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Abstract: Early detection and accurate diagnosis are pivotal in the management of endometriosis and
endometriosis-related ovarian neoplasms (ERONs), yet there is no clear common ground regarding
their pathogenesis. Endometriosis is a debilitating pathology that profoundly impairs the quality of
life. Although the spontaneous resolution of endometriosis is possible, studies suggest that it can
be a progressive condition, and ERONs can develop. The gold standard for diagnosis remains as
the invasive method of laparoscopy followed by histological confirmation. In recent years, novel
biomarkers have been discovered. MicroRNAs (miRNA) represent important epigenetic modulators
of gene expression and are very attractive as biomarkers due to their lower complexity, tissue
specificity, and stability in bodily fluids. Several studies have advanced the possibility of miRNAs
becoming potential biomarkers in endometriosis and ERONs. Our aim is to bring these studies
together in order to have a better understanding of whether, how, and when miRNAs might be
used as biomarkers for these pathologies. Methods: We selected the reviewed papers from Google
Academic, PubMed, and CrossRef. A total of eight studies met the inclusion criteria. Results: MiR-200
family, miR-143, 145, miR-20a, and miR199a were the most commonly dysregulated miRNAs in
endometriosis, and miR-200 family was found to be dysregulated in both ERONs and endometriosis.
Conclusions: No single miRNA was considered as a sole biomarker for this pathology. However,
since the prognostic value of biomarkers is generally enhanced if more are assessed at the same time,
a panel of miRNAs could be a better indicator of the disease.

Keywords: endometriosis; endometriosis-related ovarian neoplasm; miRNA; reverse transcription
polymerase chain reaction (RT-PCR); biomarker

1. Introduction

Endometriosis is an inflammatory disease that regularly associates chronic pelvic pain, dysmenorrhea,
and infertility. This gynecological pathology is characterized by lesions of endometrial-like tissue located
in different sites outside of the uterus [1]. The most commonly agreed upon pathogenic theory of
endometriosis is based on the phenomenon of retrograde menstruation. The diagnosis is delayed by
8–10 years due to the misinterpretation of endometriosis symptoms as common menstrual cramps [2].

Over the past few decades, a clearer picture of the epidemiology of endometriosis has emerged.
Literature review suggests that African and Hispanic [3] women have lower rates of endometriosis,
while Asian women have higher rates compared to white women [4]. It is estimated that 52.7% of
women are between 18–29 years old at the time of diagnosis [5]. Even though the prevalence of
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this disease is not accurately expressed, it is believed that approximately 7% to 15% of women of
reproductive age [6] have endometriosis with a significantly increased number of infertility cases [7].

Although spontaneous resolution of the disease is possible, recent reports suggest that
endometriosis can be a progressive condition [8], and endometriosis-related ovarian neoplasms
(ERONs) can develop.

Endometriosis, like cancer, is characterized by cell invasion and unrestrained growth. Furthermore,
endometriosis and cancer present some similarities, such as the development of new blood vessels and
a decreased apoptosis. Despite these similarities, the disease is not considered a malignant disorder, but
it can progress to carcinogenesis, and endometriotic lesions may become malignant [9]. Endometriosis
has mixed traits of benign disease and malignancy, and its pathogenesis consists of uncontrolled cell
proliferation and distant spread of cells. However, it is not capable of producing severe catabolic
disturbances, metabolic disorders, or death. Sampson has recognized the possibility of transformation
of endometriotic tissue into malignant ovarian cancer for almost 100 years, and endometriosis is
considered to possess a premalignant potential [10,11].

Ovarian cancer represents the fifth cause of cancer-related death in women. It also comprises a
histologically and genetically broad range of tumors, including those of epithelial, sex cord-stromal,
and germ cell origin [12]. In 1925, Sampson first described the ERONs and the diagnosis criteria
for carcinomatous development in endometriosis: similar histological pattern, the coexistence of
carcinoma and endometriosis into the same place in the ovary, as well as the exclusion of a second
malignant tumor elsewhere [13]. In addition to these criteria, the morphological changes of benign
endometriosis lesions contiguous with cancerous tissue are a prerequisite for the adjudication of a
malignancy originating from endometriosis. This hypothesis was postulated after the Sampson criteria
by Scott in 1953 [14].

In respect to ERONs incidence, it is surmised that approximately 60% to 80% of these carcinomas
occur in the presence of atypical ovarian endometriosis [15], and tumors are predominantly clear cell
and endometrioid types [16]. A review that included 29 studies from 1973–2002 on the prevalence
of endometriosis in epithelial ovarian cancers revealed a prevalence of 4.5% serous, 1.4% mucinous,
35.9% clear-cell, and 19% endometrioid ovarian carcinomas [17].

Ovarian epithelial tumors are classified into two major categories. Type I ovarian carcinoma
contains clear cell carcinoma, endometrioid carcinoma, mucinous carcinoma, and low-grade serous
carcinoma. Type II ovarian carcinoma include the most lethal type of ovarian neoplasms, represented
by high-grade serous carcinoma [18]. Both type I and type II ovarian tumors are characterized by
different precursor lesions and by distinct molecular genetic alterations that account for their unique
clinical manifestation and diagnosis pattern.

A growing body of evidence from both clinicopathological and molecular studies suggests
that most ERONs develop from endometriotic cyst epithelium through different stages of tumor
progression. Molecular analyses of ERONs have identified several molecular genetic alterations that
lead to aberrant activation or inactivation of different pathways [19]. The proliferation of tumor cells
and the relationship between these cells and the components of the extracellular matrix represent
significant events in the carcinogenesis progress [20]. Thus, understanding the molecular mechanism
and the pathogenesis involved in the development of ERON is paramount for the discovery of new
biomarkers that might aid early detection and adequate management of the disease.

Recently, new modulators of gene expression—microRNAs (miRNAs)—have been discovered,
and their stability and specificity might lend significant potential biomarker value for endometriosis.
Furthermore, several studies investigated various circulating miRNAs as biomarkers for ERONs,
but the disagreement between these papers upholds the demand for larger and well-controlled
clinical trials.

Early detection and accurate diagnosis are pivotal in the management of endometriosis and
ERONs, yet there is no clear common ground regarding their pathogenesis. Despite being frequently
encountered pathologies worldwide with serious consequences and high financial burden, the gold
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standard for diagnosis remains as the invasive method of laparoscopy followed by a histological
examination. Hence, researchers have concentrated their efforts in bridging the gap between different
possible diagnostic techniques, one of these being the development of noninvasive biomarkers.

While the literature review offers a large array of studies on the importance of miRNAs in both
endometriosis and ERON, there is little consensus regarding the results of these studies. This can be
attributed, in part, to the different technologies employed, as well as the heterogeneity of cell types
or variations in circadian rhythm. Our aim is to bring these studies together and create a common
denominator to have a better understanding of whether, how, and when these biomarkers might be
used. The prognostic value of biomarkers is usually increased if more are assessed at the same time.
This becomes particularly important in high incidence pathologies with long lag time between the
onset of nonspecific symptoms and diagnosis, such as endometriosis and ERON.

2. Material and Methods

This study is a literature review on endometriosis and ERONs, and it was conducted based
on previously published articles. With an ongoing interest in the field of pathogenic molecular
mechanisms, we aimed at addressing this topic regarding endometriosis and ERON, given the high
burden that these pathologies pose on both the patient and the medical system alike.

While literature offers a long array of studies on the diagnosis and the treatment of both of
these two diseases, it has proven to be rather scarce in assessing the potential role of miRNAs,
ARID1A, and PIK3/ART as biomarkers for endometriosis and ERONs. Our search for related articles
in databases such as Google Academic, PubMed, and CrossRef was performed using the Medical
Subject Headings (MeSH) keywords, “endometriosis”, “endometriosis-related ovarian neoplasms”,
“biomarker”, “miRNA”, and “RT-PCR”. Furthermore, our inclusion criteria consisted of full-text
original English written studies based on humans, assessing the dysregulation of serum miRNAs in
endometriosis (on both cases and controls) using RT-PCR and microarray for the miRNAs profiling.
Only one notable exception was made for one paper that analyzed the level of miRNAs in baboons
with induced endometriosis following a 90 days treatment with simvastatin. Despite the research being
performed on primates, it supports the idea that miRNAs could be used as diagnostic and prognostic
biomarkers for these gynecological pathologies and thus was included in our analysis. A total number
of eight studies met all our criteria.

3. Molecular Mechanism and Pathogenesis of ERONs Development

Endometriosis is characterized by the presence of ectopic endometrial-like tissue outside of the
uterine cavity [21] with the ovary and the pelvic peritoneum being the most common locations. Various
other ectopic sites, such as the diaphragm, the pleura, the pericardium, or even the brain, could also be
involved [22]. Although the malignant potential of the endometriotic tissue has been recognized, and
extensive research has been conducted, the real mechanisms behind it have yet to be uncovered [23].

The most common pathogenic factors of both endometriosis and ovarian cancer include familial
predisposition, molecular level genetic alterations, increased angiogenesis, increased cell adhesion,
and hormonal factors [24].

Over the last few decades, many types of synthetic chemicals with an environmentally harmful
potential have been manufactured. Some of these chemicals have a proven ability to disturb the fine
balance of the endocrine system, resulting in the disruption of estrogen action and various anomalies
of the female reproductive system, fertility, and the development of genital malignancies [25]. The
processes that turn endometriosis into a cancer precursor are ongoing topics of intense research.
However, despite the advancements in the molecular analysis of ERONs, they remain largely
elusive [26].

Epithelial ovarian cancer (EOC) remains the first cause of death from gynecological malignancies,
with clear cell carcinoma (CCC) and endometrioid ovarian carcinoma (EnOC) being the most prevalent
histological types in patients with associated endometriosis [26]. One of the mechanisms of the
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endometriosis progression to ERONs is based on the increased level of iron-mediated oxidative stress
due to repeated bleeding episodes, which modifies the genomic DNA. The damage of DNA or loss of
heterozygosity (LOH) in the ectopic foci of the endometrium caused by iron-induced oxidative stress
may be a critical factor in the carcinogenic process [27,28]. Furthermore, a subsequent estrogen-receptor
(ER) depletion may be observed, and the loss of estrogen function may play a critical role in the
progression of carcinogenesis and the aggressiveness of ERONs [29].

Type I ovarian carcinomas tend to be slow-growing and often share mutations in different genes,
such as PTEN, ARID1A, KRAS, BRAF, PIK3CA, CTNNB1, PPP2R1A, β-catenin/Wnt, and microsatellite
instability. Recent studies have suggested that type II ovarian carcinomas are mainly high-grade
neoplasms characterized by aggressive behavior, nearly ubiquitous presence of p53 mutations, and a
high level of genetic instability, while type I ovarian carcinomas do not possess a p53 mutation [30–33].

Figure 1 is a schematic representation of the mechanism in carcinogenesis of the
endometriosis lesions.
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Figure 1. The mechanism of the progression of endometriosis to endometriosis-related ovarian cancer
(adapted after Tanase et al. [26] and Samartzis et al. [34]). The process is initiated by heme and
iron-mediated oxidative stress, leading to chronic inflammation and repeated hemorrhage. The
oxidative stress produces alterations at the DNA level. These free radicals species are generated by
an integrated antioxidant defense mechanism, and their production is a prerequisite in modulating
different biochemical functions [35]. During the malignant transformation of endometriosis, estrogen
receptor (ER) down-regulation is observed. Loss of estrogen function, loss of heterozygosity (LOH), and
the mutation of other specific genes represent the trigger factors for the switch from endometriosis to
endometriosis-related ovarian neoplasms (ERONs). Additional genes, such as ARID1A, abnormalities,
or other molecular alterations may lead to the progression towards ovarian cancer.

4. ARID1A Mutations in ERONs

ARID1A is a protein that protects cells from becoming cancerous. When different mutations occur
in the ARID1A gene, the protein cannot be formed and detected by immunohistochemistry. ARID1A
mutations are identified in ovarian clear cell carcinoma with a high frequency [36]. The gene consists
of 20 exons, and approximately 30% of the clear cell carcinomas of the ovary revealed homozygous
mutations of this gene. The ARID1 subfamily includes ARID1A and ARID1B, two subunits of the
SWI/SNF chromatin remodeling complex [37,38], and data suggest that ARID1A may act as a tumor
suppressor [39].

Mutations of ARID1A seem to be frequently involved in ERONs, and almost 73% of heterozygous
mutated ovarian tumors are characterized by a loss of protein expression without the loss of
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heterozygosity [40]. The frequency of loss of ARID1A expression in the endometriosis lesions
is an ongoing concern in many studies, as it is suspected that it might be the major genetic alteration
that determines the evolution of endometriosis to malignancy [41].

Guan et al. sequenced the ARID1A gene in a total of 93 tumor samples with various locations and
concluded that none of the 56 ovarian tumors revealed somatic mutations in ARID1A. They correlated
the status of ARID1A with the immunohistochemistry and found a significant correlation of ARID1A
expression with its mutational status in 51 out of 56 ovarian tumors [42]. Guan et al. also revealed
that ARID1A functions as a tumor suppressor. This protein interacts with the p53 protein, and it is
capable of suppressing the cellular proliferation through p53-dependent transcriptional regulation of
CDKN1A and SMAD3. Thus, the inactivating mutations of ARID1A and TP53 are synonymous, as
mutations in TP53 or ADID1A abolish the transcription of tumor suppressors and allow uncontrolled
proliferation, resulting in ERONs [43].

The results suggest that the loss of ARID1A expression and ARID1A mutations in endometriosis
may be involved in the development of ERONs. Furthermore, immunohistochemically, the loss of
ARID1A expression may be correlated with truncating ARID1A mutations.

The link between the loss of ARID1A expression, the development of ERONs, and the circulating
miRNAs is not well understood yet. Two miRNAs have been found elevated in endometriosis, miR-221
and miR-222, and their role in increasing cell proliferation could explain the pathophysiology of
endometriosis. These circulating miRNAs target ARID1A and down-regulate its expression [44].
Therefore, in women with endometriosis and high levels of miR-221 and miR-222, the loss of ARID1A
expression could determine the progression to ERON. Although no study has illustrated upregulation
of these miRNAs related to ERONs, further investigation regarding the potential of miR-222 and
miR-221 being used as biomarkers for ERONs should be conducted.

5. PIK3/AKT-Pathway Mutations in ERONs

Phosphatidylinositol 3-kinase (PI3K)/AKT is a pathway that supports many mechanisms in the
process of carcinogenesis [43]. PI3K/AKT pathway mutations have been reported as determining
factors of ERONs development. In CCC and EOC, the activation of the PI3K/AKT pathway through
mutation of PIK3CA, AKT, and inactivating mutations of PTEN are frequently involved [44]. Studies
reported that the mutations in PIK3CA encoding p110α and the activation of the PI3K/AKT pathway
by loss of PTEN expression appeared in 33–40% of EOC and 40% of CCC [45,46].

There is increasing evidence that ARID1A mutations and PIK3/AKT-pathway mutations may
coexist and may be involved in the development of ERONs. Guan et al. [43] tested the possibility
of molecular dependency of ARID1A and the PI3K/PTEN pathway in ARID1A knockout mice
and ARID1A/PTEN double knockout mice models. The mice with a knock-out of ARID1A were
conditionally depleted of ARID1A (10 mice) and simultaneously depleted of ARID1A and PTEN (12
mice), but they did not develop histological alterations. However, 40% of the mice with a simultaneous
knock-out of ARID1A and PTEN developed poorly differentiated ovarian tumors, and 60% developed
ovarian epithelium hyperplasia. The study concluded that ARID1A inactivation is not sufficient to
initiate the carcinogenesis process, the alteration of the PI3K/PTEN/AKT pathway being a prerequisite
in promoting tumor progression.

6. Circulating miRNAs as Biomarkers in Endometriosis

6.1. miRNAs—An Overview of Biogenesis and Function

MicroRNAs (miRNA) are single-stranded, non-coding RNAs of approximately 21–25 nucleotides
long [47] and represent important epigenetic modulators of gene expression in a wide range of
pathologies and physiological processes. At the endometrial level, miRNA is involved in the dynamic
changes associated with the menstrual cycle and the pathophysiology of reproductive disorders, such
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as endometriosis and recurrent miscarriage. miRNAs are RNA fragments able to alter the function of
distant cells and suppress the production of specific proteins to alter cell behavior [48].

The first miRNA was discovered over 20 years ago, and currently, there are over 2000 miRNAs
described in humans [49]. It is believed that miRNAs collectively regulate one-third of the genes [49].
For decades, RNA was underestimated and thought to play a minor role in gene expression. However,
in the late 1960s, a subset of RNA was found to control gene expression [50]. Since their discovery
in 1993, a comprehensive database of miRNAs has been created and is constantly being updated,
archiving all the published miRNA sequences and annotations with the latest release in October 2018,
as miRBase 22.1 [51].

These non-coding RNAs are grouped into distinct classes based on their function and origin. These
classes include microRNA (miRNA), small temporal RNA (stRNA), short interfering RNA (siRNA),
short hairpin RNA (shRNA), small nuclear RNAs (snRNA), small nucleolar RNAs (snoRNA), transfer
RNAs (tRNA), and ribosomal RNAs (rRNA) [52]. Following the completion of the Human Genome
Project, it was found that there are almost 1000 genes in humans that encode miRNAs, accounting
for approximately 3% of the human genome [53,54]. miRNAs are situated in the exons of non-coding
genes, the introns of coding and non-coding genes, and the intragenic regions [55]. More than 60%
of human protein-coding genes have conserved sites for miRNA [56]. Since they play a vital role
in different physiological and pathological processes, such as cell-to-cell signaling, cellular division,
differentiation, and death, various aberrations of miRNAs can cause multiple diseases, including
cancer [57,58]. Almost 50% of human miRNA genes are present at genetic loci, which are involved in
cancers [59].

MiRNAs are stored intracellularly, packed into extracellular vesicles, and released into circulation,
where various chaperones carry them [60]. A study conducted by Vickers et al. pointed out that
high-density lipoprotein (HDL) is also able to transport endogenous miRNAs and deliver them to
recipient cells with functional targeting capabilities [61]. The circulating miRNAs are taken up by
recipient cells, repressing the translation.

The biogenesis of miRNAs is a complex process, and an individual miRNA can regulate more than
a hundred mRNAs [62]. RNA Polymerase II (Pol II) transcribes miRNA genes, producing hundreds of
primary miRNA transcripts, named pri-miRNAs. A pri-miRNA is composed of a double-stranded
stem of approximately 33 base pairs, a terminal loop, and two flanking unstructured single-stranded
segments [63]. After the first transcription, pri-miRNA is cropped into a 7-nucleotide hairpin-like
precursor miRNA, named pre-miRNA [64–66].

Pri-miRNAs are capped at the 5’ end, polyadenylated, and finally spliced. A pri-miRNA can
generate six miRNAs or more. The pri-miRNA is cleaved by a microprocessor complex formed by an
RNase III enzyme, Drosha, and an RNA binding cofactor, Pasha, to form pre-miRNA. Drosha liberates
the double-stranded stem from the remainder of the pri-miRNA by cleaving proximal and distal of the
stem, and thus generates a pre-miRNA. The cleavage of pri-miRNA by microprocessor begins with
DGCR8 [a double-stranded (ds) RNA binding protein] recognizing the ssRNA-dsRNA junction typical
of a pri-miRNA [67–70].

Pre-miRNA is then exported from the nucleus into the cytoplasm by exportin-5 (Exp-5) through
an energy-dependent process. Then, Dicer, which is an RNase III enzyme, cuts the loop at the 3’ and
5’ end, forming an miRNA duplex of 22 nucleotides with 3’ overhangs of two nucleotides. After the
formation of this duplex, it will be unwound by enzymes to form two miRNAs. After a pre-miRNA is
released from a pri-miRNA in the nucleus, it is exported by RanGTP and Exp-5 to the cytoplasm [69].
One of these miRNA will be destroyed, and one will bind to the Argonaute protein to be incorporated
into the RNA-induced silencing complex (RISC) [71].

The principal mediators of miRNA function are Ago proteins. Binding of the miRNA to a target
miRNA always occurs in the presence of an Ago protein. Base-pairing between nucleotides 2 and 8 of
an miRNA and its cognate miRNA target is essential for binding miRNAs to their targets [72,73]. After
the binding of miRNA to a target mRNA, the genes are silenced by mRNA cleavage or by translational
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repression. miRNAs bind to the 3′ untranslated region of specific mRNA targets, leading to translational
repression or mRNA cleavage. They play an important role in the regulation of gene expression at
the post-transcriptional level. Their importance resides in the intricate cooperative regulations that
take place between mRNA and miRNA, since a single miRNA can control the expression of several
mRNAs, and a single mRNA may be targeted by more than one miRNA [74]

6.2. miRNA Sequencing Methods

Numerous studies on human and animal models have highlighted the importance of miRNAs in
both the developmental process as well as different pathologies, including endometriosis. miRNA
profiling is an essential tool for the identification of differentially expressed miRNAs in normal and
pathological processes and can be achieved by various techniques. Routine biopsies for miRNA
profiling have not proven to be a practical option for early detection. As such, researchers are turning
towards less invasive procedures, such as circulating miRNA from serum or plasma [75]. Since
miRNAs are remarkably stable, disease-specific miRNA signatures have been investigated in various
extracellular fluids [76,77]. The choice of a specific method depends on the body fluid, the number of
miRNAs intended to be assessed, the available technology, and the cost [75].

miRNA profiling is a process that involves multiple steps, from the discovery phase, when miRNA
expression profile is analyzed and compared between cases and controls, to the validation phase. There
are several available methods that can be employed, including qRT-PCR, microarrays, sequence-specific
hybridization in solution followed by miRNA molecules counting, and direct sequencing, each of them
with their unique advantages and limitations [75]. Currently, the gold standard for miRNA profiling
and quantification is qRT-PCR due to its high accuracy and sensitivity [78].

A novel miRNA quantification method has been developed using stem-loop RT followed by
TaqMan PCR analysis. Stem-loop RT primers are better than conventional ones in terms of RT efficiency
and specificity. Precise quantification is achieved routinely with as little as 25 pg of total RNA for most
miRNAs. [79].

Similar to the TaqMan assay, the Qiagen SYBR green-based miScript PCR System enables the
profiling of several hundred miRNAs from the same sample. The TaqMan assay is one of the most
specific and sensitive methods for miRNA profiling and represents one of the most widely used [80].

Next-generation sequencing platforms have been introduced to sequence miRNAs. These novel
platforms allow the sequence of millions of DNA fragments in parallel and include a wide range of
categories, such as Solexa (Illumina®, San Diego, CA, USA), MiniSeq (Illumina®, San Diego, CA,
USA), SOLid, MiSeq (Illumina®, San Diego, CA, USA), etc. Solexa sequencing provides a promising
method for cancer-related miRNA profiling, and selectively expressed miRNAs could be used as
potential serum-based biomarkers for ovarian cancer diagnosis [81]. The primary advantage of this
technology is that it does not require knowledge of target miRNAs nor specific probes or primers and
therefore does not limit studies to known miRNAs. [82]. The greatest advantage of the next-generation
sequencing platforms approach is the potential for discovery of new small RNAs, such as ncRNAs.

Thus, as future clinical investigations start filling the gaps of actual knowledge, the advantage
of using not only extracellular miRNAs but perhaps other RNA species will significantly expand
our understanding of the pathogenic mechanisms of endometriosis, ERONs, and possibly other
diseases [75].

7. Results and Discussion

7.1. Differential miRNAs Expression in Endometriosis

miRNAs are considered paramount regulators of various cellular processes with high potential of
becoming biomarkers of diagnostic and prognostic importance in endometriosis. Based on our analysis
of the literature review, we determined that miRNA profiling was mainly achieved by microarray
followed by qRT-PCR validation. Our study aimed to explore the role of circulating miRNAs as
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non-invasive biomarkers in endometriosis as well as the implication of these genes in ERONs diagnosis
by finding the most specific miRNAs associated with endometriosis.

Since many miRNAs are tissue-specific, their dysregulation in peripheral blood points towards
various pathologies, including endometriosis. miRNAs are biomarkers used not solely for diagnostic
purposes but also for disease stratification [83]. miRNAs are very attractive as biomarkers due to their
lower complexity, tissue specificity, lack of known post-translational modifications, and stability into
blood, urine, or tissues [84]. As such, despite various limitations of these molecules, they have given a
whole new dimension to the field of biomarkers.

One of the most studied miRNAs associated with endometriosis is the miR-200 family, consisting
of miR-200a, miR-200b, and miR-141. These miRNAs are dysregulated in both blood and tissues of
endometriotic patients. Ohlsson et al. [85] conducted a study to highlight the association of these three
members of the miR-200 family with endometriosis. Their results revealed that the combination of
these three circulating miRNAs had a sensitivity and a specificity of 84.4% and 66.7%, respectively.
Based on the expression of the miR-200 family in the tissues of endometriotic women, Ohlsson [85]
and Hawkins [86] pointed out in their studies that these miRNAs were downregulated in ectopic
endometrium compared to the eutopic endometrium, and that miR-200b exhibited a decreased
expression in endometriomas compared to normal eutopic endometrium.

Ectopic endometrium has many characteristics of malignant cells, such as invasiveness, high
proliferation rate, and metastasis. It has been proven that a significant down-regulation in the miR-200
family induces an epithelial-mesenchymal transition characteristic of endometriosis [87]. As such, the
down-regulation of these miRNAs can be associated with endometriosis as part of the pathophysiology
of this disease.

Another circulating miRNA considered to be a leading biomarker for endometriosis is miR-20a.
Our analysis revealed that it was down-regulated in several studies and thus seems to play an important
role in the aetiopathogenesis of endometriosis [88,89]. The sensitivity and the specificity of these
biomarkers were increased. MiR-20a targets TGF-β and Il-8, and its down-regulation leads to increased
concentrations of these cytokines. Considering the role of TGF-β and Il-8 in promoting inflammation
and tissular repair, the down-regulation of miR-20a, which targets these factors, may explain the
growth of endometriotic lesions. miR-20a was also found up-regulated in the ovarian tissue of patients
with ovarian endometriosis and promoted neovascularization [90]. It is worthwhile mentioning
that miR-20a is not specific for endometriosis, as it has been found dysregulated in various cancers,
including ovarian cancer. Furthermore, it cannot distinguish between primary ovarian cancer and
ERONs. miR-143 has been found to be up-regulated in the serum of affected women. It is associated
with cell invasion and intensive migration, which are characteristic of endometriosis. Increased
expression of miR-143 will repress the transcription of its target, FNDC3B (fibronectin type III domain
containing 3B), and promote cell invasion and migration [91].

Wang et al. [92] revealed in their study that miR-199a is another circulating miRNA with sensitivity
and specificity of 78.33% and 76% for endometriosis. This marker was significantly down-regulated
in both ectopic endometrium and ovarian endometriomas compared to eutopic endometrium [93].
miR-99a targets Nf-kB and Il-8, which enhance the invasiveness of endometrial cells. Thus, the
down-regulation of miR-199a will increase the expression of Nf-kB and Il-8, leading to increased
invasive capability [94]. In contrast, other studies refer to an up-regulation of miR-199a in women
with endometriosis. These miRNAs also target CLIC4 and VCL and produce a deep infiltration of
endometrial cells [92].

Similarly, miR-145 expression in endometriosis is also controversial. While some studies have
observed the down-regulation of miR-145 [92], others imply that miR-145 is up-regulated in this
gynecological disease [95]. Furthermore, miR-145 was found to be down-regulated in patients with
stage 1 and 2 endometriosis, but not with advanced stages [51].

In Table 1, we summarize the studies illustrating the sensitivity and the specificity of various
dysregulated miRNAs in endometriosis.
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Table 1. Reported sensitivity and specificity of dysregulated microRNAs (miRNAs) in endometriosis.

Author, Reference miRNA Sensitivity (%) Specificity (%)

Jia, 2013
[88]

miR-20a 60 90
miR-22 90 90

miR-17-5p 60 80

Cosar, 2016
[95] mi-125b-5p 100 96

Cho, 2015
[96] let-7d 83.3 100

Wang, 2013
[92]

miR-122 80 76
miR-141-5p 71.69 96

miR-145 70 96
miR-199a 78.33 76

Suryavanshi, 2013
[97] miR-16+miR-191+miR-195 88 60

Rekker, 2015
[98]

miR-141 71.9 70.8
miR-200a 90.6 62.5
miR-200b 90.6 70.8

Nisenblat, 2019
[99] miR-155+miR574-3p+miR139-3p 83 51

7.2. miRNAs Dysregulations in Endometriosis

The analysis of circulating miRNAs for endometriosis has increased the interest regarding their
involvement in the large biomarker panel of endometriosis. Therefore, many studies aimed at
highlighting the usefulness of this non-invasive biomarker in the early diagnosis of endometriosis.
miRNAs are considered potent regulators of gene expression in the pathogenesis of endometriosis,
since cell survival, the remodeling of the matrix, proliferation, and angiogenesis are essential in the
pathophysiology of this disease and are potentially regulated by miRNAs [100].

The most used techniques in miRNA expression assessment are next-generation sequencing
and microarrays [101]. The first step in defining a pathological miRNA expression is to evaluate its
pattern in the pathological tissue or different fluids of the body, including urine, serum, plasma, or
cerebrospinal fluid [102].

A preclinical study performed by Seifer et al. [103] used miRNA array to investigate miRNA
abundance in the serum of mice with experimental endometriosis. Their results indicated that
let-7a-5p was decreased in the serum samples of the mice. Serum let-7 family mRNA revealed similar
dysregulation in endometriosis in both humans and mice with c-5p and e-5p downregulated. This
study suggested that miRNAs may be involved in endometriosis and may be used as biomarkers, but
further investigation to determine the functional role of let-7 miRNA is necessary.

Several clinical studies have reported differences between miRNA expression in the eutopic
endometrium from women with and without endometriosis. Cho et al. [96] evaluated in their study
whether miRNA is detectable in the circulation of patients with endometriosis. They used serum
samples collected from patients undergoing laparoscopy for endometriosis and compared the results
with samples collected from healthy controls. They concluded that the circulating levels of let-7b and
miR-135a were significantly decreased in affected women compared with controls, while let-7d and
7f showed a down-regulating trend. Furthermore, the expression of let-7b was strongly correlated
with higher serum CA-125 levels in endometriosis women, and let-7b, 7c, 7d, and 7e were significantly
lower during the proliferative phase of the menstrual cycle compared to controls.

In a study addressing the serum miRNA expression profile in the endometrium of women
with endometriosis compared to a control, Wang et al. [92] analyzed 765 serum samples using a
TaqMan microRNA array. The expression of miR-199a and miR-122 revealed an ascending trend in
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endometriosis compared with controls, while miR-145*, miR-141*, miR-542-3p, and miR-9* had a
decreased expression in endometriosis. The authors also highlighted that miR-199a was well correlated
with pelvic adhesion and lesion distribution of endometriosis. Therefore, based on these results,
miRNAs miR-199a, miR-122, miR-145*, and miR-542-3p could potentially be included as noninvasive
biomarkers for this pathology.

Laudanski et al. [104] enrolled 21 women with ovarian endometriosis and 25 healthy women
and analyzed the miRNA expression in their serum samples by PCR arrays. The researchers pointed
out that miR-483-5p and miR-629-3p were downregulated in the eutopic endometrium of patients
compared to controls. In conclusion, the down-regulation of these genes could be a determinant factor
of endometrial tissue overgrowth.

Rekker et al. [98] performed an investigation on 61 patients and 65 control women. They studied
the serum expression of the miR-200 family (miR-200a-3p, miR-200b-3p, and miR-141-3p) in the
included cohorts. They concluded that the expression of all these members was downregulated in
patients compared to controls, and that miR-200a-3p and miR-141-3p had the highest potential in
being used as noninvasive biomarkers for endometriosis. Another aspect of miRNA panel analysis
consisted of the circadian variations assessment. The study revealed lower evening levels, an important
observation that should be further investigated in the analysis of circulating miRNAs expression.

In 2013, Jia et al. [88] conducted a 46 cases study with 23 women with endometriosis and 23
endometriosis-free controls. The miRNA expression pattern was analyzed by qRT-PCR, and the
authors concluded that miR-17-5p, miR-20a, and miR-22 were significantly downregulated in affected
women compared to healthy subjects.

Suryawanshi et al. [97] used global profiling of more than 1000 miRNAs based on qRT-PCR
in a 20-women screening cohort. In this screening, 23 miRNAs differentially expressed between
healthy controls and endometriosis-affected subjects were identified, contributing to the idea that
distinct plasma miRNA expression patterns may be considered specific noninvasive biomarkers
for endometriosis.

Grechukhina et al. [105] reported a polymorphism in the LCS6 let-7 miRNA binding site of the
KRAS 30-UTR that was detected in almost 31% of all endometriosis cases and was significantly higher
than controls. In women harboring this KRAS mutation, the altered miRNA led to uncontrolled
proliferation of endometrial stromal cells, invasion, and ultimately endometriosis development.

Literature review reveals only one study that investigated the expression of miRNAs in a
nonhuman primate model. Cosar et al. [106] evaluated the levels of circulating miRNAs in 16 baboons
with induced endometriosis following a simvastatin treatment for 90 days. The primates were divided
into two groups; one group received simvastatin, and the second group received vehicle only. The
endometriosis lesions were evaluated after 90 days by laparoscopy. The authors observed decreased
levels of miR-150-5p and miR-451a in the treated group, as well as increased levels of miR-3613-5p
compared to the untreated group. These results were similar to those obtained in previous human
studies. As such, circulating miRNAs suggest a high potential of being used as biomarkers not only
for diagnosis purposes but also for disease progression and therapy response. The lack of studies on
humans regarding the potential of miRNAs as prognostic biomarkers in endometriosis highlights the
necessity for further research in this direction.

A review of the clinical studies that analyzed miRNAs expression in endometriosis is presented
in Table 2.
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Table 2. Studies reporting miRNAs expression in endometriosis.

Author, Year,
Reference Biofluid Cases

mRNAs
Sequencing

Method
Results

Wang, 2016
[89] Serum

30 cases of stage I-II
endometriosis and

20 controls
Deep sequencing

Up-regulated: miR-185-5p,
miR-242-5p, miR-296-5p,

miR-3127-5p, miR-424-3p,
miR-4645-3p, miR-502-3p,
miR-542-3p, miR-550a-3p,

miR-636

Hsu, 2014
[93] Serum

40 cases of
endometriosis and

25 controls
Array profiling Down-regulated:

mir-199a-5p

Cosar, 2016
[95] Serum

24 cases of stage III-IV
endometriosis and

24 controls
Array profiling

Down-regulated:
miR-3613-5p, miR-6755-3p

Up-regulated: miR-500a-3p,
miR-451a, miR-18a-5p,

miR-342-3p, miR-125b-5p.

Burney, 2009
[107] Serum

4 cases of
endometriosis and

3 controls
Array profiling

Down-regulated:
miR-34c-3p, miR-9*,

miR-34b*, miR-34c-5p, miR-9

Suryawanshi, 2013
[97] Plasma 33 cases of and

20 controls Array profiling Up-regulated: miR-16,
miR-191, miR-195

Cho, 2015
[96] Serum

24 cases of stage III-IV
endometriosis and

24 controls
Targeted Down-regulated:

let7b, miR-125a

7.3. Circulating miRNAs as Biomarkers in ERONs and Ovarian Cancer

The purpose of miRNAs is to express various genes by repressing the translation of or causing
the degradation of multiple-target mRNAs [95]. In cancer, miRNAs play a pivotal role as regulatory
molecules, acting as oncogenes (oncomiRs) or tumor suppressors [108]. Based on the tissue-specific
dysregulation of miRNA expression profiles in cancer, the potential usefulness of these molecules has
been greatly explored over the past decades. With an accurate detection of miRNA quickly realized in
small biopsy specimens or extracellular fluids, researchers revealed the potential of miRNAs from
tumoral tissues as predictors of tissular origin.

The assays of miRNA in blood samples have been developed as novel, minimally invasive
biomarkers for the detection and the risk assessment of ovarian cancer, and qRT-PCR is the most
popular method used for gene expression quantification of miRNA [107]. Mitchell et al. pointed out
that miRNA from cancer tissues are protected from RNase activity, and these molecules might be used
as circulating biomarkers for various types of cancer [109].

Several studies concluded that serum or plasma miRNAs can discriminate women with ovarian
cancer from healthy patients, and that cell-free miRNAs circulating in body fluids such as blood, urine,
serum, or plasma may reflect not only the existence of a tumoral mass but also tumor histology, stage,
or prognosis. We identified only one study that aimed to determine if plasma miRNAs could be used to
differentiate patients with ovarian cancer from non-affected women. Suryawanshi et al. [97] described
three distinct miRNAs with strong differential expression between healthy people and patients with
ERONs. Furthermore, the majority of miRNAs expressed in human ERONs were mirrored in a mouse
model. The authors also measured the expression of miR-15b, 16, 21, 191, and 195 in a mice model,
since only these five miRNAs have mouse orthologs. Their results revealed that four of the five
miRNAs could also delineate the EAOC (Endometriosis-associated ovarian carcinoma) mice from
healthy controls, suggesting potential EAOC-specific pathogenesis leading to the dysregulation of
miR-15b, 16, 21, and 195. Moreover, Suryawanshi and coworkers paired tumor and plasma samples
from tumor-bearing KrasG12D/þ/Ptenloxp/loxp mice to support the hypothesis that miRNAs in the
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plasma do not reflect miRNAs expression in corresponding diseased tissues. They proved that no
significant correlation was detected in the paired samples from all five mice, mirroring the findings
in humans.

A high number of studies have investigated plasma and serum miRNA expression patterns in
ovarian cancer compared to ERONs. After analyzing miRNA profiles from 24 patients with ovarian
cancer, Hausler et al. [110] concluded that ovarian cancer-associated miRNA profiles are not yet
sensitive and specific enough, but if combined with other markers, they have the potential of being
used for ovarian cancer screening.

Kinose et al. [111] pointed out that several serum miRNA profiles are unique for ovarian cancer
and may be used as diagnostic and prognostic biomarkers. miRNAs such as the miRNA-200 family,
the miR 199/214 cluster, and the let-7 paralogs have been found dysregulated in chemoresistant ovarian
tumors. The miR-205 expression was significantly up-regulated and the let-7f was down-regulated in
plasma of EOC women when compared with healthy individuals, according to Zheng et al. [112].

miRNA could also distinguish women with high-grade serous ovarian cancer from healthy women.
Kan et al. [113] assessed serum miRNA levels from 28 ovarian cancer patients and 28 controls using
qRT-PCR following preamplification. miR-182, miR-200a, miR-200b, and miR-200c were up-regulated
in high-grade serous ovarian cancer subjects compared to controls. Furthermore, up-regulated miR-103
was the best predictive classifier of ovarian cancer. The researchers concluded that determination of
miRNAs levels might improve the diagnosis of ovarian cancer.

Guo et at. [114] prospectively investigated the effectiveness of miRNA-92 as a biomarker for
EOC. RT-PCR measured miRNA-92 levels in serum samples from 50 patients and 50 controls, which
revealed that miRNA-92 was significantly higher in EOC. Furthermore, the study reported a significant
correlation between miRNA-92 and the clinical stage of ovarian cancer.

Clear cell carcinoma of the ovary is one of the most common histological types of ERONs. With
the aim of identifying the usefulness of miRNAs in monitoring CCC progression and their potential
to serve as biomarkers for this disease, Chao et al. [115] analyzed the serum of patients with CCC
and performed 270 miRNA profiles by RT-PCR. Four miRNAs, namely hsa-miR-130a, hsa-miR-138,
hsa-miR-187, and hsa-miR-202, were elevated in the serum of preoperative patients. Their results
pointed out that miRNA may be a useful tool in detecting CCC as well as the recurrences of CCC, but
further studies are necessary.

Resnick et al. [116] used serum samples from EOC patients and extracted miRNAs using RT-PCR.
The results were compared to normal serum samples using the TaqMan Array Human MicroRNA
panel. miRNAs-21, 92, 93, and 29a were significantly over-expressed in the serum of cancer patients,
while miRNAs-155, 127, and 99b were significantly under-expressed in the same samples compared
to healthy subjects. Therefore, it can be inferred that these miRNAs might be used as biomarkers in
ovarian cancer with further research.

The down-regulation of miRNAs expression in ovarian cancer samples compared to control
samples was found in miR-106a, miR126, miR-146a, miR-150, miR-16, miR-17, miR-19b, miR-20a,
miR-223, miR-24, and miR-92a. According to Shapira et al. [117], the down-regulated expression
of miRNA was also observed in miR-106b, miR-191, miR-193a-5p, miR-30b, miR-30a- 5p, miR-30c,
miR-320, and miR-328.

The role of miRNAs as biomarkers in ovarian cancer has been highlighted in a wide range of
studies. Alternatively, with respect to the ERONs, there is still a lack of information, and further
studies are necessary to establish the effectiveness of these molecules in detecting endometriosis
related-ovarian cancer.

8. Conclusions

Despite being a benign gynecological disease, endometriosis is a debilitating pathology that
profoundly impairs the quality of life in terms of infertility, chronic pain, and vaginal bleeding. The gold
standard for endometriosis diagnosis remains as laparoscopy followed by histological confirmation,
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but novel non-invasive potential biomarkers of endometriosis offer promising perspectives and should
be further investigated.

Endometriosis has a malignancy potential. Various stimuli may disturb the normal evolution of
this pathology and convert it to endometriosis-related ovarian cancer. Although research results are
still equivocal, circulating mRNAs have emerged as attractive molecules to be considered as biomarkers
for endometriosis and ERONs, and further research should be conducted to validate miRNA as a
diagnostic tool.

Furthermore, miRNA expression profiles may be affected by pharmacological treatments and
clinical conditions. While only one study demonstrated the efficacy of miRNAs as biomarkers of
ERONs, there is a growing body of proof regarding the efficacy of these molecules as biomarkers in
ovarian cancer.

Although multiple studies were conducted on endometriosis, no single miRNA was considered
as a sole biomarker for this pathology. However, since the prognostic value of biomarkers is generally
enhanced if more are assessed at the same time, a panel of miRNAs could be a better indicator of the
disease. The seemingly conflicting results of different studies highlight the need for further extended
research to prove if miRNAs could become viable biomarkers for endometriosis and ERONs.
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Abbreviations

ARID1A AT-rich interactive domain-containing protein 1A
BRAF V-raf murine sarcoma viral oncogene homolog B1
CA-125 Cancer-associated carbohydrate antigen 125
CCC Clear cell carcinoma
CLIC4 Chloride intracellular channel 4
CTNNB1 Gene encoding catenin beta-1
DGCR8 Double stranded RNA binding protein
DNA Deoxyribonucleic acid
EAOC Endometriosis-associated ovarian carcinoma
EnOC Endometrioid ovarian carcinoma
EOC Epithelial ovarian cancer
ER Estrogen-receptors
ERONs Endometriosis-related ovarian neoplasms
Exp-5 Exportin 5
FGF-2 Fibroblast growth factor-2
HDL High density lipoprotein
IL-6 Interleukin 6
IL-8 Interleukin 8
KRAS V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
let-7 A micro-RNA precursor
miR Micro- RNA precursor family
miRNA Micro Ribonucleic acid
MMPs Matri metalloproteinases
p53 Protein 53
PI3K Phosphatidylinositol 3-kinase
PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
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Pol II RNA Polymerase II
PPP2R1A Protein phosphatase two scaffold subunit Aalpha
PTEN Phosphatase and tensin homolog
qRT-PCR Quantitative Reverse transcription polymerase chain reaction
RCBTB1 Regulator of chromosome condensation and BTB domain-containing protein-1
RISC RNA induced silencing complex
rRNA Ribosomal RNA
RT-PCR Reverse transcription polymerase chain reaction
shRNA Short hairpin RNA
siRNA Short interfering RNA
SMAD3 Mothers against decapentaplegic homolog 3
snRNA Small nuclear RNA
snoRNA Small nucleolar RNA
SMARCB1 A gene that encodes SWI/SNF related matrix-associated actin-dependent regulator of

chromatin subfamily B member 1
stRNA Small temporal RNA
SWI/SNF Switch/Sucrose Non-Fermentable
TGF-β Transforming growth factor beta
TNF-α Tumor necrosis factor alpha
TP53 Tumor protein p53
tRNA Transfer RNA
WWOX Ww domain-containing oxidoreductase
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