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Introduction
Single-cell RNA sequencing (scRNA-seq) has provided 
unprecedented power to interrogate gene expression transcrip-
tome-wide in single cells.1 Coupled with advances in computa-
tional biology to analyze scRNA-seq data,2-4 biological samples 
can be resolved to identify heterogeneity among the single cells 
in a pooled sample.5 Analyzing a scRNA-seq data set or inte-
grating several data sets can be challenging because the data 
tend to be extremely high dimensional and very sparse. 
However, several methods have been recently developed to aid 
in the computation.6 For example, batch correction and har-
monization of scRNA-seq data sets help to minimize system-
atic differences so that the data can be compared on the gene 
expression level.7 Unfortunately, there is a lack of computa-
tional approaches that serve to compare scRNA-seq data sets 
according to similarity and differences in phenotypic 
heterogeneity.

We developed the scCompare computational pipeline to 
facilitate the mapping of phenotypic labels from 1 scRNA-seq 
data set to another. The aims of the pipeline are to establish 
comparability and to potentially discover unique cell types. In 

scCompare, a mapping scRNA-seq data set with known cell 
type identities is processed with the standard pipeline steps 
including the identification of Leiden clusters and projection 
of the single cells into uniform manifold approximation and 
projection (UMAP) space. Given phenotypic annotations of 
the single cells in the clusters, cell type–specific prototype sig-
natures are generated based on the average gene expression of 
each cluster. Using those cells assigned to each cluster, distribu-
tions of the correlations of gene signatures between the cells 
and the corresponding prototype signature are determined. 
Statistical thresholds for inclusion or exclusion are derived 
from the resulting distribution and used to evaluate each single 
cell from a test scRNA-seq data set to assign a phenotypic 
label. Single cells that fall outside of the distributions are 
labeled as unmapped. We evaluated scCompare on benchmark 
scRNA-seq data sets from peripheral blood mononuclear cells 
(PBMCs) and compared the performance to single-cell varia-
tional inference (scVI), a state-of-the-art computational tool 
for general scRNA-seq analyses including label transfer.8 In 
addition, we used publicly available scRNA-seq data sets from 
atlases and experimental protocols that differentiate human 
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induced pluripotent stems cells (hiPSCs) into cardiomyocytes 
(CMs) to test the utility of scCompare to detect similarities 
and differences in single-cell populations.

Materials and Methods
Data sets

Human Protein Atlas (proteinatlas.org). The Human Protein 
Atlas (HPA) scRNA-seq data were collected as previously 
described.9 Briefly, scRNA-seq read count data from 81 cell types 
from 31 different data sets (Supplemental file 1) were down-
loaded. The scRNA-seq data are based largely on the Chromium 
single-cell gene expression platform from 10× Genomics (ver-
sion 2 or 3), constituting a single-cell suspension from tissues 
without pre-enrichment of cell types. This includes only studies 
with >4000 cells and 20 million read counts, and only data sets 
whose pseudo-bulk transcriptomic expression profile is highly 
correlated with the transcriptomic expression profile of the cor-
responding HPA tissue bulk samples. An exception was made for 
the eye (~12.6 million reads allowed), the rectum (2638 cells 
allowed), and the heart muscle (plate-based scRNA-seq plat-
form) to include these additional cell types in the analysis.

Tabula Sapiens. The Tabula Sapiens (TS) scRNA-seq data 
were collected as previously described.10 Briefly, 24 tissues in 
total were collected from 2 cohorts of donors (Supplemental 
file 2). This allowed biological replicates for almost all tissues. 
More details of the samples are available from the metadata 
posted on Figshare (https://figshare.com/articles/dataset/Tab-
ula_Sapiens_release_1_0/14267219). The scRNA-seq raw 
read count data from the 10× Genomics pipeline were down-
loaded (TS cell atlas) for analysis.

Peripheral blood mononuclear cells. scRNA-seq data from 
approximately 3000 single PBMCs (3k data set) from a donor 
were contributed by 10× Genomics as a public resource. The 
raw read count data were downloaded for analysis.11 In addi-
tion, scRNA-seq data from approximately 68 000 single 
PBMCs (68k data set) from a donor were generated using the 
10× Genomics platform.12 The raw read count data were used 
for analysis.

Cardiomyocytes. hiPSCs were differentiated to CMs in 90 days 
using 2 different protocols as previously described.13 Briefly, in 
protocol 1, CMs were differentiated using small molecules 
with CHIR99021 and IWP2. In protocol 2, CMs were differ-
entiated using cytokines Activin A, BMP4, and XAV939 plus 
small molecules with CHIR99021. Samples were collected on 
days 0 (D0), 12 (D12) and 24 (D24) for protocol 1 and days 0 
(D0), 14 (D14), and 26 (D26) for protocol 2. The difference in 
the days of collection is due to the lag in the differentiation 
initiation day between the 2 protocols. scRNA-seq raw read 
count data were generated using the SPLiT-seq14 (split-pool 

barcoding) library preparation methodology and from sequenc-
ing on an Illumina NextSeq.

Data f iltering, preprocessing, and clustering

Single-cell analysis in Python (scanpy)4 v1.9.2 was used exclu-
sively for filtering, preprocessing, clustering the data, and 
marker gene identification. For data processed in the R envi-
ronment, the SeuratDisk converts Seurat objects to AnnData 
objects via the h5Seurat file format specification. The unique 
molecular identifiers (UMIs) in each data set were annotated 
using the human Ensembl gene model.15 The data were fil-
tered such that transcripts not present in at least 3 cells were 
excluded from further analysis. Cell barcode identifiers were 
filtered to only include those with a minimum of 2000 non-
zero transcripts, those having ⩾5% mitochondrial transcripts, 
and those having ⩽10% ribosomal transcripts. The count data 
were normalized to counts per million (CPM) for each cell by 
dividing the expression of each gene by the total count of its 
respective cell, multiplying the result by a million, and then 
applying a log base 2 transformation with an offset of 1. The 
normalized data were scaled across single cells to a mean 
expression = 0 and variance = 1. Highly variable genes were 
selected using the variance-stabilizing transformation option 
in scanpy followed by principal component analysis (PCA) to 
reduce the dimension of the data. Using the Kneedle heuris-
tic16 to determine the number of principal components (PCs) 
according to the point of maximum curvature of the explained 
variance and k = 100 nearest neighbors, single cells were embed-
ded in a graph with the edges represented as distances drawn 
between cells. Using a resolution of 0.8, the Leiden algorithm 
was applied to group the single cells into clusters. Finally, the 
clusters of cells were visualized in UMAP space. Note, these 
hyperparameters (k in the nearest neighbor graph construction 
and Leiden resolution) are only suggested starting points and if 
possible should be tuned to reflect known ground truth biology 
(eg, canonical gene expression).

scCompare core functionalities: generate  
bulk signatures, statistical thresholding, and 
mapping phenotypic labels

After phenotypic labels were derived, either provided from 
external ground truth information sources or arrived at via 
unsupervised clustering, the scCompare pipeline was initiated. 
Normalized transcript count measurements and phenotypic 
labels from the training (mapping) data were used to build 
phenotypic label-specific prototype signatures that were based 
on the average expression of each phenotypic label using only 
highly variable genes. For each phenotypic label, distributions 
of the correlations of each cell’s highly variable genes to the 
phenotypic label’s prototype were generated. The correlation of 
each cell’s gene signature to each prototype signature was 

https://figshare.com/articles/dataset/Tabula_Sapiens_release_1_0/14267219
https://figshare.com/articles/dataset/Tabula_Sapiens_release_1_0/14267219
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calculated, and the cell was initially assigned the phenotypic 
label to which it has the highest correlation.

The median absolute deviation (MAD), a measure of dis-
persion in data, uses the median as a statistic of central ten-
dency and is robust against outliers.17 If x1, x2, . . ., xn represent 
a set of n Pearson correlation coefficients between the scRNA-
seq expression data of signature genes for each cell in a specific 
phenotypic annotation from the mapping data set, and if X  is 
the median, then

 
MAD x Xi i= −{ }median | | .

 

We primarily used 5*MAD below the median as the statistical 
cutoff for the distribution of the Pearson correlation coeffi-
cients for a given phenotypic annotation to exclude phenotypic 
label assignment in the single cells in the testing data set. As an 
alternative approach to determining the statistical cutoff for 
distributions that might be highly skewed, we employed the 
Fisher transformation to convert the Pearson correlation coef-
ficients to z-scores as follows:
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where ln is the natural logarithm, and r is the Pearson correla-
tion coefficient. The z-scores follow an approximately normal 
distribution with the standard deviation equal to
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where N is the sample size. Two or more standard deviations 
below the mean as the statistical cutoff demarcates ⩾97.5% of 
the correlations. Subsequently, the training data set was mapped 
back to the bulk signatures. Single cells that fell below the sta-
tistical cutoffs for the phenotypic annotation of the cells that 
are most correlated with were labeled as “unmapped.” If a 
higher stringency for “unmapped” label assignment is desired, 
the MAD cutoff parameter may be user-adjusted, where a 
lower MAD cutoff would result in a higher number of 
“unmapped” cells (notably those whose signatures are most dis-
similar from the prototype) allowing for further analysis. The 
coefficient of determination (R2), Spearman rank correlation 
coefficient (Rs), and scatter plots were used to assess similarity 
and compare the proportion of phenotypes between the train-
ing and test data sets.

Marker gene identif ication

We looked for marker genes for each CM differentiation pro-
tocol (small molecule and cytokine-driven) at matched time-
points. Specifically, D12 and D24 of the small molecules in 

protocol 1 were compared with D14 and D26 of the small mol-
ecules and a cytokine in protocol 2, respectively. Marker genes 
were identified using scanpy’s rank_genes_groups method. A t 
test with overestimated variance was used to detect genes that 
are statistically different between clusters of cells. The resulting 
genes were filtered requiring a minimum in-group fraction of 
0.5, maximum out-group fraction of 0.5, and a minimum fold 
change of 2.

Performance metrics for the phenotypic mapping

Accuracy is the proportion of the mapping of the correct phe-
notypic labels to the test data set over all levels.
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Specificity is the probability of not falsely mapping the correct 
phenotypic label to the test data set.
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Recall (sensitivity) is the probability of mapping the correct 
phenotypic label to the test data set.
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Results
scCompare overview

scCompare is a pipeline computational process using a training 
(mapping) scRNA-seq data set with known phenotypic anno-
tations of single cells to label cells from a test data set of 
scRNA-seq data. The primary goal is to compare the pheno-
typic characteristics of the single cells (Figure 1). The mapping 
data set is processed to cluster the single cells for projection 
into UMAP 2-dimensional space. Cell type-specific prototype 
signatures are created using phenotypic labels (either provided 
by external sources or arrived at by unsupervised clustering), by 
calculating the average gene expression of all cells within each 
label. Then, distributions are obtained by comparing each cell’s 
gene signature to the prototype of its respective label. Next, the 
gene signature from each single cell in the test data set is evalu-
ated against statistical thresholds for each label distribution to 
assign a phenotypic annotation. Single cells that fall outside of 
the distributions are labeled as “unmapped.” Finally, a compari-
son of the proportion of assigned cluster between data sets is 
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visualized in a scatter plot, and R2 is calculated as a statistic 
measuring the similarity between the phenotypic composition 
of the 2 data sets.

Comparison of scCompare to scVI to map  
phenotypic labels

The scVI8 is a scRNA-seq analysis tool that uses an optimiza-
tion routine and deep neural networks to join information 
across cells and genes that are similar, and to estimate the dis-
tributions that represent the observed expression values. An 
advantage of scVI is that it uses a neural network-based 
approach to construct latent-space representations from the 
matrix of read counts and batch information to account for 
experimental and technical variation in the data, and then esti-
mate biological differences between cells. A couple of disad-
vantages of scVI is that it uses a non-deterministic algorithm 
leading to alternative results with different initializations, and 

for genes with few cells, the prior and the inductive bias of the 
neural network may not fit the data optimally. The expected 
read count data (batch-corrected and normalized) are used in 
scVI for comparison with scCompare.

To assess the ability of scCompare and scVI to align bio-
logical annotations between scRNA-seq data sets, we ran-
domly sampled the 3k PBMCs scRNA-seq data 50 times in 
training and testing splits (80:20) and used the top 2000 
highly variable genes for signature construction. Performance 
is based on the accuracy, precision, and sensitivity of scCom-
pare and scVI mapping the phenotypic labels to the test data 
sets. As shown in Table 1, the accuracy of predictions was 
similar, but scCompare matches or outperforms scVI in preci-
sion and sensitivity for most cell types, most strikingly with 
the dendritic cells and megakaryocytes. However, scVI scored 
slightly higher for CD4 T cells, FCGR3A monocytes, and 
natural killer (NK) cells in precision for the former and sensi-
tivity for the latter two.

Figure 1. Compare workflow. Semi-supervised clustering is performed to group the mapping data set into phenotypically relevant subsets. Bulk 

signatures derived from the prototype gene expression signature for each cluster are generated, and distributions of within-cluster Pearson correlations of 

each member cell to the cluster’s prototype signature are formed. These provide statistical cutoffs for cluster inclusivity. The cells from the test data set 

are correlated with each prototype signature, and the Pearson correlation is compared with the statistical cutoffs. Cells that pass the threshold are 

considered mapped and are labeled with the cluster’s phenotype; otherwise, they are labeled as unmapped. Finally, fractions of mapped cells are 

compared between the mapping and testing data sets to facilitate comparability of phenotypic representations.
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We also evaluated the ability of scCompare and scVI to map 
known transcriptomic signatures from the 3k PBMCs scRNA-
seq data set to the 68k PBMCs scRNA-seq data set (Figure 2). 
As shown in Figure 2B, the cell type identities from the 3k data 
set were mapped equivalently to the 68k data set except for the 
megakaryocytes in the case of scVI where they were labeled as 
NK cells. The gene representations of the clusters of single cells 
for the phenotypic labels are comparably similar except for the 
megakaryocytes (Figure 2B). Furthermore, scCompare identi-
fied a previously unannotated cell type, plasmacytoid dendritic 
cell.18 The application of the MAD-based statistical cutoff 
allowed for discovery of potentially novel cell types, although 
not all unmapped cells would be novel (not accounted for in 
the mapping data set). To determine whether a group of 
unmapped cells was novel, 2 parameters are assessed: (1) a dif-
ferentially expressed gene-based metric and (2) a UMAP 
Euclidean distance-based metric (Figure 2C, Table S1, Figure 
S1, and Figure S2). The cell cluster identified as plasmacytoid 
dendritic cells was observed to have a gene signature divergent 
from that of dendritic cells (the pre-cutoff assigned phenotype) 
and was separated from the mapped dendritic cells in UMAP 
space. Furthermore, differential gene expression analysis 
revealed the expression of MZB1 in this cluster, a marker gene 
for plasmacytoid dendritic cells.18 This not only demonstrates 
scCompare’s usefulness in mapping phenotypes between data 
sets, but it also provides the added ability to discover novel cell 
types not accounted for in the mapping data.

Mapping between scRNA-seq cell atlases

To demonstrate a broader applicability of the scCompare pipe-
line, we performed cell atlas mapping using HPA as the train-
ing data set and TS as the test data set. These atlases contain 
samples obtained from primary human adult tissue from mul-
tiple individuals across many tissues. These samples have also 
been extensively annotated with various levels of descriptive 

labels including cell phenotype, organ-of-origin, sex, and other 
information, typifying the breadth and depth of heterogeneity 
present within human biology. To demonstrate scCompare’s 
performance on atlas-to-atlas mapping, phenotypic label align-
ment between atlases was necessary for a ground truth com-
parison. First, for each data set, we combined phenotypic and 
organ-of-origin annotations and excluded groupings (pheno-
type; organ-of-origin, for example: T cells; salivary gland) that 
did not contain at least 300 cells or were not present in both 
HPA and TS. We then removed groupings that denoted phe-
notypes that were too broadly defined, likely containing more 
than 1 distinct phenotype. For example, stromal cells may be 
comprised of fibroblasts, adipocytes, pericytes, vascular cells, 
etc. We then removed all cells that were annotated as stem cells 
as it is unclear how to align phenotypes of unknown matura-
tion state across atlases. Finally, after filtering, resulting labels 
were hand-aligned by ensuring overlap between the annotated 
phenotype and the organ-of-origin (Table S2) and each result-
ing grouping subset to 300 cells to streamline processing.

We obtained bulk signatures corresponding to each of the 
22 annotation groups in HPA sampled at available tissue level. 
Bulk signatures were captured using the top 2000 highly vari-
able genes. These bulk signatures were then applied to the TS 
data set comprising 50 corresponding sub-categories sampled 
from 21 different tissue locations throughout the body. No sta-
tistical cutoff was applied as we were testing direct 1:1 mapping 
fidelity (Table 2).

Figure 3 depicts a summary of the classification perfor-
mance based on differential expression analysis, along with 
visualizations showing the alignment of classification mapping 
between HPA and TS cell atlases. Differential gene expression 
analysis was conducted on HPA, using the same parameters as 
in the cardiac differentiation comparison. The top differen-
tially expressed genes from HPA are displayed for both atlases, 
allowing for a direct comparison (Figure 3A). In this compari-
son, cells from the TS atlas were not ground truth labels, but 

Table 1. Performance comparison between scCompare and scVI using the 3k PBMCs scRNA-seq data set.

CELL TYPES ACCURACY PRECISIoN RECALL

SCCoMPARE SCVI SCCoMPARE SCVI SCCoMPARE SCVI

B 0.998 0.995 0.990 0.969 0.996 0.996

CD14 monocytes 0.982 0.976 0.948 0.943 0.943 0.905

CD4T 0.975 0.955 0.981 0.986 0.962 0.911

CD8T 0.967 0.949 0.829 0.721 0.877 0.861

Dendritic 0.998 0.992 0.957 0.628 0.925 0.665

FCGR3A monocytes 0.991 0.984 0.915 0.830 0.938 0.948

Megakaryocytes 1.000 0.995 1.000 0.160 0.993 0.133

NK 0.984 0.979 0.897 0.822 0.903 0.947

Performance parameters based on the average of 50 iterations of 80%:20% splits of the data training to test and using 2000 highly variable genes. Bold indicates that 
scCompare most strikingly outperforms scVI in precision and recall with the dendritic cells and megakaryocytes.
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rather were categorized according to their phenotypic labels 
assigned by scCompare. The results show a broad agreement in 
the expression patterns of the differentially expressed genes 
derived from HPA. Key marker genes for each phenotype are 
highlighted in the legend to provide additional biological con-
text and phenotypic validation. Circos plots display a visual 
representation of classification accuracy along a variety of axes 
including tissue of origin, cell type, and cell type sub-categori-
zations (Figure 3B). The vast majority of cells fall into the cor-
rect corresponding phenotypic grouping with more than 90% 
overall classification accuracy. The class weighted and 
unweighted prediction accuracy scores were 90.2% and 88.1%, 
respectively. Cell type confusion did occur between closely 
related subtypes of cells, such as different subtypes of immune 
cells and epithelial cells. This can likely be attributed to shared 
lineage and functional categories. For instance, confusion 
among T lymphocytes (T cells), B lymphocytes (B cells), and 
NK cells was observed (Table 2). These cell types are of shared 
lineage and descend from a shared ancestor, the common 

lymphoid progenitor. Similarly, there is confusion among 
enterocytes and other epithelial cells from the large and small 
intestines. In the case of club cells, their primary class confu-
sion occurred with type 2 alveolar cells. Their confusion can 
likely be attributed to their common functions, as both cell 
types are secretory epithelia featuring specialized adaptations 
to the respiratory tract. Evaluation of the associated clustermap 
(Figure S3) highlights the core similarities in scCompare phe-
notypic signatures that were likely the root cause of high mis-
classification rates for the previously mentioned cell types.

Comparison of cardiomyocyte differentiation 
protocols

To demonstrate the utility of scCompare to compare scRNA-
seq data sets from a study design, we leveraged the data from 
an experiment that evaluated 2 different protocols to differen-
tiate hiPSCs to CMs.13 Differentiation protocol 1 used small 
molecules whereas protocol 2 used a cytokine in addition to the 

Figure 2. scCompare and scVI 3k PBMCs data set-derived models applied to the 68k PBMCs data set and the discovery of an unannotated cell type. (A) 

3k PBMCs data set: (i) UMAP of 3k PBMCs data set, (ii) correlation dendrogram of 3k PBMCs phenotypes, and (iii) 3k PBMCs gene expression dotplot 

showing expression of key phenotypic markers. (B) Results of mapping 3k PBMCs identities onto the 68k PBMCs data set using scCompare and scVI. 

(i-ii) UMAPs showing phenotypes assigned by scCompare (i) and scVI (ii), (iii) gene expression dotplots showing consistency of key gene expression 

between the 3k PBMCs data set and the assigned phenotypes in the 68k data set (top—scCompare, bottom—scVI). scVI does not predict any 

megakaryocytes in the 68k PBMCs data set despite evidence for their presence (small PPBP-expressing subcluster (A iii)). The intensity scale represents 

the mean expression of a gene within a cell type. The size of the dots represents the fraction of the cells within a cell type. (C) Statistical cutoff-assisted 

discovery of plasmacytoid dendritic cells. Cells not meeting statistical cutoff were assessed for novel phenotype status using differential gene expression 

list analysis and UMAP Euclidean distance metrics (Figure S1). After assessment and remapping, a cluster of plasmacytoid dendritic cells was 

discovered. This phenotype is confirmed by the expression of MZB1. Further characterization can be found in Figure S1.
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small molecules. The differentiation of the hiPSCs was carried 
out for 90 days. As represented in Figure 4A, protocol 1 sam-
ples were taken for scRNA-seq at D0, D12, and D24, whereas 
protocol 2 samples were taken for scRNA-seq at D0, D14, and 
D26. The difference in the days of collection was due to the lag 
in the differentiation initiation day between the 2 protocols. 
We selected the scRNA-seq data from protocol 1 as the train-
ing (mapping) data set and the scRNA-seq data from protocol 
2 as the testing data set. scRNA-seq analysis of the training 
data set generated 13 Leiden clusters (Figure 4B). The UMAP 
representation of the clusters shows well-formed clusters and 
an abundance of heterogeneity in the data which is expected in 

a “developmental” (differentiation) setting compared with 
“adult”/mature tissues. Differential expression analysis of the 
Leiden clusters 0 to 9 revealed marker genes TNNT2, MYH6, 
and MYH7 representative of CMs. Cluster 11 includes the CM 
marker genes in addition to MKI67 and FN1 indicative of pro-
genitor CMs (PCMs). Clusters 12, 7, and 5 all have marker 
genes FN1, but also GRHL2 and AFP for the latter 2 clusters, 
respectively, and they represent stromal-like cells, endodermal 
cells, and ectodermal cells individually. The 2 remaining clus-
ters 10 and 13 have marker genes TRPM3, CTNNA2, and 
EGFL7, respectively, and correspondingly, they suggest smooth 
muscle-like and endothelial-like cell types.

Table 2. scCompare performance in finer categorized label transfer task.

HPA LABEL CATEGoRY # MISCLASSIFIED ToTAL CoUNT CLASSIFICATIoN 
ACCURACY (%)

MISCLASSIFIED PHENoTYPES (>5%)

Hepatocytes 0 300 100 N/A

Basal keratinocytes 0 300 100 N/A

Exocrine glandular cells 3 300 99 N/A

Muller glia cells 3 300 99 N/A

Alveolar cells type 2 4 300 98.67 N/A

Endothelial cells 69 4200 98.36 N/A

Fibroblasts 58 1800 96.78 N/A

Macrophages 131 3600 96.36 N/A

Intestinal goblet cells 27 600 95.5 N/A

Respiratory ciliated cells 15 300 95 N/A

Smooth muscle cells 30 600 95 N/A

Cardiomyocytes 17 300 94.33 N/A

Basal prostatic cells 17 300 94.33 N/A

Nk cells 47 600 92.17 T cells: 6.5

B cells 370 3300 88.79 T cells: 9.85

Distal enterocytes 35 300 88.33 Intestinal goblet cells: 8.67

T cells 1480 11 400 87.02 Nk cells: 6.97

Plasma cells 119 900 86.78 B cells: 6.11

Proximal enterocytes 71 300 76.33 Distal enterocytes: 10.33,

 B cells: 7.67

Salivary duct cells 116 300 61.33 T cells: 32.0,

 Macrophages: 5.67

Club cells 256 600 57.33 Alveolar cells type 2: 39.5

Ductal cells 190 300 36.67 Exocrine glandular cells: 62.0

Weighted accuracy 3058 31 200 90.2 N/A

Unweighted accuracy N/A N/A 88.05 N/A

Abbreviation: N/A, not applicable.
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Figure 3. Visualizations of HPA and TS atlas mapping experimental results. (A) Differential expression analysis of HPA cells by phenotypic label with 

corresponding expression of scCompare-classified TS cells displayed using a dotplot. Each row denotes the similarity in expression between HPA-

phenotypically labeled cells and corresponding TS-mapped cells post-scCompare analysis. Key markers for each phenotypic label that arose from the 

differential expression analysis are annotated here, macrophages: AIF1 (allograft inflammatory factor 1), B cells: MS4A1 (membrane spanning 4-domains 

A1, CD20), T cells: CD3E (CD3e molecule), NK cells: NKG7 (natural killer cell granule protein 7), Müller glia cells: GFAP (glial fibrillary acidic protein), 

cardiomyocytes: TNNI3 (troponin I3, cardiac type), hepatocytes: ALB (albumin), endothelial cells: VWF (von Willebrand factor), fibroblasts: CoL1A2 

(collagen type I alpha 2 chain), Smooth muscle cells: ACTA2 (actin, alpha 2, smooth muscle, aorta), plasma cells: JCHAIN (joining chain of multimeric IgA 

and IgM), salivary duct cells: KRT7/KRT19 (keratin 7/keratin 19), basal prostatic cells: PIP (prolactin-induced protein), respiratory ciliated cells: PIFo 

(primary cilia formation protein), club cells: SFTPA2 (surfactant protein A2), alveolar cells type 2: SFTPC (surfactant protein C), basal keratinocytes: 

KRT14 (keratin 14), ductal cells: KRT8/KRT19 (keratin 8/keratin 19), exocrine glandular cells: CTRB2 (chymotrypsinogen B2), distal enterocytes: FABP1 

(fatty acid binding protein 1), intestinal goblet cells: MUC2 (mucin 2), and proximal enterocytes: ALDoB (aldolase B, fructose-bisphosphate). Highlighting 

key expression of these genes helps to validate HPA phenotype and TS mapping fidelity using canonical gene expression. (B) Atlas mapping 

experimental results are subdivided to further interrogate performance. Endothelial cells (i) display high classification accuracy despite a variety of 

sampling locations. In contrast, T cells (ii) display a higher rate of misclassification, which has a clear bias toward some sub-types showing higher rates of 

misclassification (eg, cd8 + alpha-beta t cells, generic t cells). This is likely due to the broader phenotypic heterogeneity that is captured within the T-cell 

phenotype. (iii) Lung tissue higher rates of misclassification among club cells are shown (possibly due to the commonalities between respiratory club cells 

and type 2 alveolar cells, as both as secretory epithelia with similar tissue-specific gene expression profiles). (iv) Cell types sampled from both the large 

and small intestines whereby an interesting pattern is depicted showing the confusion rate for enterocytes of the small intestine higher misclassification 

rates and unidirectional, as enterocytes of the large intestine are correctly classified at a higher rate.
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Figure 4C depicts a correlation heat map of the highly vari-
able genes expressed by the single cells in the Leiden clusters 
and revealed a high degree of similarity between the CM cell 
types (clusters 0-9 and PCM cluster 11). The other clusters 
have moderate to low correlation to each other. The cell type 
annotations in the protocol 1 (mapping) data showed good 
uniformity of the CM clusters and relatively good individual 
clustering of the other cell types. However, after scCompare 

mapping of the phenotypic identities to the protocol 2 (test) 
data, there appeared to be heterogeneity in the CM cluster, 
very few ectodermal, endothelial-like, and smooth muscle-like 
cells, and less representation of endodermal cells (Figure 4D). 
The aforementioned reduction in cell type mapping in proto-
col 2 is represented in Figure 4E numerically as proportions 
and graphically as a scatter plot of the cluster fraction of cells 
with the annotated cell type in protocol 1.

Figure 4. scCompare recapitulates published mapping of phenotypes between 2 directed differentiation protocols. (A) Sample schematic indicating the 

types of differentiation protocols and timepoints (dashed box) analyzed. (B) UMAP of Leiden clustering of “mapping” data set, protocol 1 D12 and D24, 

and violin plots displaying marker gene expression profiles for each Leiden cluster, with cell type indicated above. (C) Correlation dendrogram of highly 

variable genes and Leiden clusters in the “mapping” data set, protocol 1, and UMAP with colors indicating cell type. (D) UMAP of “testing” data set, 

protocol 2 D14 and D26, after mapping using the annotated protocol 1 (training) cell types, and UMAP of Pearson correlation coefficients of each labeling. 

(E) Scatter plot showing the relative ratios (natural log) of annotated cell types between protocol 1 and protocol 2. An x = y line is plotted to aid in the visual 

inspection of the ratio comparisons. Dots falling to the lower right of the line represent cell types enriched in protocol 1, whereas dots falling to the upper 

left of the line represent cell types enriched in protocol 2. Dots that fall directly on the line indicate an equal fraction of the cell types is shared between 

protocols 1 and 2.
CM indicates cardiomyocyte; EC, endothelial-like; ECT, ectodermal; END, endodermal; PCM, progenitor CM; SM, smooth muscle-like; STR, stromal-like.
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The R2 and the Rs of the cell type fraction between proto-
cols 1 and 2 are moderate at 0.441 and 0.393, respectively, 
markedly low due to the underrepresentation of endodermal 
END, SM, ECT, and EC cell type fractions. Single cells in 
protocol 2 that were not assigned a cell type were labeled as 
unmapped. From the higher proportion of CM cells in proto-
col 2 (~19%) and less off-target cell types, it can be posited that 
the addition of cytokines in the differentiation protocol could 
have led to the generation of more on target cells. Differential 
expression analysis for D12/D14 timepoint revealed a set of 
marker genes (CNTN5, SPHKAP, MECOM, and TENM3 
previously associated with iPSC-derived CM identity) that are 
differentially expressed in protocol 1 vs protocol 2 samples 
(Figure 5A). Interestingly, the same analysis for the later time-
point (D24/26) suggests a completely different set of marker 
genes implicated in cardiac morphogenesis (ROBO2), matura-
tion (KCNH7), and hypoxic response (NEAT1) (Figure 5B).

scCompare number of genes and cluster  
resolution parameter assessment

A final goal of our analysis was to assess the scCompare pipe-
line for its sensitivity to 2 key user-defined parameter selec-
tions. To assess this, we used a subset of 10 000 cells obtained 
from the HPA data set and separated these into 5000 mapping 
and test cells. The scCompare pipeline was repeatedly per-
formed on this data set using an increasing size selection of 
highly variable genes and clustering resolutions (Figure 6). 
Highly variable gene selection was bounded between 50 and 
10 000. Clustering resolution was bounded between 0.05 and 
2.5, which corresponded to 2 to 40 distinct clusters. Figure 6A 
colors each individual iteration by weighted-F1, a statistical 
measure of prediction accuracy bounded by 0 and 1. With 
respect to clustering resolution, the results demonstrate the 
impact of overclustering on performance, as greater resolutions 
tend to produce ambiguity between classes resulting in 
misclassification.

When assessing the impact of gene signature length, the 
results suggest that beyond a certain minimum threshold, most 
signature length selections tend to perform well. Figure 6B and 
C illustrates the same data set evaluating each individual run by 
map and test misclassification rates, with colors provided by 
input variable. These plots best capture the trend toward higher 
input values of clustering resolutions and signature lengths 
tending to produce higher test misclassification than map mis-
classification, an outcome that could be considered as overfit-
ting. Figure 6D provides another view of overfitting, where 
points are colored by the absolute difference in map and test 
misclassification rates. Higher values tend to occur at the high-
est clustering resolutions and gene signature lengths. As a note, 
Figure 6D masks cases in which the misclassification rate is 
equally poor in test and mapping data sets, as is the case in the 
low gene signature length (Figure 6A). In general, our results 
suggest that aside from excessive clustering resolutions and 
gene signature lengths, our pipeline produces robust results.

Discussion
Advances in next-generation sequencing (NGS) allow for high-
resolution gene expression profiling transcriptome-wide at the 
single-cell level. The ability to assess heterogeneity within sam-
ples provides a unique insight into the complexity of biology. 
Over the years, the size and scope of scRNA-seq experiments 
increased as the technology became more readily available. At 
the same time, sophisticated computational tools to analyze the 
data were developed. However, there is a paucity of methods to 
compare scRNA-seq data sets at the phenotypic level.

We developed scCompare as an analytical pipeline to com-
pare clusters of single-cell identities to another data set for 
assessment of similarities and differences in phenotypic char-
acterization (Figure 1). scCompare leverages the workflow in 
scanpy to filter, preprocess, cluster the data, and identify marker 
genes making the ease of entry extremely useful for a wide 
range of users in the community. For those who prefer the R 
environment, SeuratDisk converts Seurat objects to AnnData 

Figure 5. Dotplot visualization of marker genes between protocols 1 and 2. Differentially expressed genes between clusters of cells in (A) protocol 1 

versus protocol 2 for timepoint 1 (D12/D14) and (B) protocol 1 versus protocol 2 for timepoint 2 (D24/D26). The legend denotes the size of the dots as the 

percentage of the cells in the groups expressing the genes, and the color bar represents the level of mean expression of the genes within the groups.
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objects via the h5Seurat file format specification and is porta-
ble into scCompare. The novelty of scCompare lies in the fol-
lowing. Using labels in a scRNA-seq data set, bulk signatures 
for each label are generated by correlating highly variable genes 
within each label to a gene expression prototype. Based on sta-
tistical cutoffs for each distribution of bulk signatures, labels 
from a test scRNA-seq data set are compared with the thresh-
old for each distribution of the labels’ bulk signatures to assign 
phenotypic characterization or label them as unmapped. The 
unmapped cells provide opportunity for further investigation 
of similarities and differences in representation of cell identi-
ties and/or biological discovery.

In comparison with scVI, a deep learning probabilistic 
model for perusing unexplored biological diversity for scRNA-
seq data, scCompare matched or outperformed the tool in 

higher accuracy and specificity for most of the cell types (Table 
1 and Figure 2). More importantly, in contrast with scVI, 
scCompare has a flexible utility in that it can compare atlases of 
scRNA-seq data (Table 2) (Figure 3) or, in the case of CM dif-
ferentiation protocols, reveal an unmapped cluster of single 
cells (Figure 4). scCompare also allows for the identification of 
“unmapped” cells based on their dissimilarity to computed sig-
natures by setting statistical cutoffs. We demonstrated the util-
ity of this feature in our comparison of CM differentiation 
protocols, which revealed an unmapped group of cells which 
may have some biological relevance (Figures 4 and 5).

It is clear that scRNA-seq data are large, complex and requires 
a fair amount of bioinformatics expertise, computational savvi-
ness, and biological intuition to mine the data effectively. scCom-
pare provides a fairly straightforward analysis pipeline for novices 

Figure 6. scCompare grid search exploring the effects of parameter optimization on results using the HPA scRNA-seq data set. (A) Each point (a subset 

of 10 000 cells) represents an individual run of scCompare, with its highly variable genes assigning position in X and Leiden clustering resolution 

assigning its position in Y. The color of each point is assigned by its classification performance as measured by class-size weighted F1 score. Panels (B) 

and (C) present a different view of this data, where the points are positioned by map and test misclassification rates in X and Y, respectively. The identify 

line acts as a visual guide, where points deviating from this line have unequal percentages of map and test set misclassification rates. The plots are 

colored by (B) number of Leiden clusters and (C) number of highly variable genes, respectively. Panel (D) shares the same axis as (A), but points are 

instead colored by the absolute difference in misclassification rate between map and test sets.
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to use. In fact, our assessment of 2 key parameters used in the 
scCompare pipeline gives guidance to users on how to optimize 
analysis results (Figure 6). However, there are a few caveats to 
consider when using scCompare to glean biological insight from 
a comparison of 2 scRNA-seq data sets: (1) the mapping data set 
requires identities of the cells or biological expertise to pheno-
typically label them; (2) often times the mapping data set has a 
hierarchical structure (Figure S3) to the cell identities, and as 
such, the results will likely differ based on the level of phenotypic 
annotation used; thus, it is important to evaluate the correlation 
dendrogram produced during the scCompare pipeline run to 
identify phenotypic signatures that are highly correlated as they 
may lead to misclassification of the test data set (Figure S3); (3) 
the statistical cutoffs are user-defined and can be adjusted to 
refine the phenotypic characterization in the test data set; (4) 
cells may be misclassified or unlabeled if they have significantly 
higher sparsity than the cells used to generate the signatures; and 
(5) it is plausible that the cell cycle may be confounding and cells 
may map to cell cycle signatures on the sole basis of that pheno-
typic property, despite, for example, originating from a totally 
different germ layer.

Given the utility and practicality of scCompare, we envision 
that the tool will be of value to the basic science research com-
munity, biotechnology, and pharmaceutical industries, when 
needing to compare large scRNA-seq data sets.
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