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Abstract

Mind wandering (MW) is extremely common during driving and is often accompanied by per-

formance losses. This study investigated the use of driving behavior measurements to auto-

matically detect mind wandering state in the driving task. In the experiment, participants

(N = 40) performed a car-following task in a driving simulator and reported, upon hearing a

tone, whether they were experiencing mind wandering or not. Supervised machine learning

techniques were applied to classify MW-absent versus MW-present state, using both driver-

independent and driver-dependent modeling methods. In the driver-independent modeling,

we separately built models for participants with high or low MW and participants with

medium MW. The optimal models can not offer a significant improvement than other mod-

els. So building effective driver-independent models with the leave-one-participant-out

cross-validation method is challenging. In the driver-dependent modeling, we built models

for each participant with medium MW. The best models of some participants were effective.

The results indicate the development of mind wandering detecting system should take into

account both inter-individual and intra-individual difference. This study provides a step

toward minimizing the negative impacts of mindless driving and should benefit other fields of

psychological research.

Introduction

Being unintentionally distracted from an intended focus is a common experience of most peo-

ple. Such distraction could be found in a variety of contexts of daily life [1]. For example, while

reading a book, the reader’s attention may drift away from the text towards self-centered mat-

ters [2]. After a period of time, the reader may realize that he or she has lost track of reading,

indicating the occurrence of mind wandering.

Mind wandering (MW) is a spontaneous, task-unrelated, internal mental process of which

the individual is often unaware [3]. It is a form of “looking without seeing” in which the eyes

are fixated on an appropriate external stimulus while very little is being processed, as the mind
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is focused on internal thoughts independent of the stimulus [4]. Individuals differ in suscepti-

bility to mind wandering because of the differences in control capabilities, the number and

importance of current life concerns, and the likelihood that those concerns will be triggered by

the present context [5, 6].

To know the occurrence of mind wandering, currently there are only two subjective report-

ing methods. The first is to have participants provide a mind wandering report in response to

thought probes placed throughout the task (probe-caught). The second is to allow participants

to provide a mind wandering report whenever they catch themselves mind wandering (self-

caught). Researchers have linked these mind wandering reports to neurological signals, acous-

tic and prosodic information, physiological signals, behavioral measures, and eye behaviors

[7, 8].

A variety of experimental tasks, including signal detection, reading comprehension, vigi-

lance and memory, have shown that mind wandering is often accompanied by performance

impairments [9]. In the present study, we examine mind wandering in the context of driving.

It is known that driving is a situation that often induces mind wandering. Drivers who are

involved in dramatic personal events or are thinking about personal problems have a higher

accident risk [10]. A few studies on mind wandering in driving situations have shown that par-

ticipants during mind wandering have longer response times to sudden events, drive at higher

speeds, maintain a shorter inter-vehicle separation distance [11], and tend to focus visual

attention narrowly on the road ahead [9]. Therefore, preventing mind wandering while driv-

ing is an important issue for driver safety.

To the best of our knowledge, the present study is the first to attempt to detect drivers’

mind wandering by their driving performance. A few previous studies have detected mind

wandering in reading or other tasks, such as [12], [13] and [14]. For example, the participants

of Franklin et al. [15] read approximately 5000 words of a novel in a self-paced word-by-word

reading task. Mind wandering was detected using a behavioral measure (reaction time). When

the text was difficult and a participant responded fast, the participant was predicted to be off

task; if a participant responded slowly in a difficult text, he or she was predicted to be on task.

Mind wandering could to be classified at a 72% correct rate during reading a difficult text

based on reaction time.

A few recent studies have detected mind wandering with machine learning classification

methods in a user-independent fashion. In these studies, features were extracted from time

series data, such as, behavioral or physiological data, then submitted to classifier to identify

mind wandering state. For example, Bixler and D’Mello (2016) [7] automatically detected

mind wandering during reading using a computer interface. Extracted features included con-

text features, global gaze features, and local gaze features, which were calculated from windows

prior to each mind wandering report. Mind wandering was detected with an accuracy of 72%

(kappa = 0.31) when probes were at the end of a page (using a Bayes net algorithm) and an

accuracy of 67% (kappa = 0.18) when probes were in the midst of reading a page (using a naive

Bayes classifier). Pham and Wang (2015) [16] detected mind wandering using heart rate fea-

tures calculated from windows before mind wandering reporting and lecture content features,

while participants viewed Massive Open Online Courses (MOOCs)-style lectures on a mobile

phone. They were able to achieve a kappa value of .22 (accuracy = 71.22%) with a KNN

classifier.

In the present study, we detect mind wandering state in a driving task, which is the same

task with Zhang and Kumada (2017) [17]. The experiment was conducted in a driving simula-

tor. Participants performed a car following task, requiring them to follow a vehicle and

respond to sudden braking of the front vehicle. As a secondary task, they reported their mind

wandering state when a tone probe was given. The present approach to mind wandering
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detection is to estimate mind wandering state by using driving behavior data. We extracted

both global and local features from the driving behavior data. With these features, we build

models with supervised classification techniques, both driver-independently and driver-

dependently, to discriminate instances in which mind wandering subjectively reported present

(‘MW-present’) versus absent (‘MW-absent’).

Experiment

This study was approved by the Ethics Committee in Unit for Advanced Studies of the Human

Mind, Kyoto University. Participants provided their written informed consent to participate

in this study. In this experiment, 40 participants, all holding a valid Japanese driver’s license,

were recruited from Kyoto University (age range: 20–39 years; mean age: 22.4 years). Data

were collected in a driving stimulator, which consisted of a Play-seat Evolution Black + Logi-

tech G27 and a screen (SONY FWD-S42H2, 1920 pixels × 1080 pixels). The driving scene was

simulated by UC-win/Road 10.4 and displayed on the screen. The vehicles were driven in

good weather and daylight, along the track depicted in Fig 1. The length of the track was

25,270 meters. No other traffic was set on the road except for the participant’s car and the

front car.

Before the experiment, participants practiced keeping a 20 m distance from the lead vehicle

and became familiar with the present task, car-following with mind wandering reporting. In

the experiment, participants were asked to maintain a 20 m distance from the lead vehicle and

to exert lateral control to stay in the lane. The lead vehicle was driven at a speed of 80 km/h

and braked at randomly selected times. While participants performed the car-following task,

they were also instructed to report their mind wandering state after hearing a brief thought

probe tone (duration 0.3s) by pressing buttons on the steering wheel. Participants were told to

report “MW-present” or “MW-absent” based on the thoughts immediately preceding the tone.

If the thoughts were unrelated to the driving task, such as planning their schedule or “zoning

out”, they should report “MW-present”. If the thoughts concerned with maintaining distance

from the lead vehicle and keeping in the lane, they should report “MW-absent”. The driving

task lasted for 25 min. The first minute allowed the participants adjust the distance from the

lead vehicle to the 20m. Starting from the 2nd minute, in every minute, the lead vehicle braked

once, and the tone probe occurred once. The tone probe did not occur when the lead vehicle

braked, decelerated or accelerated to normal speed, or changed direction in the 5th, 10th, 15th,

20th, and 25th mins.

Model building

The driving behavior variables are time series. The driving behavior variables time series seg-

ment just before tone probe could correspond to the reported mind wandering state. So we got

a data set consisting of two pre-labeled classes MW-absent and MW-present. The propose

here is to determine the mind wandering state given a segment of driver behavior variables,

which is a data mining task—accurately speaking a multivariate time series classification prob-

lem. In other words, we need to building model which could distinguish one class from

another; then the model can automatically determine to which class of unlabeled dataset

belong to. The process to solve such problem is showed in Fig 2.

Driver-independent modeling

Preprocessing. Variables Selection. The main driving task was keeping the car in the lane

while maintaining a certain distance from the lead vehicle. Four time series variables related to

the driving behaviors of lane-keeping and inter-car distance-keeping were selected from
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driving log data. Two variables, ‘offset from lane center’ (referred to as ‘offset’) and ‘steering

wheel ratio’ (‘steering’), described the participant’s performance on lateral position control;

the other two variables, acceleration or deceleration of a car by pushing the foot pedal (‘foot

operation’) and ‘distance from the lead vehicle’ (‘distance’), described the performance on lon-

gitudinal control. ‘Offset’, with units of meters, was negative if the participant’s vehicle devi-

ated to the left of lane center; the value was positive if the vehicle deviated to the right.

‘Steering’, ranging from -1 to +1, was defined as the steering angle relative to the maximum

Fig 1. Driving track. The ‘R’ and ‘Angle’ were the radius and central angle of arc. The driving track is similar to square. The edge of driving track was

composed of arcs with radius of 1150m and angle of 15. The edges were connected with an arc with radius of 191m and angle of 90.

https://doi.org/10.1371/journal.pone.0207092.g001
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turn angle. The maximum left turn corresponded to the value of -1 and maximum right turn

corresponded to the value of +1. The ‘Steering’ relative to the road curvature would been con-

sidered. In the UC-win/Road software, the lead car was set to drive automatically and ideally

along the road track, so here the relative ‘Steering’ was calculated by subtracting the lead

Fig 2. Model building process.

https://doi.org/10.1371/journal.pone.0207092.g002
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vehicle’s steering from the participants’ steering at the same position. The values of ‘foot opera-

tion’ ranged between -1 and +1, with positive values when the participant pushed the accelera-

tor pedal and negative values when the participant pushed the brake pedal. ‘Distance’, with

units of meters, was measured by the distance between the front center of the lead vehicle and

the participant’s car.

Data Transformation. To detect mind wandering by building driver-independent models,

the four selected variables were preprocessed by three different methods: unmodified data

(‘None’), standardized data (‘z-score’) and P-ICA [18]. P-ICA is a simple but efficient ICA

(independent component analysis) method, which finds a linear transformation that maxi-

mizes the statistical independence between the components of the resulting random vector.

Feature type. To build the models, we calculated two types of features: global features and

local features. Global features were extracted from the entire driving session of each participant

(starting from the 2nd minute), which indicated the different characteristics between individu-

als. For each preprocessed variable, we calculated four features: maximum value (‘max’), mini-

mum value (‘min’), mean value (‘mean’), and standard deviation (‘std’). Thus each trial of

mind wandering reporting had 16 (4 variables × 4 features) global features. The value of global

features for each participant were showed in S1 Table. Local features were extracted from the

preprocessed variables in the window just before the tone probe for participant’s mind wan-

dering report. For each variable, 21 features were computed in each window: mean value

(‘mean’), standard deviation (‘std’), maximum value (‘max’), minimum value (‘min’), median

value (‘median’), kurtosis, skewness, intercept, slope, goodness of fit of the linear regression

between the variable and time in the window, difference between the end value and the begin-

ning value of the variable (‘diff’), Shannon entropy (‘entropy’), coefficients of a 5-order autore-

gressive model (AR; 5 features, ‘ar1’, ‘ar2’, ‘ar3’, ‘ar4’, ‘ar5’), and the variance of coefficients for

the 3-level 1-D wavelet decomposition (4 features: ‘var(cd1)’, ‘var(cd2)’, ‘var(cd3)’, ‘var(a3)’).

Thus there were 84 (4 variables × 21 features) local features for each trial of mind wandering

reporting. These local features could show the variability of one participant’s behavior, which

could be referred to as ‘intra-individual features’. In previous studies [9, 19, 20], a window size

of about 10 seconds directly preceding a probe was employed. Here we calculated local features

within three different window lengths: 5s, 10s and 15s.

Feature selection and transformation. Before training the classifiers, we applied feature

selection to narrow down the number of features in each model. Here we considered firstly

using univariate feature selection method, to select features that significantly different between

MW-absent class and MW-present class with both two-tailed t-tests and non-parametric Wil-

coxon rank sum tests (p< 0.05).

Then the selected features were normalized and transformed by PCA. We tried 6

heuristics—the principal components that explained 50%, 60%, 70%, 80%, 90%, 100% of the

total variance were chosen for further analysis [21].

Classifier. We built models that discriminated MW-present state from MW-absent state

using six supervised machine learning algorithms: support vector machine (SVM), decision

tree, ensemble learning, k-nearest neighbor (KNN), discriminant analysis, and Naive Bayes.

All classifications were performed using MATLAB (The Mathworks, Inc.). For the ensemble

learning parameters, ‘Method’ was set as ‘AdaBoostM1’, ‘NLearn’ was set as ‘100’, and ‘Learn-

ers’ were ‘Tree’. The parameters of the other machine learning classification methods were

default MATLAB settings.

We built models for participants with high or low MW percentage (more than 0.67 or less

than 0.33, N = 18) and participants with medium MW percentage (more than 0.33 and less

than 0.67, N = 22) separately. The Fig 3 showed the MW proportion of each participant.

Global features and local features were entered into the model in three ways: global features
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only, local features only, and combining global and local features. For the feature type ‘global-

only’ we computed all combinations of 3 preprocessing methods × 6 feature selection meth-

ods × 6 classifiers. For the feature types ‘local-only’ and ‘combining global and local features’,

we performed combinations of 3 preprocessing methods × 3 window sizes × 6 feature selection

methods × 6 classifiers.

Model validation. To ensure that data from each participant were included in either the

training set or the testing set, the leave-one-participant-out cross-validation method was used.

This method trained on the data set except one participant and predicted the participant who

was not included in the training [4, 7]. Every time one participant was leave out, then perfor-

mance of the model was averaged across repetitions. To evaluate model performance, we used

kappa value [22, 23], accuracy, precision, and recall. The optimal model was the one that pro-

duced best kappa values over all combinations.

Driver-dependent modeling

Because of the individual differences in driving behavior, we also estimated mind wandering

in driver-dependent manner, of which each individual was classified directly with local fea-

tures. We examined three ways to preprocess the selected variables: unmodified data (‘raw’),

standardized data (‘z-score’), and P-ICA. We calculated local features with three different win-

dow lengths: 5s, 10s and 15s. We selected the top 50% of features ranked by correlation-based

feature selection (CFS), which sorts features according to pairwise correlations [24, 25]. After

feature selection, PCA was applied. The principal components that explained 50%, 60%, 70%,

80%, 90%, 100% of the total variance were kept. We classified with SVM [26]. The SVM classi-

fier used default settings, in which the default kernel function was ‘linear’. For each participant,

we performed combinations of 3 preprocessing methods × 3 window sizes × 6 feature selection

methods × 1 classifier. The selected features, preprocessing method, and local features were

the same as described above. The 4 time 5 folds cross-validation method was used. Participants

who reported extreme proportion of mind wandering occurrences, either very high or very

low MW proportion (more than 0.67 or less than 0.33, N = 18) tended to be unbalanced

between reported MW-present and MW-absent trials. Thus here when we detected mind wan-

dering using the driver-dependent method, we only built models for participants with

medium MW proportion (more than 0.33 and less than 0.67, N = 22).

Fig 3. The MW proportion of each participant.

https://doi.org/10.1371/journal.pone.0207092.g003
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Results

There are a total of 40 participants each with 24 thought probes in the driving task. Of the 960

(40 participants × 24 probes) mind wandering thought probes, 3 trials had no reporting. Thus,

the dataset used in the classification contained 957 samples, of which 498 samples were labeled

with MW-present and 459 samples were labeled with MW-absent. This was close to an equal

class distribution.

Before building models, we did some basic statistic analysis. The Fig 4 showed the one stan-

dard deviation along the mean of selected variables in the 15s window just before the tone

probe calculated across MW-present and MW-absent samples of participants with high or low

MW (Fig 4a, 4b, 4c and 4d), and of participants with medium MW (Fig 4e, 4f, 4g and 4h). In

each subplot, the standard deviation errors bars of MW-present and MW-absent overlapped

quite a bit. And the error bar of participants with medium MW overlapped more than partici-

pants with high or low MW. It seemed that the ‘offset’ variable would be important to distin-

guish MW-present and MW-absent state for participant with high or low MW.

The features extracted from the selected variables without transformation (‘None’) that dif-

fered significantly between MW-present and MW-absent instances on both t-test and non-

parametric Wilcoxon rank sum test (p< 0.05) were calculated. The number of significant

global and local features with different windows size (5s, 10s and 15s) for participants with

high or low MW and participants with medium MW were showed in Table 1 (S2 Table). For

participants with medium MW, there were few significant features.

In addition, the experiment in this study is the same one with the Zhang and Kumada

(2017) [17]. The result in the Zhang and Kumada (2017) [17] showed that mind wandering

frequency significantly increases over time, and the correlation coefficient between mind wan-

dering frequency and performance measures (standard deviation of lane position (SDLP),

Fig 4. The one standard deviation along the mean of selected variables in the 15s window just before the tone probe calculated across MW-

present and MW-absent samples of participants with high or low MW (a, b, c, d), and of participants with medium MW (e, f, g, h). The ‘0s’ on the

‘Time’ axis is corresponding the time of tone probe appearing.

https://doi.org/10.1371/journal.pone.0207092.g004
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standard deviation of steering wheel movements (SDSTW) and standard deviation of foot

operation (SDFO)) was significant.

For the driver-independent modeling method, the mind wandering prediction perfor-

mance of the best models (highest kappa) with global-only, local-only, and both global and

local features for participants with high or low MW (Table 2) and for participants with

medium MW (Table 3) were presented. For participants with high or low MW, the best model

build with global-only features had higher kappa value than models built with other feature

types, which had a kappa of 0.384, accuracy of 70%, precision of 71.1%, and recall of 77.9%.

For this model, the preprocessing method was z-score, the transformed features explained

80% of the total variance were used, and the classification method was SVM. The predicted

accuracy of this model for each participant who had with high or low MW was presented in

S1 Table. For participants with medium MW, the optimal model was with local-only features,

which had a kappa of 0.124, accuracy of 56.2%, precision of 54.9%, and recall of 58.9%. In this

model, the selected variables were preprocessed by z-score, the transformed features explained

50% of the total variance were used, window size was 15s, and KNN was applied as the classifi-

cation method.

To confirm whether a model offered a significant improvement over other models, the sta-

tistical tests (Friedman’s test) was performed on the accuracy values got from each trial of

cross-validation folds [27, 28]. The last column of Tables 2 and 3 showed the significance of

Friedman’s test. Once Friedman’s test rejects the null hypothesis, we proceeded multiple com-

parisons in order to find the concrete pairwise comparisons which produce differences [28].

The optimal models demonstrated in Tables 2 and 3 did not have significantly improved pre-

diction performance than other models built with the same feature type. The histogram of the

Table 1. The number of significant global and local features with different windows size (5s, 10s and 15s) for par-

ticipants with high or low MW (‘High&Low’) and participants with medium MW (‘medium’).

Global Local, 5s Local, 10s Local, 15s

High & Low 13 28 28 30

Medium 0 2 0 2

https://doi.org/10.1371/journal.pone.0207092.t001

Table 2. The best driver-independent model (highest kappa value) built with each feature type for participants with high or low MW and Friedman’s test result.

Preprocess Window Feature Select ML method Accuracy Kappa Precision Recall Friedman’s test

Global z-score - 80% SVM 0.7 0.384

(p < 0.05)

0.711 0.779 χ2(107) = 126.34

(p > 0.05)

Local None 5s 100% Decision Tree 0.624 0.238

(p < 0.05)

0.657 0.668 χ2(323) = 416.69

(p < 0.05)

Global & Local z-score 5s 80% SVM 0.649 0.285

(p < 0.05)

0.680 0.7 χ2(323) = 299.07

(p > 0.05)

https://doi.org/10.1371/journal.pone.0207092.t002

Table 3. The best driver-independent model (highest kappa value) built with each feature type for participants with medium MW and Friedman’s test result.

Preprocess Window Feature Select ML method Accuracy Kappa Precision Recall Friedman’s test

Global P-ICA - 50% KNN 0.518 0.021

(p > 0.05)

0.528 0.147 χ2(107) = 35.67

(p > 0.05)

Local z-score 15s 50% KNN 0.562 0.124

(p < 0.05)

0.549 0.589 χ2(323) = 404.75

(p < 0.05)

Global & Local z-score 15s 80% Decision Tree 0.556 0.110

(p < 0.05)

0.552 0.496 χ2(323) = 268.25

(p > 0.05)

https://doi.org/10.1371/journal.pone.0207092.t003
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kappa values of the models built with each feature type for participants with high or low MW

and for participants with medium MW is showed in Fig 5.

For the driver-dependent modeling method, each participant with medium MW had 54

model combinations (3 preprocessing methods × 3 window sizes × 6 feature selection meth-

ods). The best models (highest kappa value) of each participant were shown in Table 4. We

used Friedman’s test to detect significant differences of the models built for each participant.

The significance was showed in the last column of Table 4. And we did multiple compari-

sons test for participants who were significant in Friedman’s test and whose best model had

significant kappa value at the same time (Subject 4, 5, 6, 17, 18, 19, 20, 26, 27, 30, 32, 38, and

39). For Subject 17 and 20, there were no significant pairwise models. For Subject 4, 5, 6, 18,

19, 26, 27, 30, 32, 38, and 39, the multiple comparisons test showed that the model with

highest kappa value offered a significant improvement than other models. The last row of

Table 4 presented the averaged accuracy, kappa value, precision and recall across the best

models of each participant. The histograms of the kappa values for each participant are

showed in Fig 6. The median kappa values of Subject 6, 20, 27, 38, and 39 were significantly

more than 0.

Fig 5. The histogram of the kappa values of the models built with each feature type (‘Global’, ‘Local’, ‘Global&Local’) for participants with high

or low MW (‘High&Low’) and for participants with medium MW (‘Medium’). On the top of each subplot, the parentheses included the median

kappa value, and the significance of the sign test whether the median kappa value significantly more than 0.

https://doi.org/10.1371/journal.pone.0207092.g005
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Discussion

Mind wandering is a frequent phenomenon that has a negative impact on performance. The

purpose of this study was to detect mind wandering during driving by analyzing driving

behavior features. We investigated two types of modeling method, driver-independent and

driver-dependent, to identify mind wandering states.

Table 4. The best driver-dependent models for participants with medium MW and Friedman’s test result. The subject’ ID with ‘�’ are the subjects whose best model

offer a significant improvement than other models.

Subject ID Preprocess Window Feature Select Accuracy Kappa Precision Recall Friedman’s test

2 P-ICA 15s 90% 0.594 0.175

(p > 0.05)

0.564 0.500 χ2(53) = 77.37

(p < 0.05)

4� P-ICA 10s 100% 0.688 0.373

(p < 0.05)

0.720 0.692 χ2(53) = 89.09

(p < 0.05)

5� P-ICA 15s 80% 0.688 0.348

(p < 0.05)

0.717 0.768 χ2(53) = 172.63

(p < 0.05)

6� None 10s 100% 0.760 0.486

(p < 0.05)

0.686 0.667 χ2(53) = 95.18

(p < 0.05)

8 P-ICA 10s 90% 0.479 -0.042

(p > 0.05)

0.478 0.458 χ2(53) = 150.47

(p < 0.05)

9 P-ICA 10s 100% 0.688 0.274

(p < 0.05)

0.536 0.469 χ2(53) = 48.45

(p > 0.05)

14 z-score 5s 100% 0.604 0.109

(p > 0.05)

0.703 0.703 χ2(53) = 176.63

(p < 0.05)

17 P-ICA 10s 80% 0.652 0.263

(p < 0.05)

0.707 0.732 χ2(53) = 78.27

(p < 0.05)

18� z-score 5s 90% 0.688 0.343

(p < 0.05)

0.647 0.550 χ2(53) = 133.77

(p < 0.05)

19� P-ICA 15s 100% 0.635 0.242

(p < 0.05)

0.568 0.525 χ2(53) = 87.94

(p < 0.05)

20 None 10s 90% 0.688 0.274

(p < 0.05)

0.750 0.797 χ2(53) = 74.95

(p < 0.05)

21 z-score 5s 70% 0.563 0.122

(p > 0.05)

0.522 0.545 χ2(53) = 125.84

(p < 0.05)

23 None 5s 100% 0.635 0.191

(p > 0.05)

0.517 0.417 χ2(53) = 81.61

(p < 0.05)

24 P-ICA 10s 90% 0.552 0.096

(p > 0.05)

0.512 0.500 χ2(53) = 87.44

(p < 0.05)

26� z-score 15s 100% 0.677 0.231

(p < 0.05)

0.732 0.813 χ2(53) = 146.66

(p < 0.05)

27� z-score 15s 80% 0.708 0.404

(p < 0.05)

0.700 0.808 χ2(53) = 171.04

(p < 0.05)

30� P-ICA 10s 100% 0.792 0.574

(p < 0.05)

0.738 0.775 χ2(53) = 197.9

(p < 0.05)

32� None 5s 100% 0.635 0.231

(p < 0.05)

0.667 0.750 χ2(53) = 161

(p < 0.05)

34 None 15s 100% 0.615 0.153

(p > 0.05)

0.429 0.469 χ2(53) = 153.83

(p < 0.05)

37 P-ICA 15s 80% 0.604 0.208

(p > 0.05)

0.583 0.729 χ2(53) = 85.88

(p < 0.05)

38� P-ICA 10s 80% 0.792 0.583

(p < 0.05)

0.759 0.854 χ2(53) = 197.73

(p < 0.05)

39� None 10s 70% 0.760 0.456

(p < 0.05)

0.760 0.528 χ2(53) = 93.69

(p < 0.05)

Mean Value - - - 0.659 0.277 0.636 0.637 -

https://doi.org/10.1371/journal.pone.0207092.t004
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Fig 6. Histograms of the kappa values of the models built for each participant. On the top of each subplot, the

parentheses included the median kappa value, and the significance of the sign test whether the median kappa value

significantly more than 0.

https://doi.org/10.1371/journal.pone.0207092.g006
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In the driver-independent modeling method, we use the leave-one-participant-out cross-

validation method. And we separately build models for participants with high or low MW

(Table 2) and participants with medium MW (Table 3), which is similar to the study of Bixler

and D’Mello [7]. Bixler and D’Mello [7] considered mind wandering trials at the end and in

the midst of reading a page separately.

For participants with high or low MW, we extracted many significant features that signifi-

cantly different between MW-present and MW-absent samples (Table 1). The participants

with high MW or participants with low MW had obvious driving behavior traits. We could

distinguish whether the participants have high or low mind wandering percentage with fea-

tures calculated in a rather large time interval, in our case, which are called ‘global features’

and calculated in a 24 minutes period. Global features were easy to calculate, and possibly

compute in a context of computing capability limitations. The optimal model for participants

with high or low MW was built with global-only features, and had a significant kappa value of

0.384 (Table 2). The global features contain the information of individual difference. This

result indicated that considering individual difference is essential for mind wandering detec-

tion. In the multiple comparisons among all models with global-only features, the best model

can not significantly better than other models. For participants with medium MW, there were

few significant features between MW-present and MW-absent samples (Table 1). And the

optimal model was built with local-only features (Table 3), which was not significantly better

than other models. So building effective driver-independent models with the leave-one-partic-

ipant-out cross-validation method is challenging.

In the driver-independent modeling method, the kappa value does not represent moderate

agreement between human and automated raters [23]. This was true not only in the reading

task of previous studies, but also in our driving task. This may have occurred because objective

and subjective measurements tended to reflect different aspects of the mind wandering state

[29]. For the subjective reporting, at times, individuals are difficult to categorize a nuanced

experience that does not lend to a simplistic distinction between on-task and mind wandering

state. And sometimes participants may lack sufficient meta-awareness of their thought con-

tent, they will be uncertain to report whether they focus on the task or mind wandering [30].

The executive control is engaged to sustain goal actively and accessibly and to inhibit exter-

nal distraction and mind wandering. Cognitive and neural resource ability of executive control

is individually different and variate intra-individually, such as, sleep deprivation affect execu-

tive control [31]. Mind wandering level could also vary not only inter-individually, but also

inter-individually. In the driver-dependent classification analysis, the best models for partici-

pants with medium MW had an averaged kappa value of 0.277 and accuracy of 65.9%

(Table 4). It was better than the driver-independent classifier with local features (kappa

value, 0.124; accuracy, 56.2%. Table 3). For Subject 6, 27, 38, and 39, the median kappa values

of were significantly more than 0, and the model with highest kappa value offered a significant

improvement than other models. So the extracted local features here were rather effective.

This result indicates that individual difference could affect prediction performance greatly and

building model for each individual could improve the accuracy of mind wandering detection.

In this experiment, the collected samples from one participant were small. We anticipated that

the driver dependent model could get much better result with enough samples.

Mind wandering detection has relevance to researchers in other fields of psychology. Any

human-machine interface would likely benefit from modeling mind wandering [7]. For

instance, as driving environment become more complex and dynamic and in-vehicle technol-

ogies are more complex, monitoring the attention status is vital for maintaining safe driving.

For many psychological studies, such as, memory, visual perception, motor control, and so on,
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mind wandering is a nuisance and unavoidable variable. Measuring mind wandering with our

approach could take into consideration of its confounding effect [29].

Some limitations of our results should be noted. (a) Our experiment was designed on driv-

ing simulator, and the driving task and driving environment was simple. Future research

should employ more diverse settings in lab environments. And the mind wandering level

could be quite different between real and simulated driving. So we are also interested in the

experiment on real roads. (b) Our participants were young, with mean age of 22.4 years. Future

experiments should recruit a more diverse population, including older people. (c) The driver-

dependent classification analysis could obtain best accuracy for participants with medium

MW. So it’s possible to collect individual’s daily driving performance data building classifica-

tion model specifically for each individual. (d) Combining behavior measurements with physi-

ological methods, such as EEG features, may yield enhanced classification accuracy. (e) The

content of mind wandering is of great importance in the determination of its impact on driv-

ing [32]. It is possible to discriminate different types of mind wandering with respect to

content.

Conclusion

The purpose of this article was to build models capable of automatically detecting mind wan-

dering in the driving task. Our work expanded on previous research by detecting mind wan-

dering through the analysis of driving behavior data from both driver-independent and

driver-dependent perspectives. In the driver-independent modeling method, we separately

build models for participants with high or low MW and participants with medium MW. For

participants with high or low MW, the optimal model was build with global-only features

(kappa = 0.384). For participants with medium MW, the optimal model was built with local-

only features (kappa = 0.124). But the optimal models can not offer a significant improve-

ment than other models. So building effective driver-independent models with the leave-

one-participant-out cross-validation method is challenging. In addition, we could distinguish

whether the participants have high or low mind wandering percentage with global features,

because the participants with high MW or participants with low MW have obvious driving

behavior traits. In the driver-dependent modeling method, we built models for each partici-

pant with medium MW. The best models of these participants had an averaged kappa value

of 0.277. Subject 6, 27, 38, and 39 had significant the median kappa values more than 0, and

the model with highest kappa value of these participants offered a significant improvement

than other models. The result here indicates that individual difference could affect prediction

performance greatly and building model for each individual could improve the accuracy of

mind wandering detection. It is expected that the detecting system could automatically adjust

for everyone in anytime.

Supporting information

S1 Table. Global features value and correlation coefficient between each global feature and

predicted accuracy. The first column was the subject No. The next 16 column were the value

of global features for each participant. The next column was the predicted accuracy of the

driver independent model built with global-only features for participants with high or low

MW. The last column was the predicted accuracy with best driver dependent model for partic-

ipants with medium MW. The last two row showed the correlation between each global feature

and predicted accuracy for participants with high or low MW and for participants with

medium MW. The p-value indicated whether the Pearson linear correlation coefficient is
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significantly different from zero, and if p-value was significant, the correlation coefficient was

displayed.

(XLSX)

S2 Table. The mean value, standard deviation and significance of each global feature and

local feature with different window size (5s, 10s, 15s) in participants group with high or

low MW (‘H&L’) and in participants group with medium MW (‘M’). The name of work-

sheets included the feature type (‘Global’ / ‘Local’), participants groups (‘H&L’ / ‘M’), and win-

dow sizes (‘5s’, ‘10s’, ‘15s’).

(XLSX)
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