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Abstract: Vitamin B12 deficiency has been associated with increased risk of adverse pregnancy
outcomes. Few prospective studies have investigated the burden or determinants of vitamin B12

deficiency early in life, particularly among pregnant adolescents and their children. The objectives of
this study were to determine the prevalence of vitamin B12 deficiency and to examine associations
between maternal and neonatal vitamin B12 status in a cohort study of healthy pregnant adolescents.
Serum vitamin B12 and folate concentrations were measured in adolescents at mid-gestation (n = 124;
26.4 ± 3.5 weeks) and delivery (n = 131; 40.0 ± 1.3 weeks), and in neonates at birth using cord blood.
Linear regression was used to examine associations between maternal and neonatal vitamin B12

status. Although the prevalence of vitamin B12 deficiency (<148.0 pmol/L; 1.6%) in adolescents was
low during pregnancy, 22.6% of adolescents were vitamin B12 insufficient (<221.0 pmol/L; 22.6%) at
mid-gestation. Maternal vitamin B12 concentrations significantly decreased from mid-gestation to
delivery (p < 0.0001), and 53.4% had insufficient vitamin B12 status at delivery. Maternal vitamin B12

concentrations (p < 0.001) and vitamin B12 deficiency (p = 0.002) at delivery were significantly
associated with infant vitamin B12 concentrations in multivariate analyses, adjusting for gestational
age, maternal age, parity, smoking status, relationship status, prenatal supplement use, pre-pregnancy
body mass index, race, and intake of vitamin B12 and folate. Maternal vitamin B12 concentrations
significantly decreased during pregnancy and predicted neonatal vitamin B12 status in a cohort of
healthy pregnant adolescents.
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1. Introduction

Vitamin B12 deficiency (serum vitamin B12 <148.0 pmol/L) is a major public health problem
globally [1,2]. Although the overall prevalence of vitamin B12 deficiency in the United States is
estimated to be relatively low (6%), the burden of vitamin B12 deficiency is higher in the elderly,
pregnant women, and young children (6–25%) [3]. Pregnant adolescents are at increased risk for a
variety of micronutrient deficiencies and pregnancy complications, though there is limited data from
this high-risk obstetric population.

Vitamin B12 deficiency in pregnancy has been associated with increased risk of pregnancy
outcomes, including spontaneous abortion, pregnancy loss, intrauterine growth restriction, low
birthweight (<2500 g), and neural tube defects (NTDs) [4–15]. Inadequate supply of vitamin
B12 in pregnancy and early childhood can lead to long-term deficits in growth development in
children [16,17].
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Maternal vitamin B12 concentrations during pregnancy are thought to predict fetal [18–26] and
early infant [25,27–29] vitamin B12 status. Previous cross-sectional studies in Norway, Turkey, Germany,
United Kingdom, Serbia, and Brazil have noted a significant correlation between maternal and infant
vitamin B12 status at delivery [18,20–22,30–33]; however, in one study in Belgium, maternal and
infant vitamin B12 concentrations were not significantly correlated [34]. In one study in Germany,
maternal serum vitamin B12 and holotranscobalamin (holoTC) concentrations at delivery were
significantly correlated with cord blood holoTC concentrations (p < 0.05) [18]. In contrast, findings
from cross-sectional studies examining the associations between maternal and infant vitamin B12

concentrations later in the postpartum period have been heterogeneous [35–40]. Maternal vitamin B12

and holoTC concentrations were significantly correlated with infant vitamin B12 concentrations in the
first month (i.e., 2–30 days) postpartum in a study in Turkey [38]. In analyses in mother–infant dyads
in the first 6 months postpartum, maternal and infant vitamin B12 concentrations were significantly
associated in Canada and Cambodia (i.e., 3–27 weeks) [37], but not in India (i.e., 1–6 months) [35].

Prospective studies to date in The Netherlands, Norway, Turkey, India, and Spain have reported
significant associations [19,23,24,26,29] between maternal vitamin B12 status during pregnancy and
infant vitamin B12 status in cord blood or serum. In a prospective study in India, maternal
vitamin B12 status during pregnancy was associated with infant vitamin B12 concentrations at
6 weeks of age [28]. In contrast, a study in Norway was conducted to examine the associations
between maternal vitamin B12 biomarkers during pregnancy and vitamin B12 status in infants at
birth and 6 months of age; maternal vitamin B12 concentrations did not significantly predict cord
blood or infant vitamin B12 status, although there were significant associations noted for other
biomarkers (i.e., maternal holoTC, holohaptocorrin (holoHC), and methylmalonic acid (MMA)) [25].
Although some studies to date have been conducted to examine vitamin B12 status in pregnant
adolescents [41–43], most studies investigating the associations between maternal and infant vitamin
B12 status have been conducted among adult pregnant women (i.e., 18 to 40 years). Of these studies,
three cross-sectional studies reported participants which included adolescents, with age ranges of
15 to 38 years [32], 16 to 40 years [38], and 17 to 43 years [27]. However, adolescents comprised a
small proportion (<15%) of the sample, and data presented were not stratified by age group, which
constrained analysis and interpretation of findings for adolescents. There are limited prospective
studies on the associations between maternal and infant vitamin B12 status conducted in high-risk
obstetric groups such as adolescents.

Pregnant adolescents are at increased risk for a variety of micronutrient deficiencies and
pregnancy complications [41,44]. The inadequate dietary intake of key nutrients among adolescents
in industrialized countries [45], coupled with increased nutritional requirements for growth and
development, warrants concern for health outcomes among pregnant adolescents. However, few
data exist on the extent of vitamin B12 deficiency or its implications for fetal and child health in this
high-risk obstetric population, which comprises over 5% of the US population and 11% globally [46,47].
Well-designed prospective studies are needed to elucidate the burden of vitamin B12 insufficiency in
this key high-risk population and its implications for maternal and child health.

We, therefore, conducted a prospective observational analysis to: (1) determine the prevalence of
vitamin B12 deficiency and insufficiency in pregnant adolescents and their infants; and (2) examine the
associations of maternal and neonatal vitamin B12 status in healthy pregnant adolescents.
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2. Materials and Methods

2.1. Study Population

Participants included in this study were enrolled in one of two prospective cohort studies funded
by the United States Department of Agriculture (USDA). One study examined maternal and fetal
bone health among pregnant adolescents (“bone health study”) and collected maternal blood samples
at mid-gestation and delivery, and cord blood samples at delivery. The other study evaluated iron
status and anemia through gestation in pregnant adolescents aged 13 to 18 years and their infants
(“anemia study”), and collected maternal and cord blood samples only at delivery. Both studies were
observational cohort studies and not clinical trials (and, thus, do not need to be registered, as per
protocol for clinical trials). Pregnant adolescents were recruited between 2006 and 2012, from the
Rochester Adolescent Maternity Program (RAMP) in Rochester, New York.

Adolescents were eligible to participate if their pregnancies were 12 to 30 weeks in gestation at
the time of the adolescents’ enrollment in prenatal care at RAMP, and if the adolescents were healthy
and carrying a single fetus. Adolescents were excluded if they had any known medical complications,
including diabetes, preeclampsia, gestational hypertension, eating disorders, gastrointestinal diseases,
HIV infection, or any other diagnosed medical conditions. Data on maternal and neonatal iron
status [48,49] and on vitamin B12 transporters in placental tissue from this population [50] have been
previously reported.

2.2. Ethics

Written informed consent was obtained from all study participants. The research protocol and
study procedures were approved by the Institutional Review Boards (IRB) at Cornell University and
the University of Rochester. The IRB approval included laboratory analyses of micronutrients in
maternal and infant cord blood samples, including vitamin B12 and folate concentrations.

2.3. Follow-Up Procedures

Structured interviews were conducted to collect demographic information, including maternal
age, educational level, socioeconomic status, and obstetric history at the baseline clinic visit. Detailed
clinical, dietary (i.e., 24-h dietary recall), anthropometric, and biochemical data were collected at each
visit. The participant recruitment and flow chart are presented in Figure 1. Of 251 participants who
delivered at RAMP, a total of 194 participants (n = 138 participants in the bone study, recruited at
mid-gestation; n = 56 participants in the anemia study, recruited at delivery) had archived blood
samples available for analysis (Figure 1). All adolescents attending the Rochester Adolescent Maternity
Program were prescribed a prenatal supplement as standard of care, which contained 27 mg iron, 12 µg
vitamin B12, 1000 µg folic acid, and other micronutrients (i.e., 1200 µg vitamin A, 120 mg vitamin C,
10 µg vitamin D3, 22 mg vitamin E, 1.84 mg thiamin, 3 mg riboflavin, 20 mg niacin, 10 mg vitamin B6,
200 mg calcium, 25 mg zinc, and 2000 µg copper).
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Figure 1. Participant flow diagram.

2.4. Laboratory Analyses

Non-fasting maternal venous blood samples (mid-gestation, delivery) and infant cord blood
samples were allowed to clot at room temperature, separated by centrifugation, processed, and stored
below −80 ◦C until analysis. A total of 124 maternal mid-gestation (26.4 ± 3.5 weeks), 131 maternal
delivery (40.0 ± 1.3 weeks), and 89 infant cord blood samples were available for analysis.

Vitamin B12 concentrations were measured by electrochemiluminescence using the IMMULITE
2000 immunoassay system (Siemens Medical Solutions Diagnostics, Los Angeles, CA, USA). Three
levels of controls (Bio-Rad) were used for serum vitamin B12, with inter-assay coefficients of variation
(CV) of 4.2% for Level 1 and 4.8% for Level 3. Serum folate concentrations were measured using the
IMMULITE 2000 immunoassay system. The Bio-Rad Liquichek Immunoassay Plus Control (High &
Low) were used as controls, with intra-assay precision of 6.7% and inter-assay precision of 6.6%.
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2.5. Definitions of Outcomes

Conventional cutoffs were used to categorize variables where available; otherwise, medians of
variables were defined based on their distributions in the population. Vitamin B12 deficiency and
insufficiency were defined, following standard Centers for Disease Control and Prevention (CDC)
definitions, as less than 148 pmol/L and less than 221.0 pmol/L, respectively [51]. Anemia was
defined as hemoglobin <11.0 g/dL during the first and third trimesters, <10.5 g/dL during the second
trimester, and <11.0 g/dL at delivery; and anemia status was adjusted for race [52]. Folate deficiency
was defined as <6.8 nmol/L [51]. Maternal BMI was defined as the ratio of weight in kg to height in
m2 (kg/m2), and categorized as <18.5, 18.5 to <25.0, 25.0 to <30.0, and ≥30.0 kg/m2, in accordance
with the CDC and World Health Organization (WHO) classifications [53]. Infant low birthweight was
defined as <2500 g. Infant ponderal index was calculated as the ratio of weight in g to length in cm3

(g/cm3 × 100).

2.6. Statistical Analyses

Binomial and linear regression models were used to examine the associations of maternal
vitamin B12 status at mid-gestation and delivery with infant vitamin B12 status at birth. Binomial
regression models were used to obtain risk ratio (RR) estimates for dichotomous variables [54–56].
Non-normally distributed variables were natural logarithmically transformed to ensure normality
before further analysis. We also examined the associations between maternal and infant folate status.
The values in Table 1 are presented as non-transformed values for interpretation purposes.

We explored potential nonlinearity of the relationships between covariates and outcomes
nonparametrically, using stepwise restricted cubic splines [57,58]. If nonlinear associations were
not reported, they were not significant. The Rothman and Greenland approach was used to evaluate
and adjust for confounding, in which all known or suspected risk factors for the outcome which lead
to a >10% change-in-estimate were included in the models [59]. Observations with missing data for
covariates were retained in analyses using the missing indicator method [60]. Statistical analyses were
conducted using SAS software, version 9.4 (SAS Institute, Inc., Cary, NC, USA).
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Table 1. Characteristics of the study population.

Variables a Original Cohort
(n = 251)

Current Study
(n = 194)

Recruited at Mid-Gestation
(n = 138)

Recruited at Delivery
(n = 56)

Maternal
Age at enrollment, years 17.3 (16.5, 18.1) 17.3 (16.5, 18.1) 17.3 (16.4, 18.1) 17.3 (16.6, 18.1)
Age at delivery, years 17.5 (16.7, 18.3) 17.6 (16.8, 18.4) 17.6 (16.7, 18.4) 17.4 (16.9, 18.2)

<16 years, % (n) 12.0 (30) 9.8 (19) 9.4 (13) 10.7 (6)
Gestational age at delivery, weeks 39.9 (38.7, 40.7) 40 (39.0, 40.9) 40.0 (38.9, 40.9) 40.0 (39.2, 41.0)

Pre-term (<37 weeks), % (n) 8.0 (20) 7.8 (15) 8.8 (12) 5.4 (3)
Parity ≥1, % (n) 17.3 (43) 15.1 (29) 8.7 (12) 30.9 (17)
Smoking at enrollment, % (n)

Never a smoker 77.8 (189) 78.5 (150) 77.5 (107) 81.1 (43)
Past smoker 15.2 (37) 14.4 (27) 12.3 (17) 18.9 (10)
Current smoker 7.0 (17) 7.3 (14) 10.1 (14) 0.0 (0)

Relationship status b, % (n) 13.5 (33) 10.5 (20) 1.5 (2) 34.0 (18)
WIC c program participant 60.9 (148) 63.2 (120) 80.0 (100) 37.7 (20)
Self-reported prenatal supplement use, % (n)

≥2 pills per week 54.1 (131) 55.5 (106) 56.6 (77) 52.7 (29)
Dietary folate, µg/day 617.2 (397.0, 948.9) 617.2 (400.8, 950.45) 692.7 (464.2, 1020.6) 415.3 (283.9, 624.7)
Dietary vitamin B12, µg/day 4.6 (2.7, 6.5) 4.6 (2.7, 6.6) 5.0 (3.7, 6.9) 2.8 (1.4, 5.2)
Pre-pregnancy BMI, kg/m2 23.5 (20.8, 28.0) 23.7 (20.8, 28.0) 23.3 (20.8, 28.1) 24.7 (20.8, 27.9)

<18.5 kg/m2, % (n) 6.9 (17) 7.3 (14) 6.62 (9) 9.1 (5)
≥18.5 to <25 kg/m2, % (n) 54.3 (133) 52.4 (100) 55.2 (75) 45.5 (25)
≥25.0 to <30 kg/m2, % (n) 20.8 (51) 21.5 (41) 19.9 (27) 25.5 (14)
≥30 kg/m2, % (n) 18.0 (44) 18.9 (36) 18.4 (25) 20.0 (11)

Gestational weight gain (GWG), kg 15.9 (11.8, 20.5) 16.4 (11.8, 20.5) 15.5 (11.8, 20.5) 17.3 (12.3, 21.4)
Inadequate d GWG, % (n) 15.0 (36) 13.9 (26) 14.3 (19) 13.0 (7)
Within IOM range, % (n) 22.9 (55) 24.0 (45) 26.3 (35) 18.5 (10)
Excessive GWG, % (n) 62.1 (149) 62.0 (116) 59.0 (79) 68.5 (37)

Race, % (n)
Caucasian 27.9 (70) 29.4 (57) 33.3 (36) 19.6 (11)
African American 71.3 (179) 69.6 (135) 65.2 (90) 80.4 (45)
Native American 0.8 (2) 1.0 (2) 1.5 (2) 0.0 (0)

Ethnicity, % (n)
Hispanic 24.3 (61) 26.3 (51) 24.6 (34) 30.4 (17)

Infant
Birthweight, g 3206.0 (2904.0, 3550.0) 3266.0 (2928.0, 3581.0) 3258.0 (2892.0, 3581.0) 3318.5 (3055.5, 3584.0)
Birth length, cm 51.0 (49.0, 52.7) 51.3 (49.5, 52.9) 51.0 (49.5, 52.5) 52.0 (50.0, 53.5)
Weight-for-length z-score < −2, % (n) 27.0 (60) 27.0 (47) 27.3 (35) 26.1 (12)
Ponderal index, g/cm3 × 100 2.4 (2.2, 2.7) 2.4 (2.3, 2.7) 2.4 (2.2, 2.7) 2.4 (2.3, 2.6)
Male sex, % (n) 52.8 (132) 51.0 (99) 50.7 (70) 51.8 (29)

a Values are median interquartile range (IQR) and % (n); b Data presented are adolescents that report being in a relationship during pregnancy vs. single; c The Special Supplemental
Nutrition Program for Women, Infants, and Children (WIC); d Gestational Weight Gain: categorized as inadequate or excessive, using Institute of Medicine (IOM) recommendations that
vary based on pre-partum body mass index (BMI).
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3. Results

3.1. Baseline Characteristics

The characteristics of participants in this study are presented in Table 1. Participants and
their infants enrolled in the overall cohort studies and in the current study (i.e., with available
serum vitamin B12 data) were similar in terms of baseline characteristics, including maternal age,
socioeconomic characteristics, and nutritional status. A total of 194 participants had archived samples
available for analysis; 138 of these participants were recruited at mid-gestation (bone health study),
and 56 participants were recruited at delivery (anemia study) (Figure 1). We also examined potential
differences in demographic, socioeconomic, and nutritional factors between participants in the two
cohort studies. These variables were identified a priori as potential confounders and were considered
and adjusted for in all of the multivariate analyses. Vitamin B12 and folate concentrations were
analyzed in maternal samples that were collected at mid-gestation (n = 124) and delivery (n = 131);
and in infant cord blood samples (n = 89).

3.2. Maternal and Neonatal Vitamin B12 Status

Maternal and neonatal vitamin B12 status are presented in Table 2. At the mid-gestation
visit (n = 124; 26.4 ± 3.5 weeks gestation), 1.6% of women were vitamin B12 deficient (n = 2/124;
<148.0 pmol/L), and 22.6% were vitamin B12 insufficient (n = 28/124; <221.0 pmol/L). Maternal
serum vitamin B12 concentrations significantly decreased from mid-gestation to delivery (n = 61;
39.9 ± 1.0 weeks; mid-gestation: median = 358.9, interquartile range (IQR) = 233.9, 400.7 vs. delivery:
median = 226.2, IQR = 185.2, 311.8; p < 0.0001).

The prevalence of maternal vitamin B12 insufficiency at delivery (n = 70/131; 53.4%) was
significantly higher than at mid-gestation (n = 28/124; 22.6%, p < 0.05). The prevalence of vitamin B12

insufficiency was low in infants at birth: 0.0% were vitamin B12 deficient (<148.0 pmol/L), and
2.3% were vitamin B12 insufficient (<221.0 pmol/L). No mothers or infants were folate deficient
(<6.8 nmol/L) or insufficient (<10.0 nmol/L) during this study.

The associations between maternal and infant serum vitamin B12 concentrations are presented
in Table 3. Maternal vitamin B12 status at mid-gestation was not significantly associated with infant
serum vitamin B12 concentrations (p > 0.05).

At delivery, maternal serum vitamin B12 concentrations (p < 0.001) and vitamin B12 deficiency
(p < 0.0001) were significantly associated with infant serum vitamin B12 concentrations in multivariate
analyses, adjusting for gestational age at sample collection, maternal age, parity, smoking status,
relationship status, reported prenatal supplement use, pre-pregnancy BMI, race, and intake of
vitamin B12 and folate. Similarly, maternal vitamin B12 insufficiency at delivery was significantly
associated with infant serum vitamin B12 concentrations (p < 0.01) in multivariate analyses, adjusting
for gestational age at sample collection, maternal age, parity, smoking status, relationship status,
reported prenatal supplement use, pre-pregnancy BMI, race, and intake of vitamin B12 and folate.
Maternal serum folate concentrations were not significantly associated with infant serum vitamin B12

concentrations (p > 0.05).
The associations between maternal vitamin B12 and folate statuses and infant serum folate

concentrations are presented in Table 4. Maternal serum folate concentrations at mid-gestation were
not significantly associated with infant serum folate concentrations (p > 0.05).
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Table 2. Maternal and infant vitamin B12 and folate status.

Maternal Infant

Mid-Gestation Delivery Cord Blood

Variables a Total Total Recruited at
Mid-Gestation

Recruited at
Delivery Total Mothers Recruited at

Mid-Gestation
Mothers Recruited at

Delivery

n 124 131 75 56 89 58 31
Serum vitamin B12, pmol/L 343.7 (237.8, 400.7) 216.2 (161.6, 297.8) 216.2 (173.4, 311.8) 211.2 (158.7, 267.0) 597.0 (471.6, 796.3) 569.4 (478.6, 844.3) 602.9 (406.6, 722.1)

<148.0 pmol/L 1.6 (2) 15.3 (20) 14.7 (11) 16.1 (9) 0.0 (0) 0.0 (0) 0.0 (0)
≥148 to <221.0 pmol/L 21.0 (26) 38.2 (50) 37.3 (28) 39.3 (22) 2.3 (2) 0.0 (0) 6.5 (2)
≥221 pmol/L 77.4 (96) 46.6 (61) 48.0 (36) 44.6 (25) 99.8 (87) 100.0 (58) 93.5 (29)

n 122 130 74 56 86 55 31
Serum folate, nmol/L 39.3 (31.7, 50.5) 39.7 (31.8, 50.4) 42.8 (32.2, 51.4) 37.7 (28.8, 48.4) 66.7 (53.1, 85.5) 66.3 (52.1, 84.4) 67.7 (55.5, 98.4)

≤29.45 b nmol/L 19.7 (24) 20.0 (26) 13.5 (10) 28.6 (16) 2.3 (2) 3.6 (2) 0.0 (0)
>29.45, ≤35.79 nmol/L 20.5 (25) 16.9 (22) 18.9 (14) 14.3 (8) 2.3 (2) 3.6 (2) 0.0 (0)
>35.79, ≤43.94 nmol/L 19.7 (24) 20.0 (26) 17.6 (13) 23.2 (13) 4.7 (4) 5.5 (3) 3.2 (1)
>43.94, ≤52.66 nmol/L 19.7 (24) 22.3 (29) 29.7 (22) 12.5 (7) 14.0 (12) 12.7 (7) 16.1 (5)
>52.66 nmol/L 20.5 (25) 20.8 (27) 20.3 (15) 21.4 (12) 76.7 (66) 74.6 (41) 80.7 (25)

a Values are median and interquartile range (IQR) and (%) n. b Note: No values of serum folate were <6.8 nmol/L; the cut-offs presented for serum folate are quintiles based on the
distribution of serum folate concentrations at mid-gestation.
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Table 3. Associations between maternal vitamin B12 and folate status with infant serum vitamin B12 concentrations.

Univariate b Multivariate c Multivariate d

Maternal Variables Time-Point n β (SE) p-Value β (SE) p-Value β (SE) p-Value

Serum vitamin B12, a

pmol/L Mid-gestation 54 0.29 (0.17) 0.09 0.28 (0.16) 0.08 0.31 (0.16) 0.06

Delivery (All) 64 0.85 (0.12) <0.0001 0.74 (0.12) <0.0001 0.77 (0.12) <0.001
Delivery (Recruited at mid-gestation) 33 0.57 (0.20) 0.004 0.53 (0.18) 0.003 0.53 (0.16) 0.001
Delivery (Recruited at delivery) 31 1.09 (0.13) <0.0001 0.97 (0.14) <0.0001 1.02 (0.12) <0.001

<148.0 pmol/L Mid-gestation 54 n/a n/a n/a n/a n/a n/a
Delivery (All) 64 −0.65 (0.16) <0.0001 −0.54 (0.14) 0.0002 −0.62 (0.15) <0.0001

Delivery (Recruited at mid-gestation) 33 −0.63 (0.22) 0.004 −0.60 (0.19) 0.002 −0.56 (0.18) 0.002
Delivery (Recruited at delivery) 31 −0.72 (0.22) 0.001 −0.59 (0.22) 0.008 −0.67 (0.21) 0.002

<221.0 pmol/L Mid-gestation 54 −0.16 (0.15) 0.28 −0.18 (0.14) 0.20 −0.18 (0.14) 0.21
Delivery (All) 64 −0.42 (0.12) 0.0007 −0.30 (0.12) 0.01 −0.33 (0.12) 0.008

Delivery (Recruited at mid-gestation) 33 −0.23 (0.17) 0.17 −0.19 (0.16) 0.22 −0.26 (0.15) 0.07
Delivery (Recruited at delivery) 31 −0.61 (0.17) 0.0004 −0.44 (0.17) 0.01 −0.41 (0.19) 0.03

Serum folate a, nmol/L Mid-gestation 53 −0.24 (0.14) 0.09 −0.24 (0.14) 0.09 −0.28 (0.15) 0.06
Delivery (All) 64 0.12 (0.16) 0.47 0.07 (0.16) 0.68 0.09 (0.17) 0.61

Delivery (Recruited at mid-gestation) 33 0.09 (0.22) 0.69 0.12 (0.23) 0.60 0.16 (0.26) 0.54
Delivery (Recruited at delivery) 31 0.12 (0.25) 0.63 0.06 (0.23) 0.81 0.11 (0.22) 0.62

<40.0 nmol/L Mid-gestation 53 0.10 (0.12) 0.40 0.11 (0.12) 0.37 0.14 (0.13) 0.28
Delivery (All) 64 −0.06 (0.13) 0.65 0.02 (0.13) 0.87 0.02 (0.13) 0.88

Delivery (Recruited at mid-gestation) 33 −0.05 (0.17) 0.76 −0.08 (0.17) 0.64 0.04 (0.20) 0.86
Delivery (Recruited at delivery) 31 −0.08 (0.21) 0.69 0.11 (0.18) 0.56 0.15 (0.17) 0.39

a Statistical analyses: Linear regression models were used to examine associations between maternal vitamin B12 and folate status and infant serum vitamin B12 concentrations; vitamin B12
and folate concentrations were natural logarithmically transformed prior to analyses; b Adjusted for gestational age of sample collection; c Adjusted for gestational age of sample collection,
maternal age at delivery, parity (≥1 vs. 0), ever smoked (yes vs. no), relationship status (single vs. married/in a relationship), self-reported prenatal supplement use (≥2 vs. <2 pills/week),
pre-pregnancy BMI, and race (African American vs. other); d Adjusted for gestational age of sample collection, maternal age at delivery, parity (≥1 vs. 0), ever smoked (yes vs. no),
relationship status (single vs. married/in a relationship), self-reported prenatal supplement use (≥2 vs. <2 pills/week), pre-pregnancy BMI, race (African American vs. other), intake of
vitamin B12, and intake of folate.
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Table 4. Associations between maternal Vitamin B12 and folate status with infant serum folate concentrations.

Univariate b Multivariate c Multivariate d

Maternal Variables Time-Point n β (SE) p-Value β (SE) p-Value β (SE) p-Value

Serum vitamin B12,a

pmol/L Mid-gestation 51 −0.04 (0.16) 0.79 −0.19 (0.14) 0.17 −0.16 (0.13) 0.22

Delivery (All) 61 −0.02 (0.11) 0.88 −0.08 (0.11) 0.48 −0.08 (0.11) 0.45
Delivery (Recruited at mid-gestation) 30 −0.20 (0.15) 0.18 −0.20 (0.13) 0.13 −0.22 (0.12) 0.07
Delivery (Recruited at delivery) 31 0.14 (0.16) 0.37 0.04 (0.15) 0.78 0.06 (0.15) 0.67

<148.0 pmol/L Mid-gestation 51 n/a n/a n/a n/a n/a n/a
Delivery (All) 61 0.07 (0.13) 0.60 0.16 (0.12) 0.16 0.18 (0.12) 0.14

Delivery (Recruited at mid-gestation) 30 0.26 (0.17) 0.13 0.26 (0.14) 0.07 0.38 (0.13) 0.005
Delivery (Recruited at delivery) 31 −0.10 (0.18) 0.57 0.07 (0.17) 0.65 0.03 (0.17) 0.88

<221.0 pmol/L Mid-gestation 51 −0.05 (0.14) 0.71 0.01 (0.13) 0.91 0.07 (0.12) 0.54
Delivery (All) 61 −0.01 (0.09) 0.90 0.05 (0.09) 0.58 0.07 (0.09) 0.47

Delivery (Recruited at mid-gestation) 30 0.18 (0.12) 0.12 0.22 (0.11) 0.04 0.27 (0.10) 0.006
Delivery (Recruited at delivery) 31 −0.19 (0.13) 0.15 −0.09 (0.12) 0.45 −0.12 (0.13) 0.37

Serum folate a, nmol/L Mid-gestation 50 0.27 (0.14) 0.06 0.05 (0.13) 0.69 0.003 (0.13) 0.98
Delivery (All) 61 0.54 (0.09) <0.0001 0.47 (0.10) <0.0001 0.50 (0.10) <0.0001

Delivery (Recruited at mid-gestation) 30 0.54 (0.11) <0.0001 0.55 (0.13) <0.001 0.53 (0.15) 0.0003
Delivery (Recruited at delivery) 31 0.57 (0.13) <0.0001 0.45 (0.13) 0.0005 0.44 (0.12) 0.0003

<40.0 nmol/L Mid-gestation 50 −0.25 (0.12) 0.03 −0.13 (0.10) 0.21 −0.09 (0.10) 0.39
Delivery (All) 61 −0.42 (0.08) <0.0001 −0.40 (0.08) <0.0001 −0.42 (0.08) <0.0001

Delivery (Recruited at mid-gestation) 30 −0.44 (0.09) <0.0001 −0.43 (0.10) <0.0001 −0.51 (0.12) <0.0001
Delivery (Recruited at delivery) 31 −0.41 (0.12) 0.0006 −0.32 (0.12) 0.01 −0.33 (0.12) 0.006

a Statistical analyses: linear regression models were used to examine associations between maternal vitamin B12 and folate status and infant serum vitamin B12 concentrations; vitamin B12
and folate concentrations were natural logarithmically transformed prior to analyses; b Adjusted for gestational age of sample collection; c Adjusted for gestational age of sample collection,
maternal age at delivery, parity (≥1 vs. 0), ever smoked (yes vs. no), relationship status (single vs. married/in a relationship), self-reported prenatal supplement use (≥2 vs. <2 pills/week),
pre-pregnancy BMI, and race (African American vs. other); d Adjusted for gestational age of sample collection, maternal age at delivery, parity (≥1 vs. 0), ever smoked (yes vs. no),
relationship status (single vs. married/in a relationship), self-reported prenatal supplement use (≥2 vs. <2 pills/week), pre-pregnancy BMI, race (African American vs. other), intake of
vitamin B12, and intake of folate
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Maternal serum folate concentrations at delivery were significantly associated with infant
serum folate concentrations (p < 0.0001) in multivariate analyses, adjusting for gestational age at
sample collection, maternal age, parity, smoking status, relationship status, prenatal supplement
use, pre-pregnancy BMI, race, and intake of vitamin B12 and folate. Similarly, lower maternal serum
folate concentrations (<40.0 nmol/L) at delivery were associated with lower infant serum folate
concentrations (p < 0.0001) in multivariate analyses, adjusting for gestational age at sample collection,
maternal age, parity, smoking status, relationship status, prenatal supplement use, pre-pregnancy BMI,
race, and intake of vitamin B12 and folate.

4. Discussion

In this prospective analysis among pregnant adolescents, maternal vitamin B12 concentrations
significantly decreased during pregnancy and predicted neonatal vitamin B12 status. Although the
prevalence of vitamin B12 deficiency (<148.0 pmol/L; 1.6%) was low in adolescents during pregnancy,
22.6% of adolescents were vitamin B12 insufficient (<221.0 pmol/L; 22.6%) at mid-gestation. Maternal
serum vitamin B12 concentrations decreased significantly during pregnancy, and at delivery, 15.3% of
mothers were vitamin B12 deficient and 53.4% were vitamin B12 insufficient (Table 2).

This is among the first studies conducted to date to examine the burden of vitamin B12 deficiency
in pregnant adolescents and its association with neonatal vitamin B12 status in this high-risk obstetric
population. The prevalence of vitamin B12 deficiency in this study was low (1.6% mid-gestation,
15.3% delivery) and similar to a previous study conducted in Spain among pregnant adolescents
(vitamin B12 deficiency, T1: 8.3%) [42]. However, the prevalence of vitamin B12 deficiency noted in
this study was lower than previous studies conducted in pregnant adolescents in Canada (median,
T3: 158 pmol/L, IQR: 114, 207 pmol/L; vitamin B12 <148.0 pmol/L: 43%) [43] and in Venezuela
(vitamin B12 <200.0 pg/mL (<148.0 pmol/L), T1: 50.0%, T2: 58.8%, T3: 72.5%) [61]. Maternal
vitamin B12 concentrations in our study were also higher than in a previous study in pregnant
adolescents in the United Kingdom (geometric mean, Trimester 3 (T3): 177 pmol/L, 95% CI: 169,
185 pmol/L) [41].

The prevalence of vitamin B12 insufficiency (<221.0 pmol/L), however, was high in this study at
both mid-gestation (22.6%) and delivery (53.4%). Although all participants were prescribed prenatal
vitamins containing vitamin B12 and folic acid, self-reported adherence to prenatal supplements was
low. Additionally, while most participants reported dietary intake of vitamin B12 at or above the
RDA for this group (i.e., median (IQR): 4.5 (2.6, 6.6) µg/day vs. RDA: 2.6 µg/day), approximately
25% of participants reported dietary intake below the RDA. In addition to low dietary intake of
vitamin B12, vitamin B12 absorption could also be impaired by inadequate bioavailability, losses from
processing and cooking animal-source foods, high dose folic acid, metabolic changes during pregnancy
(e.g., hemodilution, fetal transfer), gastrointestinal symptoms, infections, and medications [4,62]. For
example, since vitamin B12 is bound to protein carriers in the food matrix, vitamin B12 bioavailability
may vary by food source [62,63].

The decline in maternal vitamin B12 concentrations during gestation in this study is also consistent
with previous studies in adult pregnant women in Canada [64], Spain [26], Norway [25,29], and
India [28,65], and in 12 of 13 longitudinal studies included in a systematic review of vitamin B12

status and birthweight in adult pregnant women [66]. The observed decrease in vitamin B12

concentrations throughout pregnancy could be due to hemodilution, increased protein synthesis,
increased requirements for methyl donors during gestation, or a low intake or adherence to prenatal
supplements to meet increased requirements [67]. However, there are limited data from pregnant
adolescents, who have higher nutritional requirements for their own growth.

The prevalence of vitamin B12 deficiency and insufficiency in infants was low in this study (0–3%).
Infant vitamin B12 concentrations were 2.5-fold higher than maternal vitamin B12 concentrations
at delivery. These findings are consistent with previous studies in adult pregnant women, which
have reported neonatal vitamin B12 concentrations 27% to 100% higher than maternal concentrations
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at delivery [18,19,21,26,30,31,33] and mid-gestation [23], although this has not been reported in all
studies [22,25,28,29]. Higher vitamin B12 concentrations in offspring indicate active transfer to the fetus,
which may occur due to upregulation of placental B12 transporter proteins or other active transport
mechanisms that have yet to be established.

In this study, maternal vitamin B12 status at delivery, but not at mid-gestation, was significantly
associated with infant vitamin B12 status. Maternal vitamin B12 status at delivery has been associated
with vitamin B12 status in offspring at birth in previous cross-sectional studies [18,20–22,30–33].
There are, however, limited prospective data on maternal vitamin B12 status during pregnancy
and its association with infant vitamin B12 status—particularly among adolescents—to compare
findings. Evidence from studies in adult pregnant women have reported significant correlations
between maternal vitamin B12 status during pregnancy and their infants [19,23,24,26,29]. Few
prospective analyses to date have considered potential confounders of these associations in multivariate
analyses [25,28]. In a recent study in adult pregnant women (median age = 22, IQR = 20–24 years)
in Southern India, maternal vitamin B12 status during each trimester was associated with infant
vitamin B12 status at 6 weeks of age [28], even after adjusting for maternal vitamin B12 supplementation.
Similarly, a study conducted among pregnant women (mean age = 29.9, SD = 4.4 years) in
Norway found that maternal vitamin B12 levels did not significantly predict cord blood or infant
vitamin B12 status, although other vitamin B12 biomarkers (i.e., maternal holoTC, holoHC, MMA) were
associated [25].

This study has several limitations. Neonatal micronutrient status was assessed at a single time
point from cord blood, precluding our ability to evaluate longer-term impacts on infant vitamin B12

status or functional outcomes. Longitudinal data on maternal vitamin B12 concentrations were available
only from a subset of participants in the parent cohort studies, limiting our ability to examine changes
in vitamin B12 concentrations during pregnancy. Although participants in both cohort studies had
similar sociodemographic characteristics (e.g., maternal age, gestational age at initiation of prenatal
care, adherence to prenatal vitamins, gestational age at delivery), participants enrolled at mid-gestation
(bone study) were more likely to be participants in the Special Supplemental Nutrition Program for
Women, Infants, and Children (WIC) program, current smokers, Caucasian, primiparous, and had
higher self-reported dietary intake of vitamin B12 and folate, compared to participants who were
recruited at delivery (anemia). All of these variables were identified a priori as potential confounders
and were considered and adjusted for in multivariate analyses; however, there may be residual
confounding due to additional factors that were not evaluated or adjusted for in these studies.
Vitamin B12 concentrations assessed at mid-gestation may not reflect vitamin B12 status during the
relevant etiologic period periconceptionally or for maternal–fetal transfer of cobalamin and subsequent
infant status and perinatal outcomes [68]. Additionally, serum folate is a biomarker of short-term
dietary intake and does not reflect longer-term or usual intake. Vitamin B12 and folate assessments
were also based on a single biomarker (i.e., total serum vitamin B12 and serum folate concentrations).
Inclusion of additional circulating (i.e., holo-transcobalamin) and functional (i.e., methylmalonic
acid) biomarkers of vitamin B12 metabolism and erythrocyte folate concentrations would improve
assessment and interpretation of findings in mother–infant dyads [4]. Additionally, while the low
prevalence of vitamin B12 deficiency in this study is similar to previous research in pregnant adolescents
in Canada and the United Kingdom, a study population of generally adequate vitamin B12 status
limits the generalizability of results to other populations that may be at greater risk for vitamin B12

deficiency, particularly in resource-limited settings [41,43]. Findings should also be interpreted in the
context of a folate-replete population (i.e., among participants prescribed high-dose prenatal folic acid
(1000 µg) and in a population exposed to folic acid fortification); this also limits the generalizability of
findings to other settings. Finally, although findings from this study demonstrated an association of
maternal and infant vitamin B12 status at delivery, the interpretation of these findings is not causal.
Future prospective studies are needed to examine mechanisms of vitamin B12 transfer to the fetus and
to determine the impact of vitamin B12 status on maternal and child health outcomes.
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5. Conclusions

In summary, in this cohort of healthy pregnant adolescents, maternal vitamin B12 concentrations
significantly decreased during pregnancy and predicted infant vitamin B12 status. This is one of
the first prospective studies to date to evaluate the burden of vitamin B12 insufficiency in pregnant
adolescents and their infants, a population that is at high risk for both micronutrient deficiencies and
pregnancy complications. Findings suggest that vitamin B12 deficiency is an important public health
problem in this high-risk obstetric population. Future research is needed to increase vitamin B12 status
and improve the health of adolescent mothers and their children.
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