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Abstract
Image analysis in clinical research has evolved at fast pace in the last
decade. This review discusses basic concepts ranging from
immunohistochemistry to advanced techniques such as multiplex imaging,
digital pathology, flow cytometry and intravital microscopy. Tissue imaging 

 is still one of the gold-standards in the field due to feasibility. Weex vivo
describe here different protocols and applications of digital analysis
providing basic and clinical researchers with an overview on how to analyse
tissue images.   imaging is not easily accessible to researchers;In vivo
however, it provides invaluable dynamic information. Overall, we discuss a
plethora of techniques that - when combined - constitute a powerful
platform for basic and translational cancer research.
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Introduction
Methodology for imaging human or mouse tissues has seen great 
progress, ranging from basic histopathological analysis under 
the microscope to recent automation (computer-assisted diagno-
sis and machine learning technologies) and image digitalisation. 
In addition to clinical research, histopathology combined with 
imaging is a valuable tool to assess in situ changes in tissue 
specimens in an array of solid tumors. Such analysis can be 
either a starting point for investigation followed by dissection of 
cellular and molecular mechanisms or the endpoint validation  
of in vitro findings.

In this review, we discuss the recent advances in high- 
performance tissue imaging. We classify the tissue imaging 
modalities into three major groups: immunohistochemistry (IHC) 
(with a focus on new digital imaging techniques), multiplex flow 
cytometry, and intravital microscopy. We summarise the strengths 
and possible applications of these methods for discovery science  
and for translational/clinical applications.

Immunohistochemistry and digital pathology
Observation is the first and one of the most fundamental steps 
in scientific methodology. Studies combining tissue dissec-
tion and microscopy are crucial in diagnosis and biomedical 
translational research1,2. However, accurate and quantitative 
image analysis still remains the main a challenge3. IHC-based  
applications have expanded significantly over the last decade4.

IHC is a method for detecting antigens or haptens in cells 
of a tissue section by exploiting the principle of specific  
antigen–antibody recognition. The antibody–antigen binding can 
be visualised in different ways. Enzymes, such as horseradish 
peroxidase (HRP) or alkaline phosphatase (AP), are commonly 
used to catalyse a colour-producing reaction5. Furthermore, 
one of the key advantages of IHC is that it offers combined  
histopathological information (i.e. tissue necrosis, tumor load,  
and architecture of surrounding non-tumoral components) with 
biomarker expression. Molecular and clinical oncologists studying  
the tumour microenvironment (TME) need to better understand  
the heterogeneous cellular components and structure of tumours to 
predict  therapy responses.

Multiplexed IHC (mIHC) methods have been developed to 
detect several proteins in a single formalin-fixed paraffin-
embedded (FFPE) tissue section. Currently, several protocols  
have been described for staining in a multiplexed fashion. 
The most extended methodology combines conventional IHC  
protocols with imaging and image analysis, referred to as  
SIMPLE (sequential immunoperoxidase labelling and erasing). 
As implied by its name, this method involves labelling a sam-
ple with peroxidase-based indirect IHC and subsequent removal 
of the alcohol-soluble substrate, 3-amino-9-ethylcarbazole  
(AEC), combined with an acid-based antibody elution step.  
Several markers (antibodies) can be used after repetition of these 
steps. Digital reconstruction of the different markers used is then  
performed, and subsequently the images are overlaid and pseudo-
colours to each marker are assigned. Hence, SIMPLE is a useful 
approach to eliminate the problems associated with multiprobe  
colour compatibility and antigens located in the same cellular  
compartment. On the other hand, multiplexing may be challenging  

owing to compromised tissue integrity after repetitive rounds 
of ethanol dehydration and heat-induced antigen retrieval6,7. 
To address this, different protocols have been developed where  
tyramide signal amplification (TSA) methods are used. Tyramide 
is an organic phenol that can be conjugated to biotin or fluorescent  
labels. In the presence of a catalyst like HRP, tyramide becomes 
activated and covalently bound to electron-rich regions. This 
typically occurs on tyrosine residues in proteins, present in the 
vicinity of protein antigens. The covalent nature of tyramide– 
tyrosine engagement results in heat-mediated removal (stripping)  
of primary and secondary antibody pairs bound to the  
antigen while preserving the antigen-associated fluorescence  
signal. This facilitates the sequential use of multiple primary 
antibodies of the same host species or isotype without the 
problem/concern of crosstalk, thereby greatly enabling multi-
plexing potential8. One of the best-known mIHC TSA-based 
methods is Opal™ IHC kit, which is part of PerkinElmer’s  
Phenoptics™ Research Solution for Cancer Immunology and 
Immunotherapy. Opal™ uses tyramide-conjugated probes to 
identify several antigens on tissues and currently can detect up  
to seven markers simultaneously.

In recent years, a plethora of image analysis software has been 
developed. Led by ImageJ, there is now a selection of tools such 
as ImageJ-Fiji, Icy, and CellProfiler to perform image analy-
sis in multiple disciplines9–11. However, none of these applica-
tions can be used for the visualisation and analysis of whole 
slide images (WSI) and large 2D data. For this reason, there is 
an increasing interest in developing software designed for digital  
pathology uses. Visiopharm, Definiens Inc., Halo (Indica 
Labs), Quantcenter (3DHistech), or open source Qupath12 can 
be used to analyse WSI data. Overall, these systems share fea-
tures that provide accurate tissue segmentation and spectral 
deconvolution for fluorophores and chromogens. Algorithms 
are used to train the software to classify cells. For example, hue  
value/width, intensity threshold scoring, morphology/geometrical 
characterisation, pixel-count threshold, and colour saturation 
are some of the features that can be used to characterise 
cells in different tissue areas. Even though artificial intel-
ligence (AI) is already used in radiology and cardiology for 
image-based diagnosis13, its application to digital pathology is  
challenging. Currently, the application of AI in digital pathology 
is confined to several research studies and dedicated com-
panies. Among the areas where AI is already being used are  
education (teaching at conferences and training of pathologists), 
quality assurance (teleconsulting and gauging inter- and intra-
observer and proficiency testing), clinical diagnosis, and image 
analysis14–17.

IHC combined with digital pathology software has the poten-
tial to benefit both basic and clinical research (see applications  
below).

Applications of digital pathology in translational 
cancer research
Assessment of histological and morphological features of 
tumours
To date, analysis of histological features by haematoxylin and 
eosin (H&E) is the primary approach and the gold-standard 
for pathologists for diagnostic purposes in the clinical setting.  

Page 3 of 12

F1000Research 2019, 8(F1000 Faculty Rev):1980 Last updated: 09 DEC 2019



The use of digital pathology aids clinicians in the identifica-
tion of new histological areas. Furthermore, digital pathol-
ogy contributes to standardising phenotypic features linked to  
malignant phenotypes18–21.

For instance, skin cutaneous melanoma (SKCM) is one of the 
most heterogeneous cancers. Pathologists can describe multiple 
morphological features in the same section22. Previous studies 
integrated genetic and morphological features18. Interest-
ingly, our group has reported an enrichment in melanoma-
rounded cells that harbour high myosin II activity (as measured 
by p-MLC2) in the invasive fronts of mouse and human  
tumours23–27. Indeed, MLC2 is a substrate of Rho-associated 
kinase (ROCK), one of the major drivers of cancer invasion 
and a key regulator of actin organisation20,28. We have associ-
ated this morphological feature and high p-MLC2 levels to a 
very invasive amoeboid-rounded phenotype in vitro23–27,29 and in  
combination with intravital imaging studies24,25.

In all of our previous studies, cancer cell morphology was 
visually assessed at 20× in the bulk of the tumour using dif-
ferent fields of view (FOVs)25–27. The visual assessment was 
based on a scoring method where cancer cells can range from 
0 to 3: 0, round morphology; 1, ovoid; 2, elongated; and 3,  
spindle18. These values then could range from 0 (rounded) 
to 300 (fully spindle tumour cell) including all intermediate  
morphologies in between.

The use of digital pathology could overcome inter-observer vari-
ability, allows for a more robust analysis and adding new meas-
urements to the analysis. On the other hand, conventional 2D 
histology provides planar information that, until now, has proved 
to be valuable diagnostic tools. Of note, 2D assessment of phe-
notypic features in cancer, such as morphology, angiogenesis, or 
perineural invasion, are inevitably associated with some level  
of analytical error. Therefore, obtaining 3D tissue architecture 
information is still challenging for pathologists but may lead 
to numerous applications and to the precise description of the  
complex TME30. For instance, Ourselin et al. reported a 3D 
reconstruction method from consecutive H&E sections to rebuild  
the microvasculature and correct previous problems31.

Scoring methods in IHC
As mentioned before, IHC has been used for many decades, 
but quantification of IHC samples has poor reproducibility32. 
Histoscore (H-score) is one of the most accepted scoring  
systems33. H-score is a semi-quantitative assessment of both 
the intensity of staining (graded as 0, non-staining; 1, weak; 2, 
median; or 3, high) and the percentage of positive cells. Other  
methodologies to quantify IHC include the Allred score used 
to quantify the expression of oestrogen-receptors in breast  
carcinomas34 or the HER-2 score that gives a score from 0 to 3  
and measures the amount of HER2 receptor protein35.

However, since WSI and digital methods have become  
available, more standardised approaches will overcome repro-
ducibility issues inherent to individual observer bias. Such 
software can set up thresholds for each of the scores (0–3), 

emulating the H-score method. Furthermore, by combining 
machine-educated classifiers to recognise different cell types  
(cancer, stroma, and immune cells) with a scoring system based on  
thresholds, it is possible to calculate H-scores in the tumour 
area. To date, there are few studies using these approaches to 
standardise quantitative biomarkers that have shown better 
results than manual methods36–38. Recently, Acs et al. compared 
three of the most commonly used digital pathology software  
(Qupath, Quantcenter, and Halo) in order to quantify and 
assess inter-observer variability for Ki67 in breast carci-
noma. Overall, the reproducibility was excellent among all 
digital pathology platforms, and QuPath showed the lowest  
intra-digital image analysis variability38.

Quantification and phenotypic characterisation of immune 
infiltrates
Understanding the interactions between cancer cells and the 
TME is an important aspect when predicting therapy responses. 
In order to characterise TME components, an alternative to 
flow cytometry (see below) is H&E and IHC. For instance, pre- 
clinical and translational studies have shown that the percentage 
of tumour-infiltrating lymphocytes (TILs) is critical to cancer 
patients’ response to immunotherapies37,39–43. Colour separation  
of histological images (IHC or H&E) has commonly been 
used to quantify different stains. Most of the platforms—Genie 
Spectrum (Aperio ePathology Solutions), Image-Pro Plus 3.0 
(Media Cybernetics), Halo (Indica Labs), ImageJ, and VMscope 
(VMscope GmbH)—use colour deconvolution algorithms. Such 
algorithms were developed to acquire colour information with 
red–green–blue (RGB) cameras and to calculate the contribution 
of each colour based on stain-specific RGB absorption44. Recently, 
our lab has used such approaches by utilising Fiji-ImageJ to  
quantify F4/80+CD206+ macrophages in mouse tissue sections27.

Extracellular matrix
Another key component of the TME is the extracellular matrix 
(ECM), a non-cellular three-dimensional macromolecular  
network that provides structural and biochemical support45. The 
ECM can be very heterogeneous, and its composition varies 
both between and within individual tumours. Fibrillar collagen 
is the most abundant protein in the ECM. Among other ECM 
components are other collagens, proteoglycans (PGs), and  
glycoproteins46,47. ECM can be remodelled during ageing,  
fibrosis, wound healing, and cancer48. For example, tumours are 
normally stiffer than their surrounding normal tissue. Such stiff-
ness is induced by ECM deposition, remodelling by fibroblasts, 
and increased contractility of the transformed epithelium49,50. 
Indeed, the importance of the matrisome and ECM stiffness has 
been recently described in high-grade serous ovarian carcinoma 
(HGSOC) and other tumour types51. Altered matrix composition 
and organisation help cancer cells to grow and disseminate, and 
it is thus an important aspect that needs to be further investigated  
in tumour biology52.

ECM features are critical to determine drug response in  
cancer53, and IHC is often used to study matrix constituents51.  
A number of basic histological techniques can be used to describe 
the qualitative and quantitative presence and arrangement  
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of matrix components. Gomori’s, Masson’s Trichrome, and Picro 
Sirius Red are three widespread staining techniques used for 
the study of the ECM. Indeed, Picro Sirius Red provides highly 
detailed and contrasted signal derived from connective tissue54.  
Because of its high informative capability, it is recommended 
for morphometric assessment of fibrotic responses under 
cross-polarised light54,55. The potential to further quantify  
structures and matrix patterns in tissue sections using digital  
platforms, such as matrix intensity and anisotropy, can 
help pathologists and clinical cancer researchers to better  
understand the structure of tumours.

Multiplex staining in tissue samples
One of the most revolutionary techniques in tissue imaging to 
date is multiplex staining using IHC methodologies. Currently, 
there are limited tools to analyse mIHC. One example is the 
Phenoptics platform, which allows scientists to adapt and tailor 
the software to their specific purpose/needs (InForm). However, 
mIHC-based on SIMPLE requires an advanced knowledge of 
scripting with Image-J and Cellprofiler6. Currently, there are only 
a few platforms to perform such analysis, including programs 
such as Visiopharm. Such software can register and align  
different markers within the same section. Later, every sin-
gle cell is segmented and the corresponding positive or negative 
information for each marker is integrated. Overall, the combina-
tion of multiple markers with histological and spatial information 
creates complex data that require high-throughput data analy-
sis methods. The most common outcomes after the integration 
of all the data are generally TSNE plots, correlation matrix,  
and neighbourhood analysis that can guide deeper understanding 
of the data.

Machine-learning and artificial intelligence
With the development of AI, deep convolutional neural  
networks (CNNs)56 have proven to be useful for advancing  
biomedical imaging, as mentioned above. Application of deep-
learning methods and AI in translational studies has been used 
to investigate 1) how immune infiltrates vary across space within 
patients at the time of diagnosis57, 2) if the stroma-tumour cell 
ratio can predict ovarian cancer therapy responses58, and 3) how  
TME forces shape the plasticity of cancer cells21. Developing  
these approaches for biomedical research purposes is both  
exciting and challenging.

Imaging and flow cytometry for tissue analysis
Flow cytometry is a powerful quantitative technique that allows 
multiplexing in high-throughput systems (HTS), providing 
fast and automated sample acquisition (i.e. HTS screening 
assays). Specifically, multi-parameter flow cytometry (up to 18 
colours simultaneously) has enabled high-resolution quantification  
of cell types, analysis of cell surface and intracellular molecules,  
immunophenotyping analysis, functional characteristics of  
different cell populations, and many more. Similarly,  
mass cytometry can measure >40 parameters simultaneously,  
necessitating high-dimensional cytometry data analysis with 
algorithms, such as viSNE (visualize relationships in mul-
tidimensional data) and SPADE (spanning-tree progression 
analysis of density-normalized events). This allows complex 

data analysis and visualisation of different cell features59,60.  
Flow cytometry, in general, has found numerous applications 
not only in basic research but also in fields like diagnostics 
and clinical pathology, with a fundamental role in immunol-
ogy. However, the main limitation of such technology is the 
use of single-cell suspensions. Therefore, any analysis requires 
enzymatic digestion or mechanical dissociation of the tissue  
during sample preparation. Moreover, flow cytometry does not 
allow spatial information of cell populations of interest within the 
tissue, along with cell number loss due to tissue processing61. Any 
cancer cell–non cancer cell interactions (i.e. relationship between 
tumours cells and immune infiltrates) or information regard-
ing tissue architecture is not possible with flow cytometry61. To  
address these limitations, a new technology that combines  
imaging and flow cytometry has been developed62,63.

Indeed, the so-called field of imaging cytometry is rapidly 
evolving. In contrast to conventional flow cytometry, imag-
ing offers information about cell structure, size, morphology, 
and location of cells within the tissue. Based on the sample (cell 
suspension, adherent cells, or tissue specimens), flow-based 
(represented by the ImageStream) and solid-phase imaging 
cytometry have been defined as the two categories of imaging  
cytometry64. For the purpose of this review, we will focus on the 
latter category only.

Laser scanning cytometry
The first solid-phase imaging cytometry, known as laser scan-
ning cytometry (LSC), was developed by Louis Kamentsky 
and became commercially available by CompuCyte Corpora-
tion (acquired by Thorlabs Inc. in 2013), pioneering the field of  
automated quantitative imaging cytometry62,63.

From a technical point of view, LSC couples high-sensitivity  
and accurate signal quantification, utilising flow cytometry 
advantages of laser excitation and photomultiplier tubes (PMTs), 
with the spatial resolution of microscopy. For a representative  
list of the most common imaging cytometers, please see  
Henriksen et al.64. Prototypically, the laser scanning beam 
was derived from an argon ion laser and later also a helium–
neon laser and a violet diode laser that were all combined at 
a dichroic mirror and guided to a second dichroic mirror to 
reflect the laser wavelengths62,65. The laser beam is directed 
to a computer-controlled scan mirror and passes through  
a scan lens and then to the microscope objective. Scattered 
light is collected by the condenser lens of the microscope and 
directed to solid-state photosensors. The appropriate PMTs are 
used to detect laser-excited epi-illumination fluorescence. The 
photosensor and PMT signals are digitised to create pixel val-
ues and are gathered into images65. As the beam is scanned over 
the sample in one axis (y), the stage is moved by the computer-
controlled motor in the x-axis, generating x–y coordinates66.  
Nowadays, to allow multiplexing, an LSC is equipped with  
up to four lasers from six wavelengths in total: 405 nm, 488 nm,  
532 nm, 594 nm, 561 nm, and 633 nm67. It is worth mention-
ing that in addition to PMT-based LSC, charge-coupled device 
(CCD)-based systems also exist. The latter comprises a dense 
array of sensors employing widefield illumination. By contrast,  
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PMTs are usually combined with laser spot-scanning to pro-
vide high dynamic range. They also have a higher band-
width and lower signal-to-noise ratio compared to CCD-based  
systems64,68. Comparison between LSC and other imaging tech-
nologies, such as laser confocal microscopy or conventional 
flow cytometry, is beyond the scope of this review. For detailed  
reviews, see 65,68.

Given that LSC is a slide-based technology, it offers many 
advantages. Cell morphology, precise anatomical information,  
cell–cell interactions in situ, signalling, and functional and phe-
notypic characterisation simultaneously with visualisation of  
cells of interest are some of the main applications of LSC61,65. 
Other common applications involve cell cycle and DNA  
damage analysis and kinetic studies67. The areas that have greatly  
benefited from LSC are immunology, cytogenetics, diagnostics, 
and clinical pathology. In contrast to inter-examiners’ reproduc-
ibility and the technical limitations of conventional IHC that 
have been mentioned above, LSC offers objective and accurate  
quantification in an automated and time-lapse manner. For 
this reason, histological sections, fine-needle aspirates, patient 
and healthy volunteers’ swabs, and cytospins have all been 
widely employed for LSC. Specifically, a comparative study  
of LSC versus IHC analysis of melanoma-associated antigen 
recognised by T cells (MART-1), glycoprotein 100 (gp100), 
and HLA-A2 expression in fine-needle aspirates has high-
lighted the accuracy of LSC69. Importantly, LSC could allow the  
discrimination of heterogeneous melanoma antigen expression 
in subsets of melanoma cells within the same lesion69. On the 
other hand, the so-called “tissue maps” can be created from the  
x–y coordinates, allowing the quantification and visualisation  
of molecular profiles65.

Of note, chromatic or fluorescent dyes can be used for tissue 
staining64. There are four types of contour accurately defining 
single cells. A “threshold contour” is defined by nuclear DNA 
staining, whilst an “integration contour” is defined by cell-sur-
face marker staining. “Peripheral contours” could potentially 
define the region between the nucleus and cell surface, and finally 
“background contour” is used for non-cell areas to allow the  
calculation of the background fluorescence65. Routinely, two- or  
three-colour chromatically or fluorescently stained tissue  
specimens, but also multiplexing, are available for the simultane-
ous evaluation of patients’ biopsies, tissue microarrays (TMAs),  
and tissue sections61. For example, breast or prostate 
TMAs have been successfully stained for anti-Her2/3’- 
diaminobenzidine (DAB)/counterstain with hematoxylin and 
anti-CD10/DAB/counterstain with hematoxylin, respectively64,70. 
In contrast to IHC, LSC can distinguish immune cell popula-
tions based on the chromatin condensation71. Another impor-
tant feature of LSC is the spatial resolution of fluorescence  
within a cell enabling the nuclear versus cytoplasmic  
analysis of targets (i.e. NF-κB translocation in the nucleus)61.  
Furthermore, visualisation and quantification of antigen  
presentation-related processes, lymphocyte migration, and  
signalling events can all be dissected by LSC65,72. Overall,  
analysis of the immune response in situ is improved  
aided by the use of LSC65.

Moreover, given that the slide position on the stage is recorded, 
relocation and re-staining of the sample are possible, while 
the laser excitation wavelength can also be changed between  
different runs73. These features are particularly important, as 
patient biopsies are precious and can thus be analysed for rare  
cell populations which exemplifies the versatility of the LSC65.

Histo-cytometry
On the other hand, it is worth mentioning that a new 
method for multiplex quantitative image analysis, known as  
“histo-cytometry”, was developed by Gerner et al. in 201274. 
Such an analytical confocal microscopy method allows visualisa-
tion and quantification of phenotypically different immune cell 
populations within murine lymph nodes. Of note, the authors  
have used this methodology to provide novel information about 
the distribution of resident and migratory dendritic cell subsets  
in discrete lymph node microcompartments.

Overall, LSC combines the advantages of multiparameter 
flow cytometry and quantitative data analysis with the visu-
alisation and morphometrics offered by imaging to provide high  
sensitivity and dynamic range. Dissection of TME components,  
proliferation and apoptosis of cells alongside accurate anatomical 
information for tumour cells, immune infiltrates, blood vessels,  
is possible using LSC. Future advances in software 
options for LSC, in addition to the development of 
more methods combining imaging and flow cytometry,  
will allow in vivo screening in real time.

Intravital microscopy
Non-linear optical microscopy has seen great progress since 
the development of two-photon laser-scanning microscopy, 
the availability of in vivo fluorescent labelling for targets of 
interest, and the advancement of genetic tools to modify gene  
expression75,76. Specifically, intravital imaging using multi-photon  
microscopy has proved to be an invaluable technique to image 
many biological processes in vivo at great depth and high  
resolution77. In fact, such an imaging tool has provided flex-
ibility in capturing cell–cell interactions, tissue dynamics and 
architecture, tumour–host interactions, cancer cell migration, 
and the dynamics of metastatic dissemination78,79. The principles 
of intravital imaging are beyond the scope of this review.  
For detailed reviews on this topic, please see 77,80,81.

Great work has been done by several groups in visualising 
ECM, tumour cells, immune infiltrates, and other TME com-
ponents in live rodents. Among the research areas that intra-
vital imaging has shown great potential is cancer cell migration 
an indispensable step during metastasis78. Directed cell migra-
tion involves (a) individual cell migration (rounded-amoeboid  
and elongated-mesenchymal) and (b) collective migration as 
multicellular groups, such as cell sheets or strands82. In vivo  
intravital imaging of xenografts (nude mice injected in the  
mammary fat with rat MTLn3 mammary carcinoma cells) 
has shown that breast cancer cells migrate and invade using 
the collective mode of motility in order to enter lymphatic  
vessels83. In contrast, within the same study, individually migrat-
ing breast cancer cells using the amoeboid-rounded type of 
motility were shown to enter the bloodstream for metastatic  
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dissemination83. On the other hand, multicellular streaming (two 
to three cells co-migrating in a directional fashion) of human 
breast cancer cells has been reported to be correlated with a 
vascularised microenvironment and intravasation in two ortho-
topic xenograft models84. Of note, macrophages were shown 
to be necessary for multicellular streaming in those breast  
tumours84. In fact, intravital imaging has revealed that breast 
cancer cells interact with macrophages in a paracrine manner  
to co-migrate in vivo in a transgenic mouse model of breast 
cancer (MMTV-PyMT)85. Strikingly, intravital imaging in 
melanoma xenografts together with histopathological analysis 
of melanoma patients’ biopsies revealed that the invasive 
fronts of melanomas are enriched in rounded-amoeboid cancer  
cells23,24,26,27,86. On the other hand, physical cues from the  
surrounding TME are important in determining the invasion 
mode of cancer cells87. Indeed, dimension (2D or 3D), density,  
orientation, porosity, and stiffness (rigidity) of the ECM can  
altogether affect the invasion strategy of cancer cells88. Intra-
vital imaging and histopathological analysis have shown that 
tissue structures can act as a guide for both single cell and  
collective cell migration strategies88.

Therefore, it becomes apparent that cancer cell migration, from 
detachment from the primary tumour to metastatic dissemination,  
is a process that should be investigated further considering 
the complex bidirectional interactions of cancer cells with 
their surrounding microenvironment. In fact, cancer cells have 
been shown to migrate along ECM fibres using the amoeboid- 
rounded type of movement78. Metastasis is very complex and 
includes a variety of processes such as invasion, intravasa-
tion, and extravasation, all of which can be visualised thanks 
to the advances in intravital microscopy. Indeed, studies have 
described differences in cancer cell motility and the tumour 
microenvironment in primary and metastatic tumours89. For 
example, during intravasation, metastatic versus primary  
mammary adenocarcinoma cells have been shown to move using 
the amoeboid-rounded type of intact single cell migration towards 
blood vessels89. Similarly, non-metastatic cells tend to undergo 
fragmentation when interacting with blood vessels85. On the 
other hand, ECM fibres assemble on blood vessels in mammary  
tumours78. All of these important observations regarding 
the metastatic cascade were shown using intravital imaging  
approaches.

Nevertheless, inherent motion, such as respiratory and cardiac 
motion, of live animals represents a major challenge and low-
ers the resolution and the area being imaged. To circumvent 
this limitation, Condeelis’ group has combined mosaicked- 
stitched imaging with intravital imaging of live tissues to  
generate a new method—large-volume, high-resolution intravital  
imaging (LVHR-IV)—thereby developing a new approach for 
tissue stabilisation90. In general, advancement in fluorescent 
probes, software, and data analysis tools and tissue stabilisa-
tion techniques have addressed several challenges in intravital  
microscopy.

On the other hand, intravital imaging has provided great 
insight into the mechanisms of therapy response and resist-
ance in cancer79. For example, BRAF-mutant melanoma cells 

have been reported to develop resistance to BRAF inhibition  
in vivo due to “paradoxical” activation of melanoma-associated  
fibroblasts in the TME91. Additionally, intravital spinning disk 
confocal microscopy has visualised the interaction between 
tumour-specific T cells and dendritic cells intratumorally, 
improving our understanding in immunotherapy responses92.  
For a detailed review on intravital imaging applications on  
tumour–host interactions and therapy response, please see 79.

Overall, our knowledge about the stages of cancer cell metasta-
sis, cancer cell morphology and motility, tumour heterogeneity, 
and tumour–stroma interactions have all been significantly  
improved upon using intravital imaging.

Nevertheless, intravital imaging has several limitations com-
pared to in vivo multimodality imaging. Specifically, multimodal  
imaging techniques, such as single-photon emission computed 
tomography (SPECT)-CT, positron emission tomography– 
computed tomography (PET-CT), and magnetic resonance imag-
ing (MRI) scans, have proved to be invaluable diagnostic tools. 
These are routinely used in the clinic and have no penetration  
depth limit93. In fact, the bio-distribution of therapeutic agents 
can be better examined using such macroscopic imaging tools  
compared to intravital imaging. The latter, by contrast, provides 
anatomical and physiological information at a molecular and 
subcellular level. The applications of multimodal imaging 
technologies will not be discussed here. For a detailed review 
on the above and pre-clinical and clinical imaging in cancer,  
see 93,94. One of the main challenges of intravital imag-
ing is associated with the light absorption and scattering and 
thus potential low in-focus light emission and out-of-focus  
light from the tissue of interest95. Despite intravital micros-
copy being powerful for live cell tracking, it is limited by the 
duration of tracking and area of imaging95. Hence, the entire  
course of metastasis cannot be monitored by intravital imaging.

Other cancer tissue imaging modalities
Other techniques in the field that have contributed to the progress 
of  cancer research include light-sheet fluorescence microscopy  
(LSFM). LSFM is a technique with an intermediate-to-high 
optical resolution, but good optical sectioning capabilities  
and high speed. LSFM can efficiently visualise large tis-
sue samples in three dimensions96,97, and volumetric 3D  
imaging can uncover detailed information about the inner  
landscape of tumours, which can improve cancer diagnosis and  
therapy98. It also shortens the pathological diagnosis to min-
utes while the patient is still in the operating room. Whole-body 
imaging in the medical context can also be applied using SPECT 
or PET in combination with appropriate contrast agents in order 
to identify cancer cells in vivo93,99. For preclinical studies, cancer  
cells can be engineered to express reporters, enabling in vivo  
cancer cell tracking and 3D tomography100. However, fewer 
imaging tracers have been translated to the clinic because 
of several bottlenecks (specificity, selectivity, cost, etc.). On 
the other hand, label-free and high-resolution optical micro-
scopes that can directly identify and image native biomolecules 
are available. Mass spectrometry imaging (MSI) uses ionised  
molecules to collect a mass spectrum at each pixel of the tissue 
section. MSI has the capacity to determine the relative intensity  
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and spatial distribution of several hundreds of compounds from 
cells and tissue while retaining important spatial information101. 
MSI has been used for the molecular analysis of cancerous 
cells and tissues with the aim of identifying tumour margins102. 
MSI has also been used to classify primary tumour tissues 
with regard to chemo-response and metastatic status103 and to  
identify diagnostic and prognostic markers. Furthermore, MSI 
has been successfully employed to study drug response and resist-
ance rates104. On the other hand, Hyperspectral imaging (HSI) is a 
hybrid modality that combines imaging and spectroscopy. By col-
lecting spectral information at each pixel of a 2D detector array, 
HSI generates a 3D dataset of spatial and spectral information, 
known as hypercube105. Therefore, HSI offers great potential for  
non-invasive disease diagnosis and surgical guidance. Advanced 
non-linear imaging modalities like coherent anti-Stokes Raman 
scattering (CARS) and stimulated Raman scattering (SRS) 
microscopies have been proposed to improve spatial resolution 

(up to 130 nm). It is therefore a useful imaging approach that 
enables the generation of images through endogenous chemical  
species already present in biological tissues106.

Conclusions and outlook
Great progress has been made towards dissecting spatiotempo-
ral processes in tissues thanks to an array of advances in micro-
scopy and image analysis which are all summarized in Table 1.  
We have reported multiple applications of H&E, IHC, and imag-
ing flow cytometry in histological sections. Combining these 
techniques with new digital pathology platforms has great  
potential to make faster and more robust observations. Using 
complementary imaging techniques, such as intravital imaging 
or LSC combined with multiplex IHC and deep learning meth-
ods of the same tissues, would provide more detailed dynamic 
and molecular information regarding how the TME controls  
tumorigenesis and metastasis.

Table 1. Summary of the three main techniques for imaging tissues.

BASIC PRINCIPLES PROS CONS

MULTIPLEX 
IMMUNOHISTOCHEMISTRY (IHC)

Protein detection based on 
antigen–antibody specificity

Spatial and histological 
information

Limited antigen detection

Chromogen or fluorescence-
based visualisation

Accessible and affordable Tissue integrity 
compromised after several 
antigen retrievals in 
multiplexing methods

Can be performed for multiplex 
staining. Several methods have 
been reported. The most common 
is based on the stripping–
reprobing principle

Relatively fast method Possible spectral overlap in 
fluorescent multiplex IHC

Analysis of the tissue section can 
be performed in several platforms: 
ImageJ, CellProfiler, Qupath, Halo, 
Visiopharm, Definiens, etc.

Chromogenic multiplex IHC 
uses same reagents as 
conventional IHC

May need multispectral 
microscope (N >5 colours), 
which increases cost-
effectiveness

LASER SCANNING CYTOMETRY (LSC) Uses laser excitation and 
photomultiplier tubes (PMTs)

Morphological and spatial 
information compared to 
traditional flow cytometry

Less accessible than 
general IHC procedures

Samples are retained and 
analysed on a solid support, such 
as a slide

High sensitivity and accuracy 
due to PMTs

Time-consuming and 
difficult application to 
clinical practice

The LSC slide and laser beam are 
moved under computer control

Objective and accurate 
quantification in an 
automated and time-
dependent manner

Spectral overlap of 
fluorochromes when 
performing multiplexing

INTRAVITAL MICROSCOPY Two-photon excitation microscopy, 
in which the excitation wavelength 
is shorter than emission 
wavelengths

Infrared minimises scattering 
within tissue

Visualisation limited by 
fluorescent labels available

Uses near-infrared excitation light 
to excite fluorescent dyes

Multiphoton absorption 
suppresses the background 
signal

Variability in homogeneity 
and transparency of 
different tissues can affect 
the imaging

Availability to image in vivo tissue Tissue penetration and 
reduced photobleaching

Limited access, 
challenging technology, 
and limited to preclinical 
studies
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