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The form and function of river deltas is intricately linked to the
evolving structure of their channel networks, which controls how
effectively deltas are nourished with sediments and nutrients.
Understanding the coevolution of deltaic channels and their flux
organization is crucial for guiding maintenance strategies of these
highly stressed systems from a range of anthropogenic activi-
ties. To date, however, a unified theory explaining how deltas
self-organize to distribute water and sediment up to the shore-
line remains elusive. Here, we provide evidence for an optimality
principle underlying the self-organized partition of fluxes in delta
channel networks. By introducing a suitable nonlocal entropy
rate (nER) and by analyzing field and simulated deltas, we sug-
gest that delta networks achieve configurations that maximize
the diversity of water and sediment flux delivery to the shore-
line. We thus suggest that prograding deltas attain dynamically
accessible optima of flux distributions on their channel network
topologies, thus effectively decoupling evolutionary time scales
of geomorphology and hydrology. When interpreted in terms
of delta resilience, high nER configurations reflect an increased
ability to withstand perturbations. However, the distributive
mechanism responsible for both diversifying flux delivery to
the shoreline and dampening possible perturbations might lead
to catastrophic events when those perturbations exceed certain
intensity thresholds.

spectral graph theory | information theory | self-organization |
resilient deltas

R iver deltas are depositional landforms forming downstream
of major rivers, often home to large populations and impor-

tant natural resources (1–10). In the last decades, many deltas
of the world have been under threat from a range of stressors,
including sea-level rise, upstream dam development, and local
exploration (2, 4, 5, 11–17). Deltas are nourished by channel net-
works whose connectivity constrains, if not drives, the evolution,
functionality, and resilience of these systems. Remarkably, the
properties of delta channel networks differ substantially from the
tree-like topology of the rivers that feed them (18). Tree-like net-
works, defined by the absence of loops, are characteristic of trib-
utary river networks and are found abundantly in nature across
different systems and scales (e.g., botanical trees, veins of leaves,
blood vessels, lightning, and river networks). The propensity of
nature in choosing tree-like configurations has been grounded
as an optimality principle. Specifically, tributary river channel
networks achieve minimal total energy dissipation, that is, mini-
mal loss of potential energy as water and sediment flow down-
stream, albeit often manifesting as feasible optimality, that is,
a dynamically accessible local minimum due to initial condi-
tions and other constraints (19–22). Similar to river networks,
vascular networks in biological systems (e.g., animals, plants,
insects, etc.), which transport materials through space filling frac-
tal networks of branching tubes, achieve states of minimal energy
dissipation (23, 24). Analogous optimality principles have also
been suggested to constrain processes as diverse as root water
uptake in plants (minimization of internal dissipation) (25) and

land surface energy and water balance (maximization of power)
(26–28).

Despite the importance of deltaic systems and the recent
advances in quantifying their connectivity properties (18, 29–34),
an optimality principle for the organization of their distributary
channel networks, akin to that existing for the tributary networks,
remains elusive. A recent framework based on spectral graph
theory (29, 30, 32) sheds light on the topologic and steady-state
flux partitioning characteristics of delta channel networks and
their relationship to underlying morphodynamic controls (e.g.,
sediment composition and tidal and wave energy), paving the way
for quantitative delta classification and inference of process from
form. However, the diversity of topologic structures of channel
networks across a broad spectrum of deltas, and the fact that
deltas are highly dynamic systems within which topology and flux
partition coevolve, make it challenging to find a universal first-
order optimality principle (e.g., minimization of energy, maxi-
mization of entropy, or minimization of free energy) governing
their formation.

We are physically motivated by the foundational principle
that deltas build land by spreading their fluxes on their delta
top, as opposed to creating single pathways to the ocean which
would diminish the formation of islands that retain sediment
and nutrients and reduce land-building potential. This notion
resonates with previous results applied to tidal deltas showing
that tidal channels self-organize to uniformly distribute the tidal
prism across the delta (35). Under this premise, we postulate the
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existence of an optimality principle in delta channel networks in
terms of achieving configurations that maximize the diversity of
flux delivery from any point of the network to the shoreline. The
time scale of topologic reorganization in deltas, which is mainly
through major channel avulsions, is of the order of decades to
millennia, depending on the deltaic system (36, 37), whereas the
flux adaptation on a given channel topology has a characteristic
time scale which is orders of magnitude smaller. This separation
of scales allows us to study the system on a fixed topology and
focus on whether an optimality principle governs the distribution
of fluxes on that topology.

Given the nature of our hypothesis, that is, maximization of
the diversity (or uncertainty) of flux delivery from any point of
the network to the shoreline, we adopt an information theo-
retic approach to quantify uncertainty based on Shannon entropy
(38). Note that Jaynes (39) introduced a formalism demon-
strating the equivalence (under thermodynamic equilibrium) of
the statistical mechanics and information theory approach to
entropy. Furthermore, it has been argued (not exempt from
certain controversy) that the mathematical framework formu-
lated by Jaynes (39) serves as a generalization of the statisti-
cal mechanics framework for both equilibrium and nonequilib-
rium systems (40, 41). In this work, we propose the notion of
nonlocal entropy rate (nER) and suggest by comparative anal-
ysis of field and numerical deltas that indeed deltas self-adjust
their flux partition so that they maximize their flux diversity.
Note that by “maximization” we do not refer to a global opti-
mization, that is, deltas generally do not achieve flux configura-
tions that correspond to the absolute maximum value of nER but
exhibit configurations corresponding to dynamically accessible
(local) maximum (feasible optimality). We also discuss the possi-
ble implications of the proposed optimality principle with respect
to delta resilience in response to perturbations, arguing that flux
distributions characterized by extreme values of nER are more
resilient, in that a local perturbation (e.g., flux reduction in a
channel) will affect the least the distribution of fluxes at the
shoreline outlets.
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Fig. 1. Field deltas and their corresponding location. Ten deltas with diverse morphodynamic environments and of various degrees of channel complexity
were analyzed in terms of their nER (see SI Appendix for further details about the deltas). Satellite images provided by Landsat/Copernicus, NASA, Digital
Globe, and CNES/Airbus were extracted from Google Earth. We acknowledge their respective copyrights.

Nonlocal Entropy Rate (nER)
Entropy quantifies the uncertainty in the occurrence of events
(38), that is, the amount of information needed to describe the
outcome of an experiment. Uncertainty intuitively emerges from
the notions of probability and surprise. For instance, given a
discrete stochastic process {Xi}, such as rolling a six-sided die,
with specified probability distribution of outcomes, for example
{p1, p2, ..., p6}, the occurrence of rolling a 3 when all sides are
numbered 3 produces zero surprise. Conversely, on the same die
rolling a number other than 3 would produce infinite surprise.
Mathematically, this surprise is defined as − log(pi). There-
fore, the uncertainty of an event, hi , is the product of − log(pi)
times its probability of occurrence pi . Thus, either the occur-
rence of a completely certain event (pi = 1) or an impossible
one (pi = 0) introduces zero uncertainty (hi = 0, by convention
0 log 0= 0). The uncertainty is maximal when all of the N possi-
ble outcomes have the same probability of occurrence 1/N (e.g.,
fair die where the number on each face has a probability of
occurrence 1/6). The total uncertainty or entropy, H , of a set
of N discrete outcomes with probabilities {p1, p2, ...pi .., pN } is
equal to the sum of the uncertainties corresponding to each out-
come i (42):

H =

N∑
i

hi = −
N∑
i

pi log pi . [1]

We aim to develop an entropic metric for delta channel net-
works that quantifies the diversity of flux delivery to the shore-
line. Thus, a delta channel network with low entropy, that is, with
low uncertainty in flux pathways, would be one with a dominant
channel that carries most of the flux. This configuration is inher-
ently unstable, assuming no redistribution of sediment by marine
processes, because that channel would prograde until its water
slope reduces and the channel avulses down a steeper path (43,
44). However, a delta channel network that achieves a configu-
ration where all of the possible pathways that drain water and
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sediment from any point of the network to the shoreline are
equally probable would have the highest entropy. This uncer-
tainty in delivery would have the stabilizing effect of spreading
sediment evenly across the shoreline. Notice that maximizing the
uncertainty of water and sediment flux delivery to the shore-
line does not necessarily imply networks that proportion fluxes
equally at every single bifurcation. In fact, this would be incon-
sistent with morphodynamic theories (45, 46) which showed that
asymmetric flux partition at a junction is a requirement for
stability.

Conceptualizing delta channel networks as graphs, where
nodes correspond to junctions or bifurcations, and links repre-
sent channels (Materials and Methods), we define a metric of
uncertainty of water and sediment flux pathways from the node i
to the shoreline as

hNL
i = −

∑
k

pik log pik , [2]

where pik is the transition probability from node i to outlet node
k . Alternatively, pik represents the fraction of water and sedi-
ment flux from node i that eventually drains to outlet k (see
Materials and Methods for details on the computation of pik ). We
refer to hNL

i as the nonlocal entropy for node i , to emphasize that
the transition probabilities are between nodes i and the shoreline
nodes k as opposed to among neighboring nodes (local). This
notion acknowledges important nonlocal effects on delta dynam-
ics, such as the hydrodynamic backwater where the water surface
slope is dependent on the water depth at the shoreline and the
local slope between subsequent bifurcations (36, 44).

By weighing hNL
i with the normalized steady-state flux at each

node πi (
∑

i πi =1), we define the nER of the complete delta
channel network:

nER =
∑
i

πi
hNL
i

hNL
i,max

=
∑
i

πi

∑
k pik log pik

log 1
Ni

, [3]

where hNL
i,max =− log 1

Ni
is a normalization factor computed for

each node i and Ni represents the number of outlet nodes that
can be reached from node i . The normalized nER admits values
in the interval [0,1].

Results and Discussion
We hypothesize that deltas distribute the flux at each bifurcation
to maximize the uncertainty in the delivery of fluxes from any
point of the delta to the shoreline, that is, to achieve a dynam-
ically accessible maximum of nER. We computed the nER for
10 deltas with diverse morphodynamic environments and chan-
nel complexity (Fig. 1; see SI Appendix for the extracted channel
networks and physical information about the deltas). We com-
pared the computed nER for each field delta (based on the
actual flow partitions) against 105 randomizations of the flux
partition at each bifurcation [sampled from a uniform distribu-
tion in the interval (0, 1)] holding the network structure con-
stant. Despite the broad range of climate, discharge, and sed-
iment influencing these deltas, all but one (the Niger delta)
have flux configurations that exhibit extreme values of nER, that
is, 9 of 10 field deltas have nER above the 90th percentile of
the random distribution (probability of exceedance PE < 0.1)
(Fig. 2). The fact that the computed value of nER does not
correspond to the absolute maximum of the distribution is not
surprising. Natural systems have been argued to achieve sta-
tionary configurations that do not correspond to the absolute
optimum of the functional describing their organizational prin-
ciple but to local optima that are accessible given the initial
conditions, constraints, and the system dynamics, known as the
feasible optimality principle (19–22). Beyond field deltas, we
also applied the nER analysis to numerically simulated deltas
that formed under varying incoming sediment grain sizes (32,
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Fig. 2. nER for 10 field deltas. Green stars represent the values of nER
computed for each field delta, using channel width (extracted from Landsat)
as proxy for flux partition in bifurcations. We compared the values of nER for
each delta with 105 randomizations of flux partitions (histograms). Nine out
of the 10 deltas analyzed exhibit a maximal value of nER, defining maximal
as a value where the probability of exceedance, PE , by a random realization
is less than 0.1.

47, 48) using the physically based hydromorphodynamic model
Delft3D (see SI Appendix for further details). The results show
that five of the six numerical deltas exhibit extreme values of
nER with probability of exceedance PE < 0.1 (Fig. 3), further
supporting our optimality hypothesis. Note that the simulated
delta (D50 = 0.01 mm) that does not satisfy the optimality of
nER is an extreme case, in terms of cohesiveness, for field deltas.
Very cohesive banks are harder to erode and form levee breaches
infrequently, delaying the triggering mechanism of avulsions. As
a result, the system maintains itself at states at which the fluxes
are not at equilibrium with its underlying channel network topol-
ogy. This is reflected in suboptimal states of flux distribution and
thus nER.

Tejedor et al. PNAS | October 31, 2017 | vol. 114 | no. 44 | 11653

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708404114/-/DCSupplemental/pnas.1708404114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708404114/-/DCSupplemental/pnas.1708404114.sapp.pdf


0.
05

 m
m

0.
10

 m
m

0.
25

 m
m

m
m

05.0
1.

00
 m

m

0 0.2 0.4 0.6 0.8 1

PE = 0.0054

PE = 0.0371

PE = 0.0001

PE = 0.0963

PE = 0.0000

0.
01

 m
m PE = 0.1305

Nonlocal Entropy Rate

0.
01

m
m

0.
05

m
m

0.
10

m
m

0.
25

m
m

0.
50

m
m

1.
00

m
m

M
ed

ia
n 

G
ra

in
 S

iz
e

Fig. 3. nER for simulated deltas. We examine the nER of numerically simu-
lated deltas obtained by the Delft3D model. The simulated deltas are river-
dominated, with no vegetation, and with a lognormal distribution of incom-
ing sediment size with median grain size D50 varying from 0.01 to 1.0 mm
and the same variance in the log space (for more details see SI Appendix).
These deltas exhibit a wide variety of channel network topologies as shown
in ref. 32. Similar to the analysis conducted for the field deltas, green stars
represent the values of nER using channel width (extracted from simula-
tions) as proxy for flux partition in each bifurcation. Compared with 105

randomizations of flux partition (histogram), five out of six deltas analyzed
exhibit a maximal value of nER, defining maximal as a value where the prob-
ability of exceedance by a random realization is less than 0.1.

Our results suggest that the flux partitions at each bifurcation,
which have evolved naturally, are not random but rather follow a
rule that optimizes the delta system as a whole. In fact, an inter-
esting paradox arises from our analysis. Although the entropy
introduced locally by each bifurcation, considered as an insulated
unit, is suboptimal [the maximum would correspond to a sym-
metric bifurcation which is not consistent with stability theory of
delta bifurcations that requires asymmetric local flux partition
(45)], the specific assemblage of those bifurcations forming the
delta network as a system is optimal (in terms of nER) and con-
sistent with maximization of the diversity of fluxes delivered to
the shoreline.

Turning attention to delta dynamics, we further hypothesize
that during an avulsion the delta nER would decrease (see
schematic in Fig. 4A). This is because during this phase of topo-
logic reorganization the flux distribution inherited from the pre-
vious channel network structure is in general suboptimal with

respect to the incipient channel network reworked by the avul-
sion (i.e., the new channel structure created during the avulsion
received a disproportionally small share of the flux, creating an
asymmetry in the flux delivery to the shoreline and thus reducing
the value of nER). Testing this hypothesis in field deltas is chal-
lenging because avulsions occur infrequently. However, using
numerical models we can observe that during an avulsion cycle
the nER drops significantly at the onset of a new flow path and
following the abandonment of the old channel (Fig. 4B). Since
the time scale of the avulsion itself is negligible in comparison
with the lifespan of the topologies before and following the avul-
sion, it is observed that the flux partition is able to self-organize
to achieve a configuration that maximizes nER. This supports
our assumption that the time scale of the flux reorganization is
several orders of magnitude smaller than the characteristic time
scale of topologic reorganization which is set by the time lapse
between avulsion cycles.

An important implication of this optimality principle can be
interpreted in terms of the resilience of deltas to withstand per-
turbations. Intuitively, if a perturbation (e.g., flux reduction) is
applied to a delta during its high-nER state, the perturbation will
be damped as it will spread through the diverse pathways con-
necting the delta top to the shoreline. However, if the same per-
turbation is applied to a delta in a low-nER state, the perturba-
tion will be more confined to a localized part of the delta but
will exert a more severe disturbance. As revealed by our analy-
sis, river deltas operate in configurations characterized by high
values of nER, supporting the idea that deltas self-organize to
achieve resilient morphologies priming self-maintenance. As a
word of caution, especially relevant in the current scenario where
deltas are subjected to increasing anthropogenic stresses, this dis-
tributive mechanism that dampens the intensity of perturbations
can also lead to delta-wide catastrophic disturbances and tipping
points when those perturbations exceed certain thresholds.

Conclusions
Deltas are highly productive regions supporting extensive agri-
culture and aquaculture and diverse ecosystems and containing
natural resources such as hydrocarbon deposits. Climate change
and human actions, both in the upstream basins and locally, act
as stressors on these landscapes, calling for a thorough under-
standing of these complex systems and their response to per-
turbations. We examined the existence of an optimality prin-
ciple that governs the self-organization of water and sediment
fluxes on delta channel networks. Specifically, (i) we put forth
the hypothesis that maximizing nER, which quantifies the diver-
sity in flux delivery to the shoreline, is a selective criterion in
the evolutionary dynamics of delta networks; (ii) we tested this
hypothesis by analyzing 10 field deltas of diverse complexity,
age, and environmental settings and showed that all but one, the
Niger delta, exhibited maximum nER; (iii) we further supported
the existence of an optimality principle by analysis of Delft3D
simulated deltas; (iv) we showed that during major reorgani-
zation, such as avulsions, nER exhibits suboptimal values and
increases back to high rates (maximum values) when the flux dis-
tribution self-adjusts to the new delta channel network topology;
and, finally, (v) we discussed the relation between entropy and
resilience, arguing that delta flux configurations characterized by
maximal nER are more resilient in the face of random perturba-
tions. In the anthropocene where human activities have become
a major agent of geomorphic change, understanding delta self-
organization within an optimality perspective offers new ways of
thinking about delta dynamics and disturbances that might hin-
der self-maintenance.

Materials and Methods
Deltas as Directed Graphs. Tejedor et al. (29, 30) presented a rigorous frame-
work based on graph theory within which a delta channel network is
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represented by a directed graph, that is, a collection of vertices (bifurcations
and junctions) and directed edges (channels in-between vertices, where the
direction is given by the flow). All information about network connectivity
and directionality of the flow can be stored in a sparse matrix called the
adjacency matrix, A. Specifically, A is an N × N matrix, where N is the num-
ber of vertices, and whose entry aij is unity if vertex i receives fluxes directly
from vertex j (i.e., vertices i and j are connected by a link directed from j to i)
and zero otherwise. From A we can derive an important matrix called Lapla-
cian, which is equivalent to a diffusivity operator in a graph. To construct
the Laplacian we need first to introduce the degree matrices for directed
graphs. The in-degree (out-degree) matrix Din (Dout) is an N × N diagonal
matrix whose entries dii depict the number of links entering (exiting) vertex
i and are computed as the sum of the entries in the i-th row (column) of
A. The Laplacian matrix, Lin (Lout), is defined as Din − A (Dout − A). Tejedor
et al. (29, 30) showed that certain eigenvectors of the Laplacian operator
contain important topologic information of the deltaic network. Further-
more, information about flux propagation can be obtained if A is replaced
with the weighted adjacency matrix W , where the weights wij correspond
to the fraction of flux in link (ji) with respect to the flux in vertex j. Similar
to the at-station hydraulic geometry relationship (49)—width to landscape-
forming discharge—reported for tributary rivers (50) and tidal channels (51),
we assume the flux partition at the bifurcation to be proportional to the
width of the downstream channels (18). Note that even though we do not
consider explicitly in the computation of steady-state fluxes relevant pro-
cesses such as water–sediment interchange between channel and islands
(31, 52, 53), vegetation (54), tides (35), and so on, all of these processes
set the hydrogeomorphic attributes of the channel network. Therefore, the
computation of steady-state fluxes in the channel network based on physi-
cal attributes such as channel widths can be interpreted to a certain degree
as the result of the integrative effect of all of the main processes acting
on a delta. For the purposes of this paper, there are two probability dis-
tributions that can be computed by simple algebraic manipulation in the
above-mentioned operators, namely, the steady-state flux distribution and
the node-to-outlet transition probability distribution.

Steady-State Flux Distribution. Having a delta represented as a directed
acyclic graph (DAG) allows us to compute the steady-state flux by assum-
ing conservation of mass. For instance, Tejedor et al. (29) showed how the
steady-state flux can be formulated as an eigenvalue–eigenvector problem
of the Laplacian matrix of the graph. Here, we present the input/output
model as a more intuitive way to compute the delta steady-state flux. Let
us consider a DAG fed from the most upstream node (apex) with a con-
stant unit flux. Without loss of generality, and for simplicity in the subse-
quent derivations, the apex is assumed to be labeled as node 1. Then, we
can define the stationary distribution, F, as

F =



1
0
0
...
0

+ W



1
0
0
...
0

+ W2



1
0
0
...
0

+ · · · = (I −W)−1



1
0
0
...
0

, [4]

where the column vector e1 = (1 0 0 · · · 0)T corresponds to the initial state,
and W corresponds to the weighted adjacency matrix of the graph. Alter-
natively, e1 represents a constant inflow at the apex normalized to 1, and
Wke1 the resulting downstream response at time/distance specified by k.
For a DAG, there exists at least one indexing of the graph such that each
offspring vertex has a higher index than its parent vertex. In this index-
ing, by construction, the matrix W is strictly upper triangular, and there-
fore the matrix W is nilpotent, guaranteeing the convergence of the sum
as expressed in Eq. 4. In SI Appendix we prove that the stationary flux dis-
tribution F can also be obtained as the stationary probability of a Markov
process π.

Node–Outlet Transition Probability Distribution. The node-to-outlet transi-
tion probability, pik, is defined as the probability that a package of flux at
node i drains to outlet k. Thus, the transport from each node i, to the differ-
ent outlets M, can be understood as a discrete stochastic process with prob-
ability distribution {pik}, with k = 1, .., M. Tejedor et al. (29) showed that
when a delta channel network is represented by a directed acyclic graph G
with a weighted adjacency matrix W ,

i) The null space of the weighted in-degree Laplacian Lin
W (GR) for the

reverse graph GR has dimension (multiplicity of the eigenvalue zero)
equal to the number of outlets M;

Time

I

II

III

IV

V

255 270 285 300 315 330 345 360

0

0.1

0.2

0.3

Time (hours simulation)

Maximal nonlocal Entropy Rate

N
on

lo
ca

l E
nt

ro
py

 R
at

e
 d

ur
in

g 
m

aj
or

 a
vu

ls
io

ns
  

II IV

I III V

Pr
ob

. E
xc

ee
da

nc
e

I III VII IV

A

B

Fig. 4. nER during an avulsion cycle. (A) The results presented in Figs. 2
and 3 support the hypothesis that river deltas self-organize to maximize
nER. However, deltas in dynamic equilibrium experience avulsions, periodi-
cally causing major reorganization of their channel networks. Our hypoth-
esis is that during these periods of major reorganization delta nER drops
significantly until the delta fluxes are self-organized back to a new struc-
ture as shown in the schematic of A. (Insets, from left to right) Schemat-
ics of the five stages within a single avulsion cycle (notice that for illus-
tration purposes, only the main channel was drawn to better depict the
avulsion cycle): (I) starting from a given channel network topology, (II) a
new channel structure is created downstream of the avulsion node drain-
ing initially a small part of the flux, but progressively receiving larger
proportions of fluxes until (III) the new and the old channel structures
receive similar amounts of flux, and eventually transition to (IV) a config-
uration wherein the new channel structure has more flux, to finally lead
to (V) the abandonment of the former channel structure downstream of
the avulsion node. (B) We have tested this hypothesis using Delft3D simu-
lations and analyzing subsequent instances of a delta evolution, wherein
an avulsion cycle is observed. The probability (Prob.) of exceedance of
the delta nER by a randomization of the flux configuration is displayed.
The results agree with the posed hypothesis, showing that nER drops at
the beginning and end of the avulsion cycle, keeping a maximal value
otherwise.

ii) There exists a unique basis γk, k = 1, · · · , M, of this null space in RN

(i.e., the basis consists of M vectors each having N entries) with the
property

γk(i) =
{

1, i = k
0, i 6= k

for k = 1, · · · , M. [5]
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That is, the entry of the vector γk corresponding to outlet k is one, and zero
at all other outlets.

iii) The value γk(i) represents the portion of flux at the vertex i that drains
to the outlet k, that is, pik.

Thus, if we define a matrix T , whose columns form the basis of the null
space of Lin

W (GR), {γ}, then the i-th row corresponds to the probability dis-
tribution {pik}.
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