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ABSTRACT: Carbocation catalysis is emerging as an important subarea of Lewis acid catalysis. Some stable and isolable
carbocations have been successfully utilized as Lewis acid catalysts and promoters in many synthetic transformations. In this
manuscript, we report a tropylium cation-promoted vinylogous aza-Michael addition of carbamates to para-quinone methides
(QMs) to access a wide range of unsymmetrical α,α′-diarylmethyl carbamates. This mild protocol was effective for the vinylogous
conjugate addition of (−)-menthyl carbamate to p-QMs, and the respective diastereomerically pure α,α′-diarylmethyl carbamate
derivatives could be obtained in excellent yields and diastereoselectivities (up to >20:1 de).
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■ INTRODUCTION

Although stable carbocations such as tritylium and tropylium
cations have been known for more than a century, their
synthetic applications, especially in organic transformations,
have been uncovered only recently. Particularly, the tritylium
carbocation has been successfully employed as a Lewis acid
promoter or catalyst in numerous fundamental organic
transformations.1,2 The unique Lewis acidic character of the
tritylium carbocation originates from the low-lying vacant pc
orbital, which can activate the electrophile (typically carbonyl
group) by accepting electrons and tune the electrophile toward
nucleophilic attack.3 However, although the tropylium
carbocation was first isolated in 1891,4 the utility of this
cation as a reagent or a mediator or catalyst in synthetic
organic chemistry has only been realized over the last couple of
decades.5 For example, Lambert and co-workers demonstrated
the utility of the tropylium cation as a mediator in the α-
cyanation of amines with KCN.6 Later, Nguyen’s group
demonstrated the catalytic utility of the tropylium cation
(mostly as a Lewis acid) in several synthetic methodologies,
such as acetalization and trans-acetalization reactions,7 carbon-
yl−olefin metathesis reactions,8 retro-Claisen-type reactions,9

O−H insertion reactions of carboxylic acids with diazo
compounds,10 etc.11−16 In this manuscript, we intend to

demonstrate the catalytic utility of tropylium salts in the
vinylogous aza-Michael reactions of para-quinone methides (p-
QMs)17−20 to access unsymmetrical α,α′-diarylmethyl amine
derivatives. These compounds have been well-recognized in
the area of medicinal chemistry, and many α,α′-diarylmethyl
amine-based drugs have been already commercialized (Figure
1).21,22 Numerous synthetic methods have been established to
access α,α′-diarylmethyl amine or carbamate derivatives,23

including the arylation of imines,24−29 the amination of
diarylmethanols,30−37 benzylic C−H amination via cross-
dehydrogenative coupling,38,39 the Lossen rearrangement of
hydroxamic acids,40,41 the reduction and transfer hydro-
genation of imines,42−50 the direct reductive amination of
ketones,51−55 the aryl migration of azides,56 desulfonylative
amination,57 etc. A few other protocols have also been
reported for the preparation of diarylmethyl amines from p-
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QMs through the base- or Lewis acid-mediated or catalyzed
vinylogous conjugate addition of amines and amides.58−61

Recently, our research group has explored the inimitable
reactivity of p-QMs to access unsymmetrical diaryl- and
triarylmethane derivatives, carbocycles, and heterocycles.62−67

While working in this area,20 we realized that the concept of
“carbocation catalysis” has not yet been utilized in vinylogous
conjugate addition reactions of p-QMs, although this concept
has been well explored in the activation of simple
aldehydes.7−16 Therefore, we decided to employ a tropylium
salt as a catalyst or promoter for the vinylogous aza-Michael
addition of carbamates to p-QMs to obtain α,α′-diarylmethyl
carbamate derivatives. We envisioned that the tropylium salt
could activate the p-QM, thereby making it more susceptible
for nucleophilic attack with the carbamate. In fact, when we
started this work, our objective was to prepare a diastereomeri-
cally pure α,α′-diarylmethyl carbamate through an auxiliary-
controlled diastereoselective addition of chiral carbamates to p-
QMs. However, before developing the diastereoselective
version, we decided to develop this methodology with simple
alkyl carbamates to portray the generality and scope of this
transformation.

■ RESULTS AND DISCUSSION
To find the optimal conditions, many experiments were
performed under various conditions using a p-QM 1a, tert-
butyl carbamate (2a), and tropylium tetrafluoroborate (as a
catalyst), and the outcomes are depicted in Table 1. The very
first experiment itself using 2.5 mol % tropylium tetrafluor-
oborate in MeCN worked efficiently, and the expected α,α′-
diarylmethyl carbamate 3a was isolated in a 90% yield (entry
1). The reaction was also performed in other solvents such as
THF and Et2O. However, in the case of THF, the reaction did
not reach completion even after 48 h although the product 3a
was formed in a good yield (entry 2). Unfortunately, in the
case of the reaction in Et2O, no product formation was
observed even after 24 h (entry 3). Other solvents such as
toluene and CH2Cl2 were also found to be appropriate as in
those cases 3a was isolated in 75 and 90% yields, respectively
(entries 4 and 5, respectively). The yield of the product was
enhanced considerably (to 96%) when the concentration of
the catalyst was increased to 5 mol % (entry 6). The product

3a was obtained in a 94% yield in an hour when tropylium
perchlorate was used instead of tropylium tetrafluoroborate
(entry 7). To compare the catalytic efficiency of tropylium
with those of other Lewis acids in this transformation, a few
additional experiments were carried out using metal triflates
(entries 8−13). However, in all those cases the yield of 3a was
much lower when compared to that in the tropylium salt-
catalyzed reaction. In contrast to other metal catalysts, the
boron-based Lewis acid B(C6F5)3 was found effectively
catalyze this transformation (entry 14). However, in this
case, the reaction took a very long time to reach completion.

Figure 1. Some of the α,α′-diarylmethyl amine- or carbamate-based drugs.

Table 1. Catalyst Screening and Optimization Studya

entry catalyst
catalyst
(mol %) solvent

time
(h)

yield
(%)b

1 Trop+BF4
− 2.5 MeCN 1.0 90

2 Trop+BF4
− 2.5 THF 48 85

3 Trop+BF4
− 2.5 Et2O 24 0

4 Trop+BF4
− 2.5 PhMe 48 75

5 Trop+BF4
− 2.5 CH2Cl2 1.0 90

6 Trop+BF4
− 5.0 CH2Cl2 1.0 96

7 Trop+ClO4
− 5.0 CH2Cl2 1 94

8c Bi(OTf)3 5.0 CH2Cl2 5 84
9c Ce(OTf)3 5.0 CH2Cl2 15 82
10 AgOTf 5.0 CH2Cl2 12 70
11 Cu(OTf)2 5.0 CH2Cl2 12 70
12 Sc(OTf)3 5.0 CH2Cl2 24 42
13 Yb(OTf)3 5.0 CH2Cl2 24 24
14 B(C6F5)3 5.0 CH2Cl2 20 96
15 Ph3C

+BF4
− 5.0 CH2Cl2 1 94

16 -- -- CH2Cl2 24 0
17 Et4N

+BF4
− 5.0 CH3CN 24 25

aAll reactions were performed using 1a (0.170 mmol) and 2a (0.204
mmol) in 1.5 mL of solvent. bIsolated yields. cTime (min).
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Interestingly, the much-explored organic Lewis acid tritylium
tetrafluoroborate was equally effective for this reaction (when
compared to the tropylium catalyst), as 3a was obtained in a
94% yield within an hour (entry 15). There was no reaction
without the catalyst, which means a catalyst is required to drive
this reaction (entry 16). In addition, since BF4 ̅ is the
counteranion in the tropylium salt that was used in the
optimization studies, an additional experiment was carried out
with 5 mol % of Et4NBF4 (entry 17). In that case, the product
was obtained in only a 25% yield after 24 h.
Since “tropylium catalysis” has not been explored much in

Lewis acid-catalyzed transformations, we utilized tropylium salt
as a catalyst for substrate scope studies. The optimized reaction
conditions (entry 6, Table 1) were employed to investigate the

substrate scope and limitations using various p-QMs and
carbamates, and the results are shown in Chart 1. The
reactions of t-butyl carbamate with p-QMs (1b−h) worked
really well, and the corresponding α,α′-diarylmethyl carba-
mates 3b−h were produced in 88−97% yields. Other
precursors (1i−k), which were substituted with halo-
substituted arenes, also gave the desired products 3i−k in
78−95% yields. In the cases of p-QMs 1l and 1m, where the p-
QM was substituted with electron-poor arenes, the desired
products 3l and 3m were isolated in 67% and 88% yields,
respectively. Other p-QMs (1n−q), which were derived from
aromatic aldehydes substituted or fused with aryl or alicyclic
rings, underwent a smooth reaction with t-butyl carbamate to
give the respective compounds 3n−q in >90% yields. The

Chart 1. Substrate Scope with Various p-QMs and Carbamatesa

aAll reactions were done on a 50 mg scale of 1b−s in 1.5 mL of CH2Cl2. Yields correspond to isolated yields.
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α,α′-diarylmethyl carbamates 3r and 3s were isolated in 77%
and 70% yields when we used ferrocene- and thiophene-based
p-QMs 1r and 1s, respectively. Other carbamates such as
isopropyl and ethyl carbamates provided the respective
products 3t and 3u in 91% and 92% yields, respectively,
within half an hour under optimal conditions.
As mentioned earlier, our objective was to synthesize

diastereomerically pure α,α′-diarylmethyl carbamates, which
can be elaborated to some useful optically pure drug
molecules. Since (−)-menthyl carbamate was easily accessible,
we decided to evaluate the vinylogous aza-Michael addition of
(−)-menthyl carbamate to p-QMs. Chart 2 shows the
summary of the reaction between (−)-menthyl carbamate
and various p-QMs under optimized conditions. It is evident
from Chart 2 that most of the p-QMs reacted with
(−)-menthyl carbamate (2d) in the presence of 5 mol %
tropylium tetrafluoroborate in CH2Cl2. In the case of the 3-
nitro-phenyl-substituted p-QM (1l), a diastereomeric mixture
(5:1 dr) of 6a was obtained in a 72% yield. Fortunately, we
were able to separate the diastereomers by column
chromatography and crystallize the major isomer of 6a. The
structure of the major isomer of 6a was confirmed by single-
crystal X-ray analysis (CCDC 1960278). Other diastereomeri-
cally pure carbamate derivatives (6b−k) could be obtained in
72−95% yields and 5:1 to >20:1 dr’s. The absolute
stereochemistry of the other carbamates 6b−k was assigned

based on the X-ray structure of the major isomer of 6a. In most
of the cases, the dr’s of the respective products (6c, 6e, 6f, 6h,
6j, and 6k) were found to be >20:1.
Since we demonstrated the catalytic utility of tropylium salt

in the vinylogous conjugate reactions of p-QMs, we were
curious to investigate the exact role of the tropylium cation in
this particular reaction. Since carbonyl activation by a
tropylium cation has been well studied,7−16 we were partly
convinced that the tropylium cation activated the CO group
of the p-QM (1a), followed by the subsequent addition of the
carbamate (2a) to the activated p-QM in a 1,6-fashion to give
the product 3a. But still have decided to perform a few control
experiments to determine the exact mode(s) of activation. We
believed that if the CO of p-QM was activated by tropylium
cation, there would be a shift in the signal of CO carbon of
the p-QM in the NMR spectra (13C NMR) when titrated with
different concentrations of tropylium salt. Therefore, the 13C
NMR spectra for the mixture of 1a and tropylium
tetrafluoroborate at various molar ratios were recorded in
CD3CN and stacked. As expected, the chemical shift of the
carbonyl carbon of 1a (187.2621 ppm) gradually and slightly
shifted toward the upfield region (187.0005 ppm with 10 equiv
of tropylium salt with respect to 1a) with the increasing
concentration of tropylium tetrafluoroborate. Since the shift is
not significant (difference of 0.26 ppm), it is not very clear
whether the carbonyl group of 1a gets activated by the

Chart 2. Substrate Scope with Various p-QMs and (−)-Menthyl Carbamatea

aAll reactions were performed on a 50 mg scale of 1a, 1b, 1d, 1e, 1g, 1h, 1j, or 1k−n in 1.5 mL of CH2Cl2. Yields reported here are combined
isolated yields of both the isomers. dr's were assigned from 1H NMR analysis of the crude mixtures.
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Figure 2. 1H NMR control experiments with 1a and tropylium tetrafluoroborate in CD3CN. The stoichiometric ratios between p-QM (1a) and
tropylium tetrafluoroborate and the chemical shifts of the protons of the Trop+BF4

̅−p-QM complex in the 1H NMR spectra are indicated. Shifts are
relative to tetramethylsilane (TMS). The concentration of 1a was 102 mM.

Scheme 1. Control Experiments
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tropylium salt. However, interestingly, when the titration
experiment between 1a and tropylium tetrafluoroborate at
various molar ratios was monitored by 1H NMR spectroscopy,
a few new signals appeared in the aliphatic region (3.5−6.5
ppm) when the amount of tropylium salt was increased
progressively with respect to 1a (Figure 2). A similar kind of
observation was reported by Nguyen and co-workers for the
activation of cyclic ketones by the tropylium cation.10

Moreover, in our case, there were a few more new signals
that appeared in the aromatic region (7.0 to 7.8 ppm) as well.
These observations clearly indicate that there is some kind of
interaction between the tropylium cation and 1a, although the
exact mode of complexation or activation is unclear.
Another possibility is the activation of the nucleophile

(carbamate in this case) by the tropylium cation. It is known in
the literature that tropylium cation can react with electron-rich
molecules such as anilines or indoles to form the
corresponding adducts.68 Therefore, to understand whether
this mode of activation (between carbamate and the tropylium
cation) was operating in our protocol, we performed a reaction
between tropylium tetrafluoroborate and t-butyl carbamate
(2a). In that case, the adduct 7 was isolated in a 27% yield (i,
Scheme 1). Therefore, it is possible that the adduct 7 could be
an intermediate in the reaction. In addition, the reaction
between 2a and tropylium tetrafluoroborate would potentially
lead to the formation of HBF4, which could act as a catalyst for
the vinylogous conjugate addition of 7 to 1a to generate the
product 3a. However, when the adduct 7 was subjected to a
vinylogous conjugate addition reaction with 1a using 5 mol %
HBF4·OEt2, only traces of 3a were observed (ii (a), Scheme
1). Interestingly, the reaction between 7 and 1a with
stoichiometric quantities of HBF4·OEt2 generated 3a in a
92% yield within 10 min (ii (b), Scheme 1). However, the
analysis of the crude reaction mixture by 1H NMR spectros-
copy revealed signals that corresponded to t-butyl carbamate
(2a) in addition to those for the product 3a and tropylium

tetrafluoroborate. Since adduct 7 was employed in slight excess
(1.2 equiv) (ii (b), Scheme 1) in this reaction with respect to
1a, we expected signals that corresponded to unreacted 7 (at
least 0.2 equiv) in the 1H NMR spectrum of the crude.
However, no signals that corresponded to the adduct 7 were
observed in the crude 1H NMR spectrum. Hence, possibly, the
adduct 7 gets decomposed into 2a and tropylium tetrafluor-
oborate in the presence of HBF4·OEt2. Moreover, this
observation also indicates that the formation 7 could be
reversible under the reaction conditions. To confirm this,
equimolar quantities of HBF4·OEt2 and 7 were mixed in
CD3CN (in NMR tube), and the reaction progress was
observed by NMR spectroscopy. As expected, 7 was
completely converted to tropylium tetrafluoroborate and t-
butyl carbamate (2a) in quantitative yields (as determined by
1H NMR analysis) within 5 min (iii, Scheme 1). Therefore, it
is evident from this experiment that the formation of 7 is
indeed reversible. This result also explains why the reaction
between the adduct 7 and 1a worked well with the
stoichiometric quantities of HBF4·OEt2 (ii (b), Scheme 1).
In this case, we believe that HBF4·OEt2 converts the adduct 7
to t-butyl carbamate (2a) and tropylium tertrafluoroborate and
2a subsequently experiences vinylogous aza-Michael addition
with 1a to give the product 3a. In another control experiment,
the adduct 7 was treated with 1a in the presence of 5 mol %
tropylium tetrafluoroborate, and the product 3a was not
detected at all even after 24 h (ii (c), Scheme 1). Based on
these observations, one can confirm that the reaction does not
proceed through the vinylogous conjugate addition of the
adduct 7 to p-QM (1a).
Another possibility arises here. The HBF4 formed in situ

during the reaction between 2a and tropylium tetrafluor-
oborate could probably also act as a catalyst in the 1,6-addition
reaction of 2a with 1a. To understand this, a reaction was
performed between 1a and 2a in the presence of 2 mol %
HBF4·OEt2, and 3a was obtained in a 94% yield within 5 min

Figure 3. Stacked 1H NMR spectra of pure 2a, pure Trop+BF4
−, a 1:1 mixture of 2a and Trop+BF4

−, and pure 7.
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(iv, Scheme 1). Consequently, one cannot exclude the
involvement of in situ generated HBF4 in catalyzing this
transformation. However, when equimolar quantities of 2a and
tropylium tetrafluoroborate were mixed (in CD3CN and
monitored by 1H NMR spectroscopy), less than a 5% yield
of the adduct 7 was observed in the 1H NMR spectrum
(Figure 3). In reality, however, only 5 mol % tropylium salt was
found to be sufficient to catalyze the reaction (entry 6, Table
1). This means that very minute quantities of HBF4 are
generated in situ in the reaction mixture. Therefore, the
possibility here is that, the reaction probably takes a relatively
long time for completion since the concentration of HBF4 is
much lower in the reaction mixture as it is also involved in the
decomposition of the tropylium−carbamate complex (7).
Based on the outcomes from the control experiments, two

possible mechanisms have been proposed (Scheme 2). The
first proposal (path A) is based on hidden Brønsted acid
catalysis. Initially, the carbamate 2a reacts with tropylium salt
and generates the tropylium-carbamate complex 7 along with
HBF4, which is involved in the activation the p-QM (1a)
through H-bonding. Subsequently, the 1,6-conjugate addition
of carbamate (2a) takes place to generate an intermediate II,
which finally decomposes to the product 3a. During this
process, HBF4 gets regenerated (path A). Another alternative

possibility (Path B) is the involvement of tropylium
carbocation in the activation of p-QM (1a). Since the 1H
NMR titration experiment between 1a and tropylium salt
revealed that there is an interaction between 1a and the
tropylium cation (Figure 2), one cannot rule out the possibility
of tropylium catalysis. Therefore, another possibility (path B)
is that the tropylium cation initially complexes with p-QM (1a)
through a weak interaction, which leads to the formation of
activated complex III. Next, the t-butyl carbamate (2a) adds to
the complex III to form IV, which further undergoes proton
exchange to give the product 3a with the expulsion of
tropylium salt (catalyst).
Next, we shifted our attention to elaborate the established

protocol to some useful compounds. We envisioned that the
hydrolysis of 6i would lead to an enantiomerically pure diaryl
amine (S)-8. (S)-8 is a common intermediate for (S)-cetirizine
dihydrocholoride (Figure 1),69 which is widely used for the
treatment of allergies. In this regard, the hydrolysis of 6i was
carried out under various acidic and basic conditions (dilute
HCl, TfOH, TFA, and KOH) [Scheme 3]. However, the retro-
1,6-addition unfortunately took place under all these
conditions and, as a result, only the p-QM 1a was observed.
The expected derivative (S)-8 was not observed under any of
those conditions. Similar results were obtained when we

Scheme 2. Plausible Reaction Mechanism
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carried out the hydrolysis reaction of 3k under acidic or basic
conditions. In fact, the formation of 1a can be explained as
follows. We think, most likely, that hydrolysis takes place in
both the cases (6i and 3k) under acidic conditions to give the
diaryl amine 8 or (S)-8. However, under acidic conditions the
amine group of 8 or (S)-8 is probably protonated and becomes
ammonium salt, which indeed is a very good leaving group.
Therefore, under acidic conditions 8 or (S)-8 gets converted to
1a with the expulsion of ammonia. Under basic conditions, the
base probably abstracts the phenolic proton of 6i or 3k, which
finally leads to the elimination of the whole carbamate group
(good leaving group) from 6i or 3k to generate 1a. At this
point, we thought that protecting the phenolic group as a
methoxy group in 3k and 6i would help arrest the retro-1,6-
addition reaction. Subsequently, the selective O-methylation
reaction of 3k and 6i was performed under basic conditions
using a reported procedure,70 and the desired methylated
compounds 9 and 11 were obtained in 86% and 88% yields,
respectively. Gratifyingly, the hydrolysis of 9 worked efficiently
with trifluoroacetic acid71 to give the desired diaryl amine 10
in a 92% yield under mild conditions (Scheme 3). Similarly,
the hydrolysis of 11 was carried out under acidic (CF3COOH)
and basic (KOH)72 conditions. Unfortunately, however, both
the reactions end with the decomposition of 11.

■ CONCLUSIONS
In this article, we have disclosed an operationally simple
protocol for the synthesis of α,α′-diarylmethyl carbamates in
satisfactory yields through a tropylium salt-promoted vinyl-
ogous aza-Michael addition of a variety of alkyl carbamates to
p-quinone methides (p-QMs). This methodology was also
employed to prepare diastereomerically pure α,α′-diarylmethyl
carbamates (dr’s up to >20:1) via an auxiliary-controlled
vinylogous conjugate addition of (−)-menthyl carbamates to p-
QMs. Since the diarylmethyl amine or carbamate core is found
as an integral unit in many unnatural and pharmaceutically
active drug molecules, we are certain that this protocol would
definitely useful in the synthesis of those drug molecules and
related analogues.
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