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Abstract: The mitigation effects of park green space on Urban Heat Island (UHI) have been exten-
sively documented. However, the relative effects of the configuration of park components on land
surface temperature (LST) inside the park and indicators (i.e., park cooling intensity and distance)
surrounding the park is largely unknown. Therefore, the main objective of this study is to explore the
quantitative impacts of configuration and morphology features under different urban park scales
on the cooling effect. In this study, based on Landsat-8 OLI/TIRS images on 3 August 2015 and
16 August 2020 during summer daytime, the LSTs of Shanghai City were retrieved by atmospheric
correction method. Then, the relationships of park landscape features with LSTs in the park and
typical indicators representing cooling efficiency of 24 parks on different grades were analyzed. The
results showed that the average temperature in urban parks was, respectively, 1.46 ◦C and 1.66 ◦C
lower than that in the main city of Shanghai in 2015 and 2020, suggesting that urban parks form cold
islands in the city. The landscape metrics of park area (PA), park perimeter (PP), green area (GA)
and water area (WA), were key characteristics that strong negatively affect the internal park LSTs.
However, the park perimeter-to-area ratio (PPAR) had a significant positive power correlation with
the park LSTs. Buffer zone analysis showed that LST cools down by about 0.67 ◦C when the distance
from the park increases by 100 m. The Maximum Cooling Distance (MCD) for 2015 and 2020 had a
significant correlation with PA, PC, PPAR, GA and WA, and increased sharply within the park area
of 20 ha. However, the medium park group had the largest Maximum Cooling Intensity (MCI) in
both periods, followed by the small park group. There could be a trade-off relationship between the
MCD and MCI in urban parks, which is worth pondering to research. This study could be of great
significance for planning and constructing park landscapes, alleviating Urban Heat Island effect and
improving urban livability.

Keywords: Urban Heat Island; park landscape; remote sensing inversion; land surface temperature;
Maximum Cooling Distance and intensity; Shanghai City

1. Introduction

According to the report from Intergovernmental Panel Climate Change (IPCC), over
the past century global warming has been recognized as a profound universal problem
and the increase is likely to happen faster than was predicted [1,2]. Furthermore, more
than half of the world’s population lives in urban areas and this value is set to increase
to 66% by 2050 [3], which would aggravate the Urban Heat Island effect (UHI). The UHI
phenomenon refers to the fact that when a city grows to a certain scale, the temperature
in the urban area is significantly higher than that in the non-urban areas [4], and this
has been observed worldwide [5–7]. The increased impervious surface cover instead of
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evaporative vegetation surfaces and anthropogenic heat releases have been proven to
be the main reasons for the UHI [8]. Overheating conditions in cites can increase urban
energy consumption, raise pollution levels and may even affect the habitability of cities
and potentially lead to increases in morbidity and mortality [9–11]. This grim situation has
brought challenges to the sustainable development of cities. There are several strategies
to alleviate Urban Heat Island effect in cities, such as increasing urban vegetation, using
cool pavements and proper urban planning [12–14]. Among these cooling measures, the
photosynthesis and transpiration of park green space can play a critical role in cooling and
humidifying, carbon fixation and oxygen release. Urban parks, an essential component
of urban green infrastructure, which not only are cold and wet islands in cities, but can
influence its vicinity areas [13,15–18], are of great significance to mitigate the “Urban Heat
Island” (UHI). Therefore, how to make good use of the limited urban parks and obtain
the maximum ecological benefit under a high-density metropolitan area is a topic worthy
of study.

Intensive studies have been conducted to assess the UHI effect for hundreds of cities
around the world [7,12,13]. Land surface temperature (LST) is a crucial indicator of one com-
ponent of the UHI known as the surface UHI [14,15]. Compared with in situ air temperature
measurement, remote sensing provides not only the detailed information of land use/land
cover, but also the LST observation with more uniform and accurate sampling [4,16]. It
avoids inconsistency in data collection processes, sensor types, and other meteorological
factors [17]. In recent years, the rapid development of thermal infrared remote sensing
technique has greatly promoted the diversification of remote sensing inversion methods
for obtaining LST, such as Linear spectral mixture analysis (LSMA) model [18,19], single
channel algorithm [20], atmospheric correction or radiative transfer method [21–23] and
split-window algorithm [24,25]. In recent years, passive microwave (PMW) satellites have
developed rapidly because of their ability to penetrate clouds, although PWM data suffer
from lower spatial resolution and LST retrieval accuracy compared with thermal infrared
data [26]. Landsat 8 Thermal Infrared Sensor (TIRS) is the new, stable thermal infrared
sensor for the Landsat project, carrying two thermal infrared bands, which provides a great
benefit to the LST inversion. For example, Yu et al. (2014) [27] compared three different
methods for LST retrieval from TIRS, and found that the LST inverted from the radiative
transfer equation-based approach using Landsat 8 TIRS has the highest accuracy a Root
Mean Square Error (RMSE) lower than 1 K. Considering that the surface UHI is more
pronounced during daytime and in summer [17], this paper selects the years of 2015 and
2020 (the key period of the 13th five-year plan) to reflect the impacts of the urbanization-
associated green space on urban LST at typically the same period, which has seldom been
reported by other studies in Shanghai, China.

Several previous studies have found that the average LST of urban parks was 1–2 ◦C,
and sometimes even 4–8 ◦C, cooler than their urban surroundings, generating a “cooling
island” [7,28,29]. The spatial scope of scholars’ research about UHI mitigation effects of
urban parks is generally from (1) the relationship of the urban green space landscape
spatial configuration and land surface temperature (LST) [30–33], and (2) the microclimate
in the parks and the impacts of their structure factors on the thermal environment of the
surrounding areas [34–36]. Furthermore, when studying the cooling effect of the park on
surrounding environment, some scholars adopted the designated buffer zone distance
to calculate the average temperature around the parks and compared it with its internal
temperature using remote sensing image data [28,37,38], or analyzed the impact of specific
parks on the surrounding microclimate based on the field meteorological observation
data [39–42]). However, the park cooling effect has mainly been characterized by a single
indicator of park cooling intensity (PCI) and limited datasets (e.g., using one image or in a
year), and the study of multiple parks seldom consider the impact differences of various
grades of parks on the cooling effect. According to the research results of many scholars,
urban parks have a significant cooling effect on urban local thermal environment with
the main factors including green space, water body, impermeable layers and other park
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landscape composition parameters as well as park patch morphology. As we have known,
the relationship between park area, shape and park cooling island is complex [43]. Zhu et al.
(2021) [29] found that only parks larger than a threshold size (20 ha) would provide a larger
cooling effect with the increase in park size, through a study in Jinan, China. Jaganmohan
et al. (2016) [44] suggested that a number of small green spaces distributed in a city might
have a stronger cooling effect than a few larger green spaces [29]. As for the shape, Cao
et al. (2010) [16] quantified the cool island intensity of 92 urban parks in Nagoya, Japan,
and indicated that the formation of PCI being negative affected by complex shape and
fostered by shrubs and trees. In the research of Chang et al. (2007) [45], the authors thought
that parks with complex shapes provided stronger cooling island effects. The above studies,
with some different conclusions, suggest that the effect of configuration of park components
on relative indicators (i.e., park cooling intensity and distance) is still uncertain.

Shanghai is a megacity with a subtropical monsoon climate that has undergone rapid
urbanization in the last few decades. The total population has reached 24.87 million in
2021 [46], and the proportion people living of urban areas, with the highest population
urbanization rate in China, reaching more than 88% [47]. Such vast urbanization has exac-
erbated UHI effect in Shanghai. Therefore, how to scientifically configurate the landscape
elements and improve ecological service function of urban parks, especially their cooling
effect, has become an urgent problem that need to be solved. Previous studies about effects
of urban green space on thermal environment were reported in Shanghai, which mainly
concentrated on the relationship between LST and green space pattern combined with
landscape metrics from the urban landscape scale [48–50], the cooling effects of specific
park features (e.g., park size), single landscape elements (e.g., water body) or single park
type (e.g., pocket parks) [51–53] and thermal comfort and space use in a specific park by
meteorological measurements [40]. However, a clear understanding of the composition
and morphological characteristics under different scale levels of urban parks and their
quantitative impact on the LST inside and in the surrounding of the parks in a time-series
analyses, is still a lacking. This research can reveal the differences in the cooling capacity of
park green space with different morphological characteristics over two critical years.

In view of this, based on landsat-8 OLI/TIRS remote sensing images of Shanghai in
2015 and 2020, land surface temperature was retrieved by atmospheric correction method
to investigate the mitigation impacts of urban park landscapes on the thermal environment.
Additionally, a total of 24 parks were selected in Shanghai City, China. The purposes of this
research are to explore: (1) What kind of correlations exist between landscape composition
and patch morphology of parks with LST and which are the key influencing indicators;
(2) How about the Maximum Cooling Distances (MCD) and maximum cooling intensities
(MCI) of parks on four different park scales? (3) Are there significant differences in heat
release effects among parks of different scales and does the significance change with the
development of urbanization? The results could provide some decision-making bases and
references for planning and constructing Shanghai parks and alleviating Urban Heat Island
effect in a hot summer, humid, subtropical large metropolis.

The paper is organized as follows. Following the description of the study area, the
methodology of LST retrieval algorithm, extraction of park landscape features, buffer zone
setting and data processing flow are presented in Section 2. The results, discussion and
conclusions are presented in Sections 3–5, respectively.

2. Materials and Methods
2.1. Description of the Study Area

This study was conducted in Shanghai (30◦40′–31◦53′ N, 120◦52′–122◦12′ E), covering
an area of 6340.5 km2, which is located in the central point of the north and south coast
of China, where the Yangtze River and the Huangpu River meet the sea (Figure 1). It is
part of the Yangtze Delta alluvial plain, with an average elevation of about 4 m and a
maximum elevation of 103.4 m. According to the Köppen–Geiger climate classification, this
city has a typical subtropical monsoon climate characterized by being humid and having
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a hot summer [54], with average annual temperature of 18.4 ◦C, annual precipitation of
1042.6 mm and 129 days of precipitation per year. As the famous water town in Jiangnan,
Shanghai has a water area of 697 km2, equivalent to 11% of its total area. The zonal
vegetation consists evergreen broad-leaved forest and evergreen deciduous broad-leaved
mixed forest, and the non-zonal vegetation is dominated by intertidal vegetation and
aquatic vegetation. Within the total area, green space covers 1242.95 km2, and the per capita
area of park green space is 8.6 m2 [46]. Since the 1990s, rapid economic growth of Shanghai
was accompanied by enormous urbanization in both scope and degree [55]. Currently, it is
one of the four municipalities directly under the Central Government in China, belonging
to the Yangtze River Delta economic circle, with a large population and developed economy
and trade. It is one of China’s important foreign trade cities, known as the “magic capital”.
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green spaces and road network in the study area were precisely extracted from Amap by 
Python crawler module. Referring to the study by Cheng X et al. (2015) [51] and taking 

Figure 1. (a) The space distribution of selected urban parks in Shanghai. (b) The geometric features of
the selected 24 parks and their surrounding environment. Natural true colors with RGB composition
of band 4, 3 and 2, are fused with panchromatic band (band 8) to form an image base map with 15 m
spatial resolution.

In the study, 24 parks in Shanghai, which have been completed and not significantly
altered in the last 15 years, were selected as objects. According to Figure 1, the selected parks
are mainly concentrated in the center of Shanghai City and their geometric characteristics
are diverse. Location information and vector maps of the parks, water system, green spaces
and road network in the study area were precisely extracted from Amap by Python crawler
module. Referring to the study by Cheng X et al. (2015) [51] and taking into account reality,
the parks were classified into four classes in terms of their sizes, as follows: super large
(>50 ha), large (10–50 ha), medium (4–10 ha), and small (<4 ha). There are at least five
parks in each grade (Table 1). The rules for demarcating the parks’ boundaries are: (1) The
sidewalks and buildings in the parks were included in the park. (2) The water body within
the boundaries of the parks was included in the scope of the parks, with the water body
outside the boundaries excluded from the scope of the parks. (3) The traffic lines through
the park were also included in the parks. This means that the vector maps of the parks
were closed irregular patterns.
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Table 1. Statistical description of 24 Urban Parks in Shanghai.

Park
Group Park Name Park Area (ha)

Area
Percentage
(%)

Green
Coverage
(%)

Fuction Predominant Tree Species and Main
Biological Feature

Super large
(>50 ha)

Century park 143.1380 0.1156 78.36 Integrated park Ginkgo biloba L. (deciduous)
GongQing forest
park 127.0630 0.1026 85.08 Specialized

park
Ginkgo biloba L.(deciduous +
evergreen)

Binjiang forest park 111.8870 0.0904 95.84 Specialized
park Acer buergerianum (deciduous)

Minhang sports
park 86.1472 0.0696 86.14 Integrated park Ginkgo biloba L. (deciduous +

evergreen)
Shanghai botanical
garden 77.9539 0.0630 72.43 Specialized

park
Cinnamomum camphora (evergreen +
deciduous)

Daningyujinxiang
park 58.0379 0.0469 79.37 Integrated park Ginkgo biloba L. (deciduous +

evergreen)

Large
(10–50 ha )

Huangxing park 39.7864 0.0321 72.67 Integrated park Ginkgo biloba L. (deciduous)
Changfeng park 35.8347 0.0289 58.86 Integrated park Osmanthus fragrans (evergreen)
Zhongshan park 20.7742 0.0168 87.38 Integrated park Platycladus orientalis (evergreen)
Luxun park 20.2863 0.0164 78.32 Historic Garden Acer palmatum (deciduous + evergreen)

Jinqiao park 10.2522 0.0083 81.46 Community
park

Cedrus deodara ( evergreen +
deciduous)

Medium
(4–10 ha )

Guyi garden 9.5335 0.0077 88.83 Historic Garden Salix babylonica L. (deciduous)
Lujiazui central
green 9.2272 0.0075 83.47 Integrated park Magnolia denudata (deciduous +

evergreen)
Xujiahui park 9.0939 0.0073 92.24 Integrated park Ginkgo biloba L. (deciduous)
Fuxing park 6.7610 0.0055 88.65 Historic Garden Platanus hispanica (deciduous)

Tianshan park 5.7487 0.0046 65.83 Integrated park Pterocarya stenoptera (deciduous +
evergreen)

Zuibaichi park 4.7679 0.0039 96.81 Historic Garden Pseudolarix amabilis (deciduous +
evergreen)

Gushu park 4.2421 0.0034 88.29 Community
park Ginkgo biloba L. (deciduous)

Small
(<4 ha)

Gucheng park 3.7272 0.0030 89.73 Community
park Osmanthus fragrans (evergreen)

Xianghe park 3.0011 0.0024 83.04 Community
park Cinnamomum contractum (evergreen)

Jing’an park 2.7355 0.0022 77.84 Integrated park Platanus hispanica (deciduous)

Shangnan park 2.6522 0.0021 91.88 Community
park

Salix babylonica L. (deciduous +
evergreen)

Jingnan park 2.5440 0.0021 95.03 Community
park

Magnolia grandiflora (evergreen +
deciduous)

Xiangyang park 2.1324 0.0017 87.76 Community
park

Prunus serrulata (deciduous +
evergreen)

Notes: Area percentage = Percentage of the area of each park in the built-up area of Shanghai. Green
coverage = Percentage of the trees or grass area in each park divided by park area. Function of each park
came from the “Guiding opinions of Shanghai on the implementation of classified and hierarchical management
of urban parks” jointly released by Shanghai Landscape and City Appearance Administrative Bureau and Forestry
Bureau. The tree species types and main biological feature were retrieved from Baidu Encyclopedia. Because of
the length of the table, the table only lists the dominant tree species in the park. The order of parks in Table 1 is
consistent with that in Figure 1b.

2.2. Data Sources

The remote sensing data used in this study come from two periods of Landsat-8
OLI/TIRS satellite image data, two scenes of data at about 10:24 a.m. (UTC/GMT+08:00)
on 3 August 2015 (path: 118, row: 38; path: 118, row: 39) and two scenes of data at about
10:25 a.m. on 16 August 2020 (path: 118, row: 38; path: 118, row: 39), which are obtained
from Geospatial Data Cloud platform of Computer Network Information Center, Chinese
Academy of Sciences (http://www.gscloud.cn/search (accessed on 15 May 2021)), and
imported into ENVI 5.2 software for processing to obtain two periods of land surface temper-
ature data in Shanghai. The maximum arbitrary land cloud cover threshold adopted in this
study to ensure image reliability was less than 0.28%. Landsat-8 was successfully launched
by NASA on February 11, 2013. It provides global coverage every 16 days and carries two
sensors—OLI Land Imager and TIRS Thermal Infrared Sensor. Landsat-8 is basically consis-
tent with Landsat 1-7 in terms of spatial resolution and spectral characteristics. The satellite

http://www.gscloud.cn/search
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has a total of 11 bands. Band 1–7 and 9–11 have a spatial resolution of 30 m, and band
8 is a panchromatic band with a resolution of 15 m (https://earthobservatory.nasa.gov/
(accessed on 26 August 2021)).

2.3. Data Processing and Analysis Methods
2.3.1. Land Surface Temperature Retrieval Algorithm

A previous study result has shown that the accuracy of retrieved LST based on atmo-
spheric profile measurement is 0.6 ◦C, by the radiative transfer equation [56]. Therefore, this
study adopted an atmospheric correction method to retrieve the land surface temperature
of Shanghai in two periods [27,57]. According to the radiation transmission theory of elec-
tromagnetic wave, the thermal infrared radiation brightness value received by the satellite
sensor consists of three parts: blackbody radiation brightness, atmospheric downward
radiation brightness and atmospheric upward radiation brightness [27]. Its equation, which
is the radiative transfer equation (RTE), is as follows:

Lλ = [εB(Ts) + (1− ε)L ↓]τ + L ↑ (1)

where Lλ is the radiance registered in the at-sensor of the thermal band (W·m−2·sr−1·µm−1),
B is the blackbody radiance (W·m−2·sr−1·µm−1), Ts is the land surface temperature, L ↓ is
the downwelling path radiance, L ↑ is the upwelling path radiance, τ is the atmospheric
transmittance, and ε is the land surface emissivity.

The equation for B(Ts) is as follows:

B(Ts) =
[Lλ − L ↑ −τ(1− ε)L ↓]

τε
(2)

Finally, Ts can be calculated from the inversion of Planck’s law, as follows:

Ts =
K2

ln
(

K1
B(Ts)

+ 1
) (3)

For the number 10 band K1 of Landsat 8, a constant of 774.89 (watt/(m2·srad·µm))
was applied, and for K2, a constant of 1321.08 K (Kelvin) was applied [36]. The value of
εwas determined using the equation based on the NDVI threshold proposed by Sobrino
et al. 2004 [56].

ENVI 5.2 software was first applied to interpret Landsat-8 OLI/TIRS images to obtain
the land surface temperature of Shanghai in two periods. The experimental procedure for
retrieving LST is shown in Figure 2.

For result validation, the multi-point verification method in Figure 2 represents verifica-
tion of the LST values with the daily temperature data (i.e., the air temperature on 3 August
2015 and 16 August 2020 in this study) of multiple meteorological stations at the correspond-
ing location. If the temperature trend of the retrieved results coordinates with meteorologi-
cal station, the precision can be validated [50]. Hence, the corresponding temperature of five
meteorological stations in Shanghai (including Pudong, Baoshan, Chongming, Hongqiao
and Minhang) were used for validation (https://www.ncei.noaa.gov/maps/daily/ (ac-
cessed on 10 December 2021)). The comparison between retrieved LSTs and the data from
meteorological stations are shown in Figure A1. It is clearly indicated that the trend of the
curves of the retrieved LST and the air temperature from five meteorological stations were
the same in 2015 and 2020. Additionally, the retrieved LST showed a larger temperature
difference, which is consistent with the characteristic between the air and land surface
temperature [50]. In suburban areas such as Chongming District, there are more green
spaces and bodies of water with fewer buildings, resulting in its low surface temperature,
which in 2015 was lower than the air temperature. After comparison and verification, the
overall accuracy can meet the requirements of application.

https://earthobservatory.nasa.gov/
https://www.ncei.noaa.gov/maps/daily/
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Figure 2. Diagram of land surface temperature retrieval process.

2.3.2. Temperature Division Method

In the study, natural breaks (Jenks) were taken as the temperature division method.
Natural Breaks classes are based on natural groupings inherent in the data. Class breaks
are identified that best group similar values and that maximize the differences between
classes [58]. The features are divided into classes whose boundaries are set where there are
relatively big differences in the data values. The Jenks optimization method, also called
the Jenks natural breaks classification method, is a data classification method designed to
determine the best arrangement of values into different classes. This is achieved by seeking
to minimize each class’s average deviation from the class mean, while maximizing each
class’s deviation from the means of the other groups. In other words, the method seeks to
reduce the variance within classes and maximize the variance between classes. Natural
breaks (Jenks), the classification method provided by ArcGIS, is the most commonly used
and robust classification method. Chen J et al. (2013) [58] concluded that natural breaks
(Jenks) method is of good adaptability and high accuracy on the geographical environment
unit division.

2.3.3. Features Extraction of Park Landscape and Buffer Zone Analysis

The cooling effect of parks on surrounding thermal environment was analyzed from
the aspects of park plaque morphology and landscape composition in the study. Landscape
composition represents the size of different landscape types in the park. Plaque morphology
is also known as landscape shape indicator, which usually calculates the deviation between
a patch shape and a circle or square with the same area to measure the complexity of its
shape. The selected indicators of quantitative analysis of park landscape are shown in
Table 2 [32,35,59].
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Table 2. Landscape Metrics of Shanghai’s Park and calculation method.

Classification Landscape Metrics and Abbreviation Calculation

Landscape composition
Green area (ha), GA GA = green area of park
Water area (ha), WA WA = water area of park

Proportion of impermeable layers (%), PIL PIL = Ai/PA × 100%; Ai = area of
impermeable layers (PA-GA-WA)

Plaque morphology

Park area (ha), PA PA = area of park
Park perimeter (m), PP PP = perimeter of park

Park perimeter-to-area ratio (%), PPAR PPAR = PP/PA × 100%
Park fractal dimension, PFD D = 2 × ln(PP/4)/ln(PA) [59]

Specifically, the vector maps of 24 parks, water systems, green spaces and road net-
works in the study area were precisely extracted from Amap by Python crawler module.
Then, the basic metrics of the parks, such as the area and perimeter of parks, green spaces
and water bodies were calculated by the “computational geometry” tool of the attribute
table in each vector graph through ArcGIS 10.2 software. Subsequently, the indices of
proportion of impermeable layers (PIL), park perimeter-to-area ratio (PPAR) and park
fractal dimension (PFD), were calculated by “Field Calculator” tool based on the above
attribute table, according to the formulas in Table 2.

The method of buffer zone is used to explore the cooling range and intensity of the
park to its surrounding environment [29]. As the selected temperature retrieval images
are from Landsat-8 OLI/TIRS with an initial spatial resolution of 100 m in the thermal
infrared band, multiple graded buffers were generated outwards at this interval based on
park boundaries. Some studies have reported that the range of the park cooling effect is
usually around 10 s to 1000 s of meters, without exceeding 1.5 times of the width of the
parks [45,60]. Therefore, 1.5 times the width of the park was set as the outermost boundary
of the buffer zone in this study. Then, the cooling space was identified around each park to
exclude larger areas of green space, water bodies and other influencing factors from the
buffer zone, in order to homogenize the surface coverage of the analysis area as much as
possible, so as to better analyze the mechanism of the park’s effect on the general urban
substrate. Finally, the shapefile of each park and its buffer zone were spatially overlaid
with the LST raster layers of the two phases separately to extract the average LST in the
corresponding region.

The cooling effect of a park on LST can be measured in several ways [51]. Theoretically,
a park’s cooling effect decreases with the distance from the edge of the park. For each park,
there is an empirical relationship between the cooling intensity and the distance to the park
edge. However, the cooling intensity is influenced by the surrounding environment, and
may fluctuate with the distance and eventually reaches equilibrium with its surroundings;
therefore, there may be several peaks on the fitness curve of the cooling intensity to the
distance from the edge of the park [51]. So, we selected the cubic polynomial fitting to
calculate the distance corresponding to the first peak of the cooling intensity as the MCD
value [29]. In this study, two indicators were devised to quantify the cooling effect. The
first is the Maximum Cooling Intensity (MCI) which was used as the indicator to quantify
the cooling effect of the park according to Cheng X et al. (2015) [51]. It was calculated
using equation:

MCI = TH − TL (4)

where: TH = the temperature at the first peak of the cubic polynomial fit curve, TL = the
temperature at a distance of zero from the park boundary of the cubic polynomial fit curve.

Another indicator is the Maximum Cooling Distance (MCD) which was defined as the
largest distance where the Maximum Cooling Intensity (MCI) occurs. The maps of buffer
analysis were produced using GIS software Arcmap 10.2 (Esri, Redlands, CA, USA).
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2.4. Statistical Analysis

First, Pearson’s correlation analysis was utilized to assess the relationship between the
mean LSTs inside and outside of the parks and each park landscape metrics. Subsequently,
one way analysis of variance (ANOVA) was used to explore the significant differences
between the cooling effects of different levels of parks on the surrounding thermal envi-
ronment. The statistical analyses were conducted by SPSS 18.0 software. Additionally,
SigmaPlot 13.0 was used as a supplementary statistical regression analysis and for mapping.

3. Results
3.1. Land Surface Temperature Features of Shanghai and the Parks in 2015 and 2020

The Landsat-8 OLI/TIRS images in 2015 and 2020 were interpreted to obtain the
results of land surface temperature in Shanghai (Figure 3) by atmospheric correction
method, taking advantage of natural breaks (Jenks) to divide the temperature into five
grades (Table 3). From the angle of space, there was some difference in the distributions of
Shanghai’s temperature between two periods of 3 August 2015 and 16 August 2020. The
low-temperature zones of two periods were mainly distributed in the Yangtze River region
and some areas near the East China Sea. The middle–low-temperature zones were mostly
scattered in Chongming Island, the Huangpu River region in the northeast of the city as
well as areas with dense water systems in the south and southeast of Shanghai. The middle–
high- and high-temperature zones were mainly in the middle of Shanghai, where intensive
commercial and residential districts exist. Additionally, the middle-temperature zones
were primarily distributed around the surrounding zones of middle–high temperature
and high temperature, and in Chongming Island and Changxing Island. From the angle
of time, the overall average LST of Shanghai in 2020 (32.65 ◦C) was higher than that in
2015 (31.18 ◦C) by 1.47 ◦C. In addition, the highest and lowest LST in 2020 were 48.48 and
26.19 ◦C, respectively, 5.05 and 3.72 ◦C higher than that in 2015. It indicated that rapid
urbanization has led to a significant increase in urban surface temperature.
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Table 3. Classification of Land Surface Temperature in Shanghai.

Classification Temperature Range in 2015 (◦C) Temperature Range in 2020 (◦C)

Low temperature <28.71 <30.03
Middle–low
temperature 28.71–30.60 30.03~32.05

Middle temperature 30.60–32.25 32.05~34.06
Middle–high
temperature 32.25–34.06 34.06~36.24

High temperature >34.06 >36.24

In order to further compare the differences in LST and cooling capacity among these
parks, the LST of the 24 parks and MCI in 2015 and 2020 are shown in Figure 4. It can
be seen that there were evident differences among the LST inside the parks. The average
LST and MCI of parks in 2020 were 1.73 and 0.53 ◦C higher than in 2015, respectively. The
cooling effect of parks showed a certain fluctuation trend with the general increase in LST.
For example, park 18 (Gushu park) had a relatively high LST (34.02 ◦C) and the strongest
MCI (6.02 ◦C) in 2020. Park 3 (Binjiang forest park) had the lowest LST in 2015 (30.48 ◦C)
and 2020 (31.84 ◦C), while its MCI scores were lower than the average temperature level.
This suggested that the low LST inside the park did not imply a corresponding strong MCI.
The cooling effect of the park is likely to be affected by other characteristics of the parks
and the surrounding environment.
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3.2. Correlation of Park Landscape Features with Land Surface Temperature within the Parks

To explore the quantitative relationship between the park landscape features and
the mean land surface temperature within the parks, the quantitative indicators, such
as park area, park perimeter, areas of different landscape elements and other metrics,
were selected to analyze the correlation with the mean LST within the parks (Table 4).
Additionally, the statistical regression analysis is shown as Figure 5. From the analyses,
there are results as follows: (1) The park area showed a significant negative polynomial
correlation with the mean LST within the parks in 2015 (r = −0.716, p < 0.01), and also
with that in 2020 (r = −0.719, p < 0.01). (2) The park perimeter had a significant negative
power correlation with the mean LST within the parks in 2015 (r = −0.690, p < 0.01) and
2020 (r = −0.677, p < 0.01). (3) The park perimeter-to-area ratio had a significant positive
power correlation with the mean LST within the parks in 2015 (r = 0.632, p < 0.01), and
also in 2020 (r = 0.640, p < 0.01). (4) The park fractal dimension exhibited an insignificant
positive polynomial correlation with the mean LST within the parks in 2015 (r = 0.182,
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R2 = 0.4763) and 2020 (r = 0.192, R2 = 0.4636); the correlation is not significant. (5) There
was a significant negative exponential correlation of the green area to the mean LST within
the parks in 2015 (r = −0.722, p < 0.01) and 2020 (r = −0.729, p < 0.01). (6) The water area
showed a significant negative polynomial correlation with the mean LST within the parks
in 2015 (r = −0.498, p < 0.05) and with that of 2020 (r = −0.532, p < 0.05). (7) There was an
insignificant negative polynomial correlation of the proportion of impermeable layers with
the mean LST within the parks in 2015 (r = 0.312, p > 0.05), however, there was a significant
positive polynomial correlation with that of 2020 (r = 0.536, p < 0.01).

Table 4. Pearson correlation coefficients of park landscape metrics with mean LST within the parks.

Landscape Metrics
In 2015 In 2020

Pearson Correlation Sig. Pearson Correlation Sig.

PA −0.716 ** 0.000 −0.719 ** 0.000
PP −0.690 ** 0.000 −0.677 ** 0.000

PPAR 0.632 ** 0.001 0.640 ** 0.001
PFD 0.182 0.394 0.192 0.370
GA −0.722 ** 0.000 −0.729 ** 0.000
WA −0.498 * 0.013 −0.532 ** 0.007
PIL 0.312 0.138 0.536 ** 0.007

Notes: * Correlation is significant at the 0.05 level (two-tailed). ** Correlation is significant at the 0.01 level
(two-tailed). PA = park area, PP = park perimeter, PPAR = park perimeter-to-area ratio, PFD = park fractal
dimension, GA = green area, WA = water area, PIL = proportion of impermeable layers (the same below).
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Figure 5. Regression analysis of park landscape metrics with mean LSTs in the parks. Note:
LST = land surface temperature (the same below).

The above correlation analysis shows that PA, PP, GA, and WA are important charac-
teristics that negatively affect the internal LST of the park. However, the more complex the
shape of the park (PPAR), the higher LST inside the parks.
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3.3. Correlation between Park Cooling Effect and Landscape Metrics

The size and landscape composition of the public parks have an impact on the Maxi-
mum Cooling Distance and the Maximum Cooling Intensity. In the study, the buffer zones
of the 24 parks were established at an interval of 100 m, with 1.5 times of the width of every
park, after excluding interference space such as water bodies and impermeable layers of
large size, as the area of buffer zones (Figure 6).
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Two indicators of Maximum Cooling Distance (MCD) and Maximum Cooling In-
tensity (MCI) were devised to measure the park cooling effects on surrounding thermal
environment. The Maximum Cooling Distances and the maximum cooling intensities of
the 24 parks in 2015 and 2020 (Table 5) have been obtained by cubic polynomial fitting
(R2 > 0.54) between cooling distances and cooling intensities for the 24 urban parks in
Shanghai. In 2015, the MCD exhibited large variations from 197.30 m recorded in Shangnan
Park to 1041.71 m observed in Binjiang Forest Park, with a difference of 844.41 m. While the
MCI was largest in Jingnan Park and smallest in Zhongshan Park, with a difference of 2.98
◦C. In 2020, the MCD was also largest in Binjiang Forest Park at 1016.19 m and smallest in
Gushu Park at 201.60 m, with a difference of 814.59 m; the MCI was greatest in Gushu Park
and lowest in Jing’an Park, with a difference of 5.92 ◦C. Notably, the Gushu Park had the
smallest MCD but the strongest MCI.

Then, the correlation analysis (Table 6) of park landscape metrics with Maximum
Cooling Distance and Maximum Cooling Intensity was conducted. It can be seen that the
MCD for 2015 and 2020, had a significant correlation with PA, PC, PPAR, GA and WA,
while the MCI of two periods had no significant correlation with any of the seven park
landscape metrics. Furthermore, different from other metrics, PPAR were negatively and
significantly correlated with MCD and positively correlated with the MCI both in these
two years. This result implies that the more complex the shape of the park boundary, the
smaller the cooling distance, but the stronger the cooling intensity. Thus, the MCD for 2015
and 2020 were fitted (Figure 7) to PA, PC, PPAR, GA and WA for further exploration.
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Table 5. Maximum Cooling Distance and Maximum Cooling Intensity of the 24 parks in Shanghai.

Park Grade Park Name
In 2015 In 2020

MCD (m) MCI (◦C) MCD (m) MCI (◦C)

Super large parks
(≥ 50 ha )

Century park 706.9506 1.2782 762.3386 1.7007
GongQing forest park 795.7450 1.3335 570.4900 0.8273

Binjiang forest park 1041.7070 0.8286 1016.1858 0.9299
Minhang sports park 522.2678 0.8592 861.2296 1.4615

Shanghai botanical garden 634.6422 0.8223 539.7231 1.1805
Daningyujinxiang park 585.0422 1.7656 568.6326 2.3472

Large parks
(10–50 ha )

Huangxing park 554.9581 1.0104 633.7859 1.7390
Changfeng park 881.0605 0.1235 881.0605 0.5083
Zhongshan park 412.2149 0.0986 799.8771 0.7355

Luxun park 381.2560 1.5903 365.7999 2.3829
Jinqiao park 472.2197 1.5060 502.9135 1.0606

Medium parks
(4–10 ha )

Guyi garden 252.9480 1.1000 217.5562 0.7764
Lujiazui central green 510.3497 0.1572 527.7217 0.3621

Xujiahui park 393.4313 2.1042 328.3025 2.6251
Fuxing park 304.8691 2.2150 283.3706 2.9778

Tianshan park 441.1852 2.8666 273.8877 4.0943
Zuibaichi park 260.5534 3.0442 291.7883 3.4186

Gushu park 284.7108 1.7763 201.6045 6.0184

Small parks
(≤ 4 ha )

Gucheng park 353.0546 0.7561 338.6038 0.4656
Xianghe park 347.0739 0.4785 339.1409 1.0331
Jing’an park 316.6093 0.7609 316.6093 0.0988

Shangnan park 197.3022 1.9122 203.9789 3.0141
Jingnan park 218.6293 3.0756 225.7952 4.3050

Xiangyang park 248.9833 2.5277 248.9833 2.6617

Notes: MCD = Maximum Cooling Distance, MCI = Maximum Cooling Intensity (the same below).

Table 6. Pearson correlation coefficients of park landscape metrics with MCD and MCI.

Landscape Metrics

In 2015 In 2020

MCD MCI MCD MCI

Pearson
Correlation Sig. Pearson

Correlation Sig. Pearson
Correlation Sig. Pearson

Correlation Sig.

PA 0.792 ** 0.000 −0.267 0.207 0.715 ** 0.000 −0.292 0.166
PP 0.805 ** 0.000 −0.335 0.109 0.769 ** 0.000 −0.330 0.116

PPAR −0.757 ** 0.000 0.392 0.059 −0.733 ** 0.000 0.330 0.115
PFD −0.220 0.303 0.094 0.663 −0.128 0.551 0.053 0.807
GA 0.790 ** 0.000 −0.254 0.232 0.715 ** 0.000 −0.287 0.173
WA 0.575 ** 0.003 −0.215 0.313 0.549 ** 0.006 −0.203 0.341
PIL −0.148 0.490 −0.298 0.157 −0.234 0.272 −0.194 0.365

Note: ** Correlation is significant at the 0.01 level (two-tailed).
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3.4. One Way ANOVA of the Influence of Different Park Groups on the Cooling Effect Indicators

To further explore the impact of the park on the surrounding thermal environment,
the additional study was conducted in six super large parks (>50 ha), five large parks
(10–50 ha), seven medium parks (5–10 ha) and six small parks (<4 ha), in terms of the
relationships between park size group and the two cooling effect indicators of Maximum
Cooling Distance (MCD) and Maximum Cooling Intensity (MCI). The mean MCD of
different park groups in both 2015 and 2020 decreased with park class, while there was no
significant linear correlation between the mean MCI and park class in 2015 and 2020, with
the medium park group having the largest cooling intensity in both two periods, followed
by the small park group. It was also evident that the difference between the mean MCD
of different park groups in 2015 and in 2020 was generally small, while the mean MCI of
different park groups in 2020 was significantly higher than that in 2015 (Figure 8).
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Then, analysis of variance (ANOVA) on the mean MCD and MCI at different park
classes was further performed. According to the test of homogeneity of variances by
SPSS, the significance values (Sig.) of MCD and MCI of two periods (2015 and 2020) were
greater than 0.05, which meant that, the variance meets the requirement of homogeneity,
after which the analysis of variance (ANOVA) could be performed. Referring to ANOVA
(Table 7), the significance values (Sig.) of MCI in 2015 and 2020 were greater than 0.05,
while the significance values (Sig.) of MCD were less than 0.01 in both periods. In other
words, both in 2015 and 2020, the difference between the MCI of the four park groups was
not significant and not statistically significant, while the opposite was true for the MCD of
the parks of the four park groups, where the difference was statistically significant.

Table 7. ANOVA results of MCI and MCD among park green spaces of different scales.

Sum of Squares Mean Square F Sig.

MCI in 2015

Between Groups 3.721 1.240 1.687 0.202

Within Groups 14.705 0.735

Total 18.426

MCI in 2020

Between Groups 10.241 3.414 1.704 0.198

Within Groups 40.061 2.003

Total 50.301
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Table 7. Cont.

Sum of Squares Mean Square F Sig.

MCD in 2015

Between Groups 699,250.864 233,083.621 11.130 0.000

Within Groups 418,854.943 20,942.747

Total 1,118,105.807

MCD in 2020

Between Groups 926,578.689 308,859.563 13.640 0.000

Within Groups 452,884.738 22,644.237

Total 1,379,463.427

However, as the ANOVA was only able to determine whether the control variables
had a significant effect on the observed variables, the next step was to conduct a multiple
comparison test using the Least Significant Difference (LSD) method to further determine
the exact degree of variation in MCD across the different park groups. As can be seen from
the results (Figure 9), with consistency in 2015 and 2020, there was significant difference in
MCD between super large and large park groups, as well as medium and small park groups,
while the differences between super large and large park group and between medium and
small park group were not significant. The LSD result suggested that the ability of parks of
more than 10 hectares (the boundary value between large- and medium-sized parks) to
affect the cooling distance was significantly enhanced.

To further assess the effects of the potential differences between the groups, the land-
scape metrics data were also applied to the one-way ANOVA (Figure 10). The significant
difference law of PP and PPAR was similar to that of MCD, while PA and GA values
represented significant differences between super large parks and other types. Among
the seven landscape characteristic metrics, the differences in five metrics among four park
groups were significant, except for PFD and PIL.
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4. Discussion
4.1. Influence of Park Landscape Characteristics on Local Surface Temperature

As an important part of the urban landscape, the park landscape not only provides
recreational areas for the surrounding residents, but also to a certain extent regulates the
regional climate. The cooling effect of green spaces inside the urban park is a phenomenon
that has been widely studied and validated in various regions and cities [39,42,61]. In
this study, we investigated and analyzed the distribution pattern of thermal environment
inside and outside the urban park through a remote sensing retrieval method. The results
indicate that green spaces in parks form obvious cold islands in the city, and whether
from the morphological characteristics or the composition of patches, there are key factors
affecting the cooling effect. Therefore, it is important to plan the construction of urban
parks in a city like Shanghai where the urban area is an expensive space. Numerous studies
have shown that a park’s patchy morphology and its internal landscape metrics have a
significant cooling effect on the local thermal environment [29,51]. This study found that in
2015, the average temperature of the 24 parks was 31.68 ◦C, 1.46 ◦C lower than that in the
main urban area of Shanghai (33.14 ◦C) in that year; in 2020, the average temperature of the
24 parks was 33.42 ◦C, 1.66 ◦C lower than that in the main urban area of Shanghai (35.08 ◦C)
in that year. This temperature difference is consistent with the conclusion drawn by Bowler
et al. (2010) [62], in which the meta-analysis of data from different studies suggested that,
on average, an urban park would be around 1 ◦C cooler than a non-green site.

This study also found that the park’s patch morphology and configuration character-
istics had an impact on the thermal environment of the park. The negative relationship
of mean LST of two periods to park area suggests that the LST of a park decreases with
increasing park area, as well as the park perimeter. The park perimeter-to-area ratio (PPAR)
had a significant positive correlation with the mean park LST (r = 0.63, p < 0.01). Addition-
ally, the greater the PPAR, the relatively more complex the shape of the park, the easier it
is to exchange material energy within the park, and the higher the mean LST of the park.
However, Zhu et al. (2021) [29] found that the correlation coefficient between them was
−0.39 (p < 0.01), indicating that parks with irregular shapes could have lower LSTs. This
might be attributable to the differences in the range of PPAR of the parks and different
climate backgrounds.

From the perspective of the park’s landscape composition, the negative exponential
relationship of mean LST in two periods to green area suggests that the mean LST of the
park decreases as the green area increases. The results of the exponential fit of the mean
LST to the green area for both periods are approximately linear, and the calculation shows
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that for every 50-ha increase in the green space area within the park in 2015, the average
park temperature decreased by approximately 0.63 ◦C, and for every 50-ha increase in
the green space area within the park in 2020, the average park temperature decreased by
approximately 0.66 ◦C. Therefore, when planning the internal landscape composition of
urban parks, the size of the green space area should be fully considered and the green space
area inside the parks should be increased as much as possible. This is because vegetation
can reduce the LST through evapotranspiration and shadows, which has been proven by
several studies [37,41,50].

In addition to this, the water area within the park also plays an important role in
reducing the mean LST. The high specific heat capacity of the water body and the fact
that evaporation from the water body can absorb some of the heat from the air results
in the mean LST of the park decreasing as the water area increases [52]. The effect on
temperature is relatively significant as the water area increases from 0 to 20 ha. At the same
time, considering that Shanghai is a densely populated and fast-growing metropolis, its
park landscape area is limited, so from the perspective of urban park landscape planning,
it is more reasonable to consider the actual situation of the water body for providing
greater cooling benefits. However, the results of the study show that the proportion of the
impervious layer in the park had no significant effect on the mean LST of the park in 2015.
Several parks selected in this study, such as Binjiang Forest Park and Jingnan Park, are
surrounded by wide rivers and/or large green space (green space coverage rate exceeds
90%, shown in Table A1), which has a cooling effect on the parks and could have some
impact on the results.

4.2. Influence of Park Landscape Characteristics on the Surrounding Thermal Environment

The scale of any cooling effect beyond the boundary of the green area is particularly
important for the likely public health consequences of park greening, as park green space
may not be directly accessible to all who might benefit during high temperatures [62].
Therefore, the key influencing factors and laws of the scale and intensity of cooling effect
have been examined by scholars. The results reported in this paper showed that the
landscape metrics of park area (PA), park perimeter (PP), park perimeter-to-area ratio
(PPAR), green area (GA), water area (WA), as the critical influencing factors, influence the
cooling effect of the park on the surrounding thermal environment. This result coincides
with the findings of other scholars [29,37,51]. However, the effects of the park landscape
features on the cooling indicator MCD were significant, while the effect on MCI was not.
MCI is an indicator of temperature difference that depends not only on the LST of the park,
but also on the land surface temperature around the park (Figure 3). Shanghai is located at
the confluence of the Yangtze and Huangpu rivers, with a low and flat topography and
a dense network of water. Many parks in Shanghai are surrounded by dense fine water
flows, but in this study, buffer zones of parks did not eliminate these fine streams or some
of the smaller green areas, which may have caused a slightly lower calculated surface
temperature in the buffer zone than in reality.

From the plaque morphology of the park, the Maximum Cooling Distance (MCD) in
2015 (R2 = 0.70) and 2020 (R2 = 0.67) of park increased logarithmically and sharply within
the park area of 20 ha but eventually reached an asymptote. After the park area exceeded
the threshold (about 20–40 ha), the cooling distance tends to be gentle with the increase
in the park area. Combined with the results of the MCI of the park groups, the cooling
intensity of medium- (4–10 ha) and small-scale parks (<4 ha) is evidently higher than that
of the super large and large group (Figure 8b). This result is in agreement with that of a
previous study, in which super large parks with areas exceeding 30 ha on average were
not more efficient than small parks less than 3 ha when measured by mean ratio of cooling
area to park size [51]. Additionally, the Maximum Cooling Distance of the park increases
linearly with increasing park perimeter. The larger the park area and the greater the park
perimeter, the greater the Maximum Cooling Distance and the more significant the cooling
effect of the park. In addition, the PPAR and the park’s Maximum Cooling Distance (MCD)
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had a negative logarithmic relationship (in 2015: R2 = 0.72, in 2020: R2 = 0.66). The smaller
the PPAR, the simpler the park shape, and the more pronounced the cooling effect distance
of the park on the surrounding environment. When planning and building urban parks
it is necessary to take into account controlling the park PPAR from 0 to 100 to achieve
a better cooling effect of park. Analyzed in terms of the park’s landscape composition,
MCD of the park increased logarithmically with park green area and linearly with the
park’s water area. According to the fitting results of the two periods (Figure 7), the degree
of impact of the green area on the park surroundings increased sharply from 0 to 20 ha.
When the vegetation area reached a certain threshold, the degree of impact tended to
increase smoothly. For every 10-ha increase in the area of park water bodies, the cooling
distance of park increased by 197.68 m in 2015 and 209.36 m in 2020. Transpiration from the
green space and evaporation from the water body can absorb heat from the land surface
and produce water vapor, which then generates wind under the action of the horizontal
pressure gradient force at the land surface, resulting in a more efficient exchange of material
and energy in the horizontal direction, thus mitigating the sharp rise in temperature around
the park. In the planning of urban parks in metropolitan cities such as Shanghai, compared
with the difficult control of water area, the proportion of green space in the parks should be
maximized and the proportion of impermeable layers should be controlled while taking
into account aesthetics.

4.3. Influence of Different Park Size Groups on the Cooling Effect Indicators

Cheng X et al., 2015, concluded that park size can explain nearly 73% of the variance in
cooling distance; therefore, park size is the main factor that influences the cooling effect on
land surface temperature [51]. Our results showed that the cooling distance of most parks
in the study were limited within 600 m. Only a few very large parks have cooling distance
over 800 m. The Maximum Cooling Distance varied significantly under different park size
grades. The mean MCD values for the super large and large park groups are much larger
than for medium and small ones. This is consistent with the findings of other scholars that
park size does have a significant effect on the cooling effect of parks [16,37,44]. Whereas the
values of mean MCD of the super large and large park groups in 2020 were larger than that
in 2015, those of small and medium park group had instead shrunk slightly. With urban
temperatures rising year by year, it is clear that small (<4 ha) and medium (4–10 ha) park
groups have less scope for cooling influence than super large (>50 ha) and large (10–50 ha)
park groups. Therefore, more large parks can be considered in large cities with a dense
water network such as Shanghai, and water systems should be included in or adjacent
to parks as much as possible, so that the cooling effect of parks and these water systems
interact with each other to achieve a stronger cooling island effect. However, the cooling
intensity of medium and small parks with less than 10 hectares should not be ignored. On
the contrary, it needs to be fully utilized, especially in metropolises such as Shanghai.

4.4. Limitations

Land surface temperature (LST) has been widely used to describe the cooling effect
of green spaces on Urban Heat Islands [16,25,55]. When using LST data rather than air
temperature to study the cooling effect of parks, the intensity of cold islands is often
overestimated because LST responds to direct solar radiation reaching the land surface [16].
However, remotely sensed land surface temperature data can provide more detailed spatial
information and data, and they are easier to manipulate than obtaining air temperature
data. Subsequent studies may consider comparing multiple inversion algorithms or using
high-resolution image data combined with weather station data for calibration, etc., to
make the temperature data more accurate and reliable.

According to available studies, the intensity of cold islands in the park varies during
the day and night [7,45], as well as seasonally [16,63,64]. Nevertheless, only two days
of Landsat-8 OLI/TIRS data during summer daytime for two periods (3 August 2015,
16 August 2020) were selected for this paper, due to the limitation of data acquisition
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quality and article length. The time difference between days may also induce slight errors
for the comparison of LSTs between years. Although it can reflect the changes in cooling
effect in different years during typical summer daytime to a certain extent, it can neither
reflect the changes in cooling effect in the park by day and night, nor the changes in
cooling effect by season. The amount of data should be further increased appropriately to
analyze changes in the cooling effect of the park landscape. In addition, although this paper
excluded larger areas of green space and water space within buffer zones, it is not precise
enough to consider the effect of fine water flows and small areas of greenfield vegetation
around the park on land surface temperatures. Additionally, considering that the condition
of LST and configuration of greenspace may be scale dependent, a study across spatial
scales should be carried out to better understand the impact mechanism of public parks on
the thermal environment.

5. Conclusions

Understanding the effects of structure and configuration characteristics in park land-
scape on inside-park LST and cooling efficiency in the buffer zone is important for designing
effective strategies to mitigate the amplitude of UHI. In this study, Landsat-8 OLI/TIRS
images in hot-summer daytime of 2015 and 2020 representing the rapid urbanization pro-
cess were interpreted, from which the LSTs were retrieved. Based on that, the relationships
between park landscape features with LSTs inside the park and two cooling efficiency
indicators representing change in their surrounding thermal environment were studied.
We found that the average LST of urban parks was 31.68 ◦C in 2015 and 33.42 ◦C in 2020,
which was 1.46 and 1.66 ◦C lower than that of the main urban area of Shanghai, respectively.
Therefore, public parks have been performing the service functions of regulating the local
thermal environment of the city. For the two indicators of MCD and MCI, the MCD results
exhibited large variations ranging from 197.30 m to 1041.71 m and MCI ranges from 0.10 ◦C
to 6.02 ◦C in 24 parks. The cooling distance and intensity of most parks in the study were
concentrated within 600 m and 3 ◦C.

In terms of the park’s plaque morphology and configuration, the landscape metrics of
PA, PP, GA and WA, were important characteristics that negatively affected the internal LST
of the parks. However, the park PPAR had a significant positive power correlation with the
park LST data. Subsequently, the MCD for 2015 and 2020 had a significant correlation with
PA, PC, PPAR, GA and WA, while the MCI of two periods had no significant correlation
with any of the seven park landscape metrics. Not surprisingly, larger parks had a longer
cooling distance and the MCD increased logarithmically and sharply within the park area
of 20 ha. However, the medium park group had the largest cooling intensity in both periods,
followed by the small park group. Therefore, the cooling intensity of medium and small
parks with less than 10 hectares should be fully utilized, especially in metropolises such as
Shanghai with expensive space. This result also indicated that the more complex the shape
of the park boundary, the smaller the cooling distance but the stronger the cooling intensity.
Therefore, whether there is a trade-off relationship between the Maximum Cooling Distance
and intensity of urban parks is worth pondering and continuing to research. Additionally,
the original water systems should be included in or adjacent to parks as far as possible, so
that the cooling effects of both can be superimposed on each other to produce a stronger
cooling effect. The limitation of this paper is that the seasonal and diurnal changes in LST
were not studied. At the same time, extracting the characteristics of the park combined
with higher resolution images should be considered in the future. For future research
we will also carry out multi-scale and multi-region comparison studies to advance our
understanding of the trade-off relationship between the cooling distance and intensity of
urban parks in order to maximizing the cooling effects.
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Appendix A

Table A1. Multiple Comparisons of MCD among park green spaces of different scales.

Dependent
Variable

(I) Park Group (J) Park Group
Mean Difference

(I–J)
Std.

Error
Sig.

95% Confidence Interval

Lower Bound Upper Bound

MCD in 2015
Super large

Large 174.0506 87.6299 0.061 −0.8009 1.3652
Medium 364.6714 * 80.5126 0.000 −1.7420 0.2482

Small 434.1170 * 83.5518 0.000 −1.4699 0.5954

Large
Super large −174.0506 87.6299 0.061 −1.3652 0.8009

Medium 190.6208 * 84.7370 0.036 −2.0763 0.0183
Small 260.0664 * 87.6299 0.008 −1.8025 0.3637

Medium
Super large −364.6714 * 80.5126 0.000 −0.2482 1.7420

Large −190.6208 * 84.7370 0.036 −0.0183 2.0763
Small 69.4456 80.5126 0.399 −0.6855 1.3047

Small
Super large −434.1170 * 83.5518 0.000 −0.5954 1.4699

Large −260.0664 * 87.6299 0.008 −0.3637 1.8025
Medium −69.4456 80.5126 0.399 −1.3047 0.6855

MCD in 2020
Super large

Large 83.0792 91.1201 0.373 −1.6651 1.9103
Medium 416.3050 * 83.7193 0.000 −3.1307 0.1542

Small 440.9147 * 86.8796 0.000 −2.2263 1.1826

Large
Super large −83.0792 91.1201 0.373 −1.9103 1.6651

Medium 333.2257 * 88.1120 0.001 −3.3395 0.1178
Small 357.8355 * 91.1201 0.001 −2.4321 1.1432

Medium
Super large −416.3049 * 83.7193 0.000 −0.1542 3.1307

Large −333.2257 * 88.1120 0.001 −0.1178 3.3395
Small 24.6097 83.7193 0.772 −0.6761 2.6089

Small
Super large −440.9147 * 86.8796 0.000 −1.1826 2.2263

Large −357.8355 * 91.1201 0.001 −1.1432 2.4321
Medium −24.6097 83.7193 0.772 −2.6089 0.6761

Note: * The mean Difference between the park groups is significant at the 0.05 level.
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 Small 357.8355 * 91.1201 0.001 −2.4321 1.1432 
 

Medium 
Super large −416.3049 * 83.7193 0.000 −0.1542 3.1307 

 Large −333.2257 * 88.1120 0.001 −0.1178 3.3395 
 Small 24.6097 83.7193 0.772 −0.6761 2.6089 
 

Small 
Super large −440.9147 * 86.8796 0.000 −1.1826 2.2263 

 Large −357.8355 * 91.1201 0.001 −1.1432 2.4321 
 Medium −24.6097 83.7193 0.772 −2.6089 0.6761 

Note: * The mean Difference between the park groups is significant at the 0.05 level. 

 
Figure A1. Comparison and verification of the air temperature and the LSTs in Shanghai on 3 Au-
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