase I follow

up

Active Aims to conduct long term follow up of the

patients who took part in phase I

US National

Library of

Medicine, 2020e

intrathecal

administration of hMSC

I/II Completed Proved to be safe and well-tolerated,

suppression of disease progression assessed

with UMSARS score

Kim and Guan,

2015

Addressing insulin

resistance

Intranasal insulin II Completed Improved cognitive and motor performance in

treated patients

US National

Library of

Medicine, 2018

Exendin-4

subcutanous

administration

Pre-Clin Completed Lowered insulin resistance and decreased

monomeric α-synuclein level in striatum

Lopez-Cuina et al.,

2018

GLP-1 analog II Active Change in UMSARS score between placebo

and treated group, assessment of safety and

tolerability

Tanji et al., 2013

Increasing

neurotrophic

factor levels

GDNF infusion Pre-Clin Completed Attenuation of motor deficits, alleviation of

neuropathological process

Stefanova et al.,

2012b

Fluoxetine Pre-Clin Completed Improvement of motor skills in transgenic mice

and decreased neurodegeneration in neocortex

and hippocampus

Mandler et al.,

2015

GDNF gene infusion

into putamen

I Active Change in UMSARS score between placebo

and treated group, incidence of treatment

adverse effects and serious adverse effects,

change in quality of life

Meissner et al.,

2020

FTY720-Mitoxy Pre-Clin Completed Motor skills and sweat function improvement,

lowered α-synuclein aggregation in spinal cord

US National

Library of

Medicine,

2014–2017b

(Continued)
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TABLE 2 | Continued

Type of action Drug Phase Status Outcome/end points References

Fighting oxidative

stress

(mitochondrial

dysfunction)

inosine

5′-monophosphate

II Completed Improvement in cognitive function assessed

with MoCA and MMSE in comparison with

placebo group

Caplan and

Dennis, 2006

Reducing

neuroinflammation

MPO inhibitor Pre-Clin Improvement of motor skills in transgenic mice

model concomitant with reduction of

neuroinflammation and activation of microglia in

striatum

Stemberger et al.,

2011

Verdiperstat III Change in UMSARS score between placebo

and treated group, change in quality of life,

assessment of safety and tolerability

Lee et al., 2012

due to dysfunction of oligodendroglia cells and subsequent
downregulation of neurotrophic factor production due to α-
synuclein accumulation. Thus, the administration of these
neurotrophic factors is a possible treatment strategy for
neurodegenerative diseases (Allen et al., 2013). Studies on mice
have shown that GDNF infusion alleviated the neuropathological
process and improved MSA-like motor dysfunction (Ubhi et al.,
2010). Also, fluoxetine administration, which elevated GDNF
and BDNF levels in the transgenic mouse brain, improved
motor skills (Ubhi et al., 2012). An ongoing phase 1 trial is
currently investigating the clinical effects and safety of infusing
the GDNF-gene directly into the putamen of patients with MSA
(US National Library of Medicine, 2020c).

Studies on transgenic mice have recently shown that
FTY720-Mitox, a derivative of the FTY72 drug approved
for multiple sclerosis, increased oligodendroglia GDNF
mRNA and protein. FTY720-Mitox acted by suppressing the
downregulation of GDNF expression, which is seen in MSA
brain. Simultaneously, FTY720-Mitox administration resulted in
lowered α-synuclein aggregation in the spinal cord and reduced
microglial activation in the cerebellum. These effects coincided
with improved motor skills and sweat function, an indicator
of dysautonomia. Furthermore, FTY720-Mitox also acted as
mitochondria protector, which is extremely promising, taking
into consideration the possible role of mitochondrial dysfunction
in MSA pathogenesis (Vidal-Martinez et al., 2020).

Focus on Mitochondrial Dysfunction
Oxidative stress due to mitochondrial impairment plays a
significant role in the pathogenesis of progressive supranuclear
palsy. In vitro and in vivo studies showed that a high
level of reactive oxygen species (ROS) and reactive nitrogen
species (RNS) arise because of reduced cell antioxidative acting
capacity, accelerated by α-synuclein aggregation (Scudamore and
Ciossek, 2018). Uric acid (UA) has been shown to have strong
antioxidative properties and reduce serum ROS/RNS levels.
Patients with MSA have been observed to have a decreased UA
serum level, which correlates with motor dysfunction (Sakuta
et al., 2016). Recently, a phase 2 study with the UA prodrug
inosine 5′-monophosphate has been completed. The study
showed good tolerance and safety of this treatment. Inosine 5′-
monophosphate administration resulted in a significant elevation
of serum UA levels. In parallel, participants who received

the treatment tended to perform better on cognitive function
examinations, as shown by the mini-mental state examination
(MMSE) and Montreal Cognitive Assessment (MoCA) scores
when compared with the placebo group (Jung Lee et al., 2020).
Nevertheless, further investigation is needed to assess the long-
term efficacy of this treatment.

Neuroinflammation
Myeloperoxidase is an enzyme that acts in neutrophiles,
eosinophiles, and monocytes. It is involved in the production
of reactive nitrogen and oxygen species and is a mediator
of inflammatory processes in many diseases (Aratani, 2018).
Studies on MSA human brains and MSA mouse models
confirm a high myeloperoxidase (MPO) expression in
brain areas of neurodegeneration. MPO inhibition reduces
neuroinflammation, decreases activation of microglia in
striatum, and improves motor skills in MSA animal models
(Stefanova et al., 2012a). These promising discoveries have
resulted in a growing attention on downregulating the MPO
expression as a possible treatment target. Currently, an ongoing
phase 3 placebo-controlled clinical trial is aiming to assess the
efficacy of BHV-3241 (verdiperstat) administration in patients
with MSA as measured by changes in the UMSARS score (US
National Library ofMedicine, 2019b). Potential novel therapeutic
approaches for MSA are summarized in Table 2.

DISCUSSION AND CONCLUSIONS

Progressive supranuclear palsy, multiple system atrophy, and
corticobasal degeneration, classified as atypical parkinsonian
diseases, have only been treated symptomatically so far.
Considering all of the recently published information about
potential causes and clinical trials targeting candidates involved
in disease development, one can hope that treatments addressing
both disease symptoms and progression will lead to novel
therapeutics and potential cures in the near future.
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