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1  | INTRODUC TION

Drying is one of the oldest procedures for preserving food and ag-
ricultural products. Drying is defined as the reduction in moisture 
from the products and is the most important process for preserving 
agricultural products since it has a significant effect on the qual-
ity of the dried products. The principle objective in drying agricul-
tural products is the reduction in the moisture content to a level 
that allows safe storage over an extended period (Mohammadi, 
Tabatabaekoloor, & Motevali, 2019). Nevertheless, the high con-
sumption of energy in the food drying industry has made it the most 
consuming and the most important industrial operation. Therefore, 

one of the most substantial challenges in dried fruit industry is to re-
duce the cost of energy sources to produce dry quality products. So, 
useful thermodynamic analysis of dryers is necessary when we aim 
to save energy consumption and optimize process variables (Roknul 
Azam, Zhang, Law, & Mujumdar, 2019; Shende & Datta, 2019).

Energy and exergy analysis is applied to determine energy 
needed to dry the product and exergy loss at each stage of the 
process. Exergy is defined as the maximum amount of work, which 
can be produced by a stream of matter, heat, or work as it comes 
to equilibrium with a reference environment. In the drying indus-
try, the goal is to use a minimum amount of energy for maximum 
moisture removal for the desired final conditions of the product. So, 
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This study aimed to predict the drying kinetics, energy utilization (Eu), energy utiliza-
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Eu, EUR, exergy efficiency, and exergy loss. The value of the Deff was varied from 
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moisture ratio of quince fruit. Also, the ANFIS model, in comparison with the artificial 
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focusing on energy and exergy analysis is very important (Lingayat, 
Chandramohan, & Raju, 2018; Yogendrasasidhar & Setty, 2018).

Şevik, Aktaş, Dolgun, Arslan, and Tuncer (2019) analyzed the ex-
ergy and energy in the process of drying mint and apple slices in 
a solar and solar-infrared. The results indicated that the loss of ex-
ergy and exergy efficiency increases by increasing the air tempera-
ture. Exergy efficiency for mint in solar dryer and solar-infrared was 
69.35% and 59.07%, respectively. Akpinar, Midilli, and Bicer (2006) 
analyzed the energy and exergy in pumpkin. They reported that the 
pumpkin dried within the time range of 5.66–12 hr with a loss of ex-
ergy from 0 to 1.165 kJ/s. The maximum exergy of the system input 
was 2.198 kJ/s. Also, with increased exergy loss, the energy used in 
the solar dryer increased. Karthikeyan and Murugavelh (2018) stud-
ied the energy and exergy required to dry turmeric in a mixed-mode 
forced convection solar tunnel dryer and concluded that the loss of 
exergy and energy utilization ratio and its efficiency was increased 
with increasing temperature.

Recently, several studies have been carried out to energy and ex-
ergy analysis in the process of drying products such as potato slices 
in solar dryer (Kesavan, Arjunan, & Vijayan, 2019), turmeric slices 
in microwave dryer (Surendhar, Sivasubramanian, Vidhyeswari, & 
Deepanraj, 2019), Kodo millet grains and fenugreek seeds using wall 
heated fluidized bed dryer (Yogendrasasidhar & Setty, 2018), dog-
rose flowers with a hybrid infrared-hot air dryer (Motevali, Jafari, & 
Hashemi, 2018), and tomato slices in a solar dryer (Arepally, Ravula, 
Malik, & Kamidi, 2017).

The base of intelligent methods work is using hidden knowl-
edge in the experimental data, trying to extract the inherent rela-
tionships among them and generalizing results to other situations. 
Artificial neural networks are one of the most essential methods 
used in the field of artificial intelligence was inspired by how the 
human brain works, training takes place first, and then the infor-
mation related to the data is stored in the form of the network's 
weights (Jahanbakhshi, Ghamari, & Heidarbeigi, 2017; Sun, Zhang, 
& Mujumdar, 2019). Artificial neural networks and ANFIS have been 
successful in estimations in natural processes. These methods have 
advantages over many conventional statistical and deterministic pro-
cedures. Compared to linear regression models, they do not neces-
sitate the placement of prediction values around the mean and thus 
reflect the real data variability (Jahanbakhshi & Salehi, 2019; Kaveh, 
Jahanbakhshi, Abbaspour-Gilandeh, Taghinezhad, & Moghimi, 2018; 
Movagharnejad & Nikzad, 2007; Shekarchizadeh, Tikani, & Kadivar, 
2014).

Liu et al. (2019) have surveyed ANNs application to pre-
dict Eu, EUR, exergy loss, and exergy efficiency mushroom slices 
in HA dryer. The results indicated that value R2 for Eu, EUR, ex-
ergy loss, and exergy efficiency was .9978, .985, .994, and .998, 
respectively. Checking drying index (moisture content (MC) and 
drying rate) and thermodynamic parameters (energy and exergy 
efficiency) of drying banana in HA flow dryer with the help com-
bined structure ANNs-RSM showed that this structure is able to 
predict drying index and thermodynamic parameters with R2 > .96 
and RMSE < 0.060 (Taheri-Garavand, Karimi, Karimi, Lotfi, & 

Khoobbakht, 2018). Kaveh, Jahanbakhshi, et al. (2018) tried to 
predict MR of almond fruit in the process of drying in a convective 
dryer with ultrasound pretreatment through mathematical mod-
els, ANNs and ANFIS and reported that to predict moisture ratio 
in almond, ANFIS model with the R2 = .9998 and MSE = 0.003 had 
a better performance.

It was founded in a study in which potato slice, energy and 
exergy in fluidized bed method was modeled with the help of the 
neural network that can predict energy and exergy of potato slice 
with best and highest accuracy. In this investigation, drying time, air 
temperature, inlet airspeed, and depth variables were considered as 
network inputs (Azadbakht, Aghili, Ziaratban, & Torshizi, 2017).

The detailed literature review for the present study has shown 
that there is no information on energy and exergy analysis and other 
parameters of the thin-layer drying process of quince fruit via hot air 
dryer. Therefore, this paper, as a novel study, concentrates on the 
energy and exergy analysis of the thin-layer drying of quince fruit via 
hot air dryer by using the first and second law of thermodynamics. 
The primary objective of this study is to present modeling, analy-
sis of kinetics, Deff, Ea, SEC, energy and exergy analysis of thin-layer 
drying of quince fruit at different conditions in a hot air dryer. It is 
believed that such a study will contribute to quince fruit producers 
by removing their problems related to energy and exergy through-
out the drying process.

2  | MATERIAL S AND METHODS

2.1 | Preparing the samples

In this research, quince fruits were purchased from a local market 
in Ardebil, Iran. After being washed, fruits in good shape were se-
lected for the experiment. Samples were stored in a refrigerator at 
the temperature of 4°C to be prepared and to reach similar initial 
temperature before the experiments. The initial MC of the samples 
was obtained by using the Memmert standard oven for 24 hr at 
the temperature of 70°C (Jahanbakhshi, 2018), which was equal to 
5.52 ± 0.5% on a dry basis.

2.2 | Hot air dryer

To carry out the experiments, a HA dryer was used. The samples to 
be tested were placed in the middle of the airflow channel of the 
dryer in a meshed bowl on a digital scale with a precision of 0.01 g 
attached below the dryer and situated outside the airflow channel. 
The laboratory dryer used in this study had a centrifugal blower, 
which blew HA over the samples in a parallel manner. To begin the 
experiment, the device was first put on and worked for 15 min so 
that the dryer would reach balance temperature. Then, the quince 
samples were placed on the dryer's bed and the weight of the sam-
ples was measured in 5-min intervals by a scale (AND, GF-6000) and 
recorded in a computer.
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The relative temperature and moisture in the ambient around 
the dryer are two determining variables in drying foodstuff. Thus, 
in each experiment, the relative temperature and moisture around 
the dryer were measured and recorded using a digital Testo 925 
thermometer with the accuracy of ±0.1°C and a Testo 400 moisture 
meter with the accuracy of ±0.1%.

During the drying experiments, the average ranges for changes 
in ambient temperature and relative air moisture were 25 ± 4°C and 
17 ± 5%, respectively. The experiments were conducted at tempera-
tures (50, 60, and 70°C) and three input air velocities (0.6, 1.2, and 
1.8 m/s). The thickness of 3 mm was selected for the samples in this 
study.

The relative moisture ratio (MR) of the quince fruit samples can 
be obtained through Equation (1) (Jahanbakhshi, Rasooli Sharabiani, 
Heidarbeigi, Kaveh, & Taghinezhad, 2019; Torki-Harchegani, 
Ghanbarian, Pirbalouti, & Sadeghi, 2016).

2.3 | Modeling

To model the drying process, the relative MR of the quinces in differ-
ent treatments was calculated using Equation (1). After determining 
the relative MR values, the data were fitted using ten mathematical 
models (Table 1) in MATLAB R2014a software.

One of the most important criteria used for specifying the best 
model is the coefficient of determination (R2), and the appropriate 
fitting can be determined using an index called root mean square 
error (RMSE). The model, which has the highest R2 and the lowest 
RMSE, will be the best model for treatment. These values can be 
calculated using Equations 2 and 3 (Amiri Chayjan, Kaveh, & Khayati, 
2017).

2.4 | Determination of Deff

Fick's second law is used extensively to describe diffusivity in the 
process of drying agricultural products (Mohammadi et al., 2019):

The initial and boundary conditions are:

After extending Equation (5) and maintaining the drying condi-
tions for a long time, Equation (6) can be obtained for determining 
moisture diffusivity (Koukouch et al., 2017):

Effective moisture diffusivity coefficient (Deff) is obtained 
through Equation (7) from the gradient (K) of the Ln (MR) graph over 
time:

2.5 | Determination of Ea

Using the Arrhenius equation, the relationship between tempera-
ture and Deff is obtained and activation energy can be calculated 
(Mohammadi et al., 2019).

By drawing the graph Ln (Deff) in front of (1/Ta), a line with the 
gradient K1 is obtained:

2.6 | Determination of SEC

The value of energy needed to evaporate a kilogram of water from 
the product in the drying process is defined as SEC. Value of the SEC 
used in an HA dryer is taken from two sources. These energies are 
(a) heat energy (thermal energy) and (b) blower energy (mechanical 
energy). The heat generator energy is obtained from Equation (10) 
(Onwude, Hashim, Abdan, Janius, & Chen, 2019):

The value of ρa can be obtained by Equation (11) (Motevali, 
Minaei, Banakar, Ghobadian, & Khoshtaghaza, 2014):

The mechanical energy obtained from the blower is calculated 
through Equation (12) (Rad, Kaveh, Sharabiani, & Taghinezhad, 2018):

The SEC of the quince fruit in the HA drying is obtained from 
Equation (13) (Motevali et al., 2014; Rad et al., 2018):
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2.7 | Energy analysis

The energy utilization (Eu), mass flow of air (ṁda), dry air enthalpy 
(hda), specific heat of input and output air (Cpda), air humidity ratio 
(kg water/kg dry air) (w), ratio of air humidity to the inlet and out-
let (wdao), mass transfer rate (kg water/s) (ṁv), and energy utilization 

ratio (EUR) calculated through the first law of thermodynamics can 
be expressed as follows (Table 2):

2.8 | Analysis of exergy

Exergy of air at the entrance to the drying chamber, exergy 
of air at the outlet of the drying chamber, exergy loss (Ė xy), 
and exergy efficiency (ηEx) obtained using (Equations 21–24) in 
(Table 3).

(13)SEC=
EU(mec+ter)

MW

Models Equations References

Newton (Lewis) MR = exp (−kt) Elmas et al. (2019)

Henderson and 
Pabis

MR = a exp (−kt) Torki-Harchegani et al. 
(2016)

Page MR = exp (−ktn) Khanali and Rafiee (2014)

Logarithmic MR = a exp (−kt) + c Arepally et al. (2017)

Two-term MR = a exp (−k0t)+b exp (−k1t) Ziaforoughi et al. (2016)

Wang and Singh MR =1 + at + bt2 Sahin and Doymaz (2017)

Midilli et al. MR = a exp (−ktn) + bt Darıcı and Sen (2015)

Parabolic MR = a + bt + ct2 Coskun et al. (2017)

Logistic MR = a ∕ (1 + b exp (kt)) Rad et al. (2018)

Demir et al. MR = a exp (−kt)n + b Kaveh, Jahanbakhshi, et al. 
(2018)

TA B L E  1   Applied models to fit the 
experimental data

Equation Equation number Reference

Eu = ṁda (hdai − hdao) (14) Nazghelichi et al. (2010)

ṁda = 𝜌aVaAdc (15) Khanali and Rafiee (2014)

hda = Cpda (T − Tref) + hfgw (16) Nazghelichi, Aghbashlo, 
Kianmehr, and Omid 
(2011)

Cpda = 1.004 + 1.88w (17) Azadbakht et al. (2017)

w = 0.622 ×
�×Pvs

P−Pvs

(18) Zohrabi, Seiiedlou, 
Aghbashlo, Scaar, and 
Mellmann (2019)

wdao = wdai +
ṁv

ṁda

(19) Azadbakht et al. (2017)

ṁv =
wt −wt+Δt

Δt
(20) Khanali and Rafiee (2014)

EUR =
ṁda (hdai − hdao )

ṁda (hdai − hdae )
(21) Nazghelichi et al. (2010)

TA B L E  2   Formulas used for 
determining energy utilization and energy 
utilization ratio of convective dryer

Equation Equation number Reference
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[

(Tdci − T
∞
) − T

∞
ln

Tdci

T
∞

]

(22) Zohrabi et al. 
(2019)
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∞
) − T

∞
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∞

]

(23) Motevali et al. 
(2018)

̇Exy =
̇Exdci −

̇Exdco (24) Arepally et al. 
(2017)

𝜂Ex =

̇Exdci −
̇Exy

̇Exdci
= 1 −

̇Exy
̇Exdci

(25) Liu et al. (2019)

TA B L E  3   Formulas used for 
determining Exergy loss and Exergy loss 
of convective dryer
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2.9 | Artificial neural networks

The network architecture consists of an input layer with three neu-
rons, an output layer and one or two hidden layers (Figure 1). The 
input layer consists of three variables (air temperature, air velocity, 
and drying time), and the output layer has one variable (MR, Eu, EUR, 
exergy loss, and exergy efficiency) for the quince fruit drying pro-
cess. It is difficult to determine the optimal number of neurons in the 
hidden layer, and it usually depends on the type and complexity of 
the work. Thus, it is determined by trial and error.

For artificial neural networks, single-layer and double-layer cas-
cade Forward Back Propagation (CFBP) and Feed Forward Back 
Propagation (FFBP) networks were used, with different numbers 
of neurons varying between 3 and 15. Moreover, the Levenberg-
Marquardt (LM) and Bayesian Regularization (BR) algorithms were 
used. Three threshold functions namely sigmoid activation function 
(Logsig), linear activation function (Purelin), and hyperbolic tangent 
activation function (Tansig) were used to predict the proposed pa-
rameters (Jahanbakhshi & Salehi, 2019; Savari, Moghaddam, Amiri, 
Shanbedi, & Ayub, 2017).

F I G U R E  1   ANN and ANFIS structure
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2.10 | ANFIS

ANFIS consists of a set of if–then rules and pairs of fuzzy input–out-
put data that use artificial neural networks learning algorithms for 
training (Al-Mahasneh, Aljarrah, Rababah, & Alu'datt, 2016). ANFIS is 
very similar to a fuzzy inference system, and the only difference be-
tween the two is the use of the backpropagation error algorithm by 
ANFIS to minimize error. ANFIS's function is very much like those of 
artificial neural networks and fuzzy logic. In both of these methods, 
the input passes through the input layer (by the input membership 
function), and then, the output of the model is obtained in the out-
put layer (by the membership function of the output) (Ziaforoughi, 
Yousefi, & Razavi, 2016).

Each ANFIS model consists of five layers: (a( Fuzzification, 
(b( Multiplication, (c( Normalization, (d( Defuzzification, and (e) 
Summation (Eski et al., 2018) (Figure 1). In the ANFIS analysis, as 
with other models, the best architecture should be designed. To 
achieve this objective, ANFIS models are designed using the trial and 
error method to determine the number of fuzzy rules in output pre-
diction. Eight types of membership functions, namely psigmf, dsigmf, 
pimf, Gasuss2mf, Gaussmf, gbellmf, trimf, and trapmf can be used as 
the input to the ANFIS model (Kaveh, Sharabiani, et al., 2018). The 
number of rules for the membership functions varied from 3 to 5. 
Moreover, a linear function was selected as the output ANFIS mem-
bership function and a hybrid learning method was used.

The present study was modeled using ANNs and ANFIS to pre-
dict experimental data on quince fruit drying (MR, Eu, EUR, exergy 
loss, and exergy efficiency). Training data and data simulation were 
conducted in Toolbox of Matlab R2014a software. For network 
modeling, the data were randomly assigned to two groups, of which 
75% were used for training and 25% were applied for testing models.

3  | RESULTS AND DISCUSSION

3.1 | Drying kinetic

After obtaining MR at different temperatures and different dry-
ing rates, the drying curves were fitted to the experimental data 
(Figure 2). The results show that the initial MC of the product is high 
and the moisture loss rate is high at the beginning of the drying pro-
cess (Sahin & Doymaz, 2017). Gradually, as time passes, the initial 
MC of the product decreases naturally over time. The product's dry-
ing curve moves downwards at a high gradient at the beginning of 
the process due to the evaporation of surface moisture, and after 
this time, due to the onset of water penetration from inside the ma-
terial to the surface, the curve falls at a lower gradient level (Coskun, 
Doymaz, Tunçkal, & Erdogan, 2017). At lower velocities, the total 
drying time is longer. As the temperature rises, the time required for 
the product to dry decreases due to increased moisture evapora-
tion rate. The effect of temperature on drying time is greater than 
that of the dryer air velocity in the process of drying the product 
(Darıcı & Sen, 2015). Moreover, the process of decrease in MC under 

different test conditions shows that increase in air flow rate in the 
HA dryer reduces the drying time of the product. The reason for this 
phenomenon is that by increasing air velocity, the vapor pressure 
of the environment is reduced and, as a result, the MC of the prod-
uct will face less resistance to exit and will be released more quickly 
(Elmas, Varhan, & Koç, 2019; Kaveh, Sharabiani, et al., 2018). The 
decreasing of drying time with increasing of drying air temperature 
and air velocity has been reported for many agricultural products 
such as jujube slices (Elmas et al., 2019), potato slice, garlic, canta-
loupe (Kaveh, Sharabiani, et al., 2018), mushroom slices (Ghanbarian, 
Dastjerdi, & Torki-Harchegani, 2016), beef (Ahmat, Barka, Aregba, & 
Bruneau, 2015).

3.2 | Drying model

The values of R2 and RMSE related to the data obtained from the 
experiments (experimental data) and the data from the models 
(predicted data) for each of the temperatures and input air ve-
locities are reported in Table 4. Of the ten models, the model with 
the highest R2 value and the lowest RMSE value was selected as 
the appropriate model. According to Table 4, the model proposed 
by Midilli et al. was selected as the best model for describing the 
quince fruit's drying behavior in a HA dryer with mean R2 of .9992 
and RMSE of 9.1 × 10−3.

3.3 | Effective moisture diffusivity

Figure 3 shows the Deff of the quince fruit at different temperatures 
and input air velocities. The results show that the Deff increases with 
increase in drying temperature and air velocity. The Deff varies from 
4.19 × 10−10 to 1.18 × 10−9 for temperature range of 50 to 70°C and 
air velocity of 0.6 to 1.8 m/s. By increasing the temperature of the 
dryer chamber, the moisture transfer rate from inside the fruit to its 
surface increases and the Deff increases around three times (Sahin 
& Doymaz, 2017). In addition, the Deff of quince fruit indicates that 
the values obtained in this study were within the range of Deff con-
tent for foodstuff which is 10−12 to 10−8 (Kaveh, Jahanbakhshi, et 
al., 2018). Similar results about the Deff have been reported by other 
researchers that shown in Table 5.

3.4 | Activation energy

The value of the Ea for the quince fruit in a HA dryer was obtained 
within the range of 33.06 to 34.77 kJ/mol (Table 6). Therefore, the 
amounts reported in this study for the Ea of the quince fruit were 
within the recommended range (12.7 to 110 kJ/mol) for agricultural 
products (Aral & Bese, 2016; Samimi-Akhijahani & Arabhosseini, 
2018).

Value of the Ea represents value of energy required to start mass 
transfer from the body of the product. If the MC is absorbed by the 
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surface, it requires less energy to start evaporation (Aghbashlo, 
Kianmehr, & Samimi-Akhijahani, 2008). In similar studies, Ea for haw-
thorn was obtained between 78.74 and 91.54 kJ/mol (Aral & Bese, 
2016) and for tomatoes, it was 12.43 kJ/mol (Coskun et al., 2017).

3.5 | Specific energy consumption

The maximum and minimum amounts of SEC by quince fruit were 
calculated to be between 85.40 and 260.11 kWh/kg (Figure 4). As 
the temperature of the input air increased, SEC decreased due to 

the significant increase in the drying rate at higher levels of input air 
temperature. In other words, although by increase in the tempera-
ture of the input air, the thermal power applied increases according 
to Equation 12, due to the reduction in the drying time, thermal en-
ergy required to remove the unit of moisture from the product de-
creased. At low temperatures, drying time and SEC amount increase 
(Motevali et al., 2014).

Motevali and Tabatabaei (2017) have achieved similar results in 
examining the drying process for dog-rose in a HA dryer. For drying 
apples in a HA dryer, Majdi, Esfahania, and Mohebbi (2019) obtained 
an SEC amount between 5.5 and 8.9 kWh.

F I G U R E  2   Moisture ratio variation in 
quince fruit under convective drying (air 
velocity and air temperature)
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3.6 | Energy utilization

Energy utilization analysis for the quince fruit was carried out using 
data from experiments in a hot air dryer. Figure 5 shows the effect 
of two parameters of temperature and input air velocity on Eu in the 

process of drying quince fruit. The maximum of Eu was 0.0694 kJ/s 
at 70°C and the input air velocity of 1.8 m/s. The minimum amount 
of Eu was equal to 0.009 kJ/s.

3.6.1 | Effect of air temperature

Figure 5 shows that the Eu increased by an increase in the input air 
temperature. The highest amount of Eu was observed at the begin-
ning of the drying process and this amount decreased with time. 
During the drying time, due to the faster transfer of moisture, Eu 
was higher at the beginning of the drying process. Increasing the 
temperature of the dryer air led to increase in the input enthalpy 
and higher heat and mass transfer resulting in higher energy con-

sumption and a higher amount of moisture was taken from the prod-
uct (Nazghelichi, Kianmehr, & Aghbashlo, 2010). These results are 
similar to those obtained by Azadbakht et al. (2017) for drying a thin 
layer of potatoes in a fluidized bed dryer, and Aghbashlo, Kianmehr, 
and Arabhosseini (2008), for drying potatoes in a semi-industrial 
continuous dryer.

3.6.2 | Effect of air velocity

According to Figure 5, Eu increases with increasing air that enters 
the drying chamber. Since, the specific energy consumption depends 
on the velocity of the input air, the hidden heat of water vapor, and 
the specific heat and the output air temperature, the air mass flow 

TA B L E  4   The statistical comparison for prediction of thin-layer 
drying of quince

Model R2 RMSE

Newton (Lewis) .9970 0.0152

Henderson and Pabis .9979 0.0122

Page .9959 0.0182

Logarithmic .9980 0.0118

Two-term .9975 0.0137

Wang and Singh .9966 0.0169

Midilli et al. .9992 0.0091

Parabolic .9985 0.0105

Logestic .9987 0.0099

Demir et al. .9947 0.0219

F I G U R E  3   Effect of input air velocity 
and temperature on effective moisture 
diffusion coefficient

TA B L E  5   Effective moisture diffusivity values for some 
agricultural Products

Fruit Deff Reference

Kiwi 1.94 × 10–9 − 7.12 × 10−9 m2/s Mohammadi 
et al. (2019)

Potato 7.84 × 10–10 − 2.88 × 10−9 m2/s Boutelba et al. 
(2019)

Mango 
cubes

1.04 × 10–8 − 1.89 × 10−8 m2/s Sehrawat, Nema, 
and Kaur (2018)

Olive-tree 
pruning

3.41 × 10–8 − 32.5 × 10−8 m2/s Cuevas et al. 
(2019)

Walnut 2.77 × 10–9 − 5.56 × 10−9 m2/s Abbaspour-
Gilandeh, 
Kaveh, and 
Jahanbakhshi 
(2019)

TA B L E  6   Activation energy values and related correlation 
coefficient for quince fruit

Parameter 0.6 m/s 1.2 m/s 1.8 m/s

Activation energy (Ea) 
(kJ/mol)

34.77 33.71 33.06

Coefficient of determi-
nation (R2)

.9998 .9954 .9991
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and the enthalpy volume of the input air will increase by increas-
ing airspeed. These conditions will cause the MC of the product to 
evaporate rapidly and increase Eu. These results are consistent with 
the results of Nazghelichi et al. (2010) regarding drying carrots in the 
fluidized bed dryer.

3.7 | Energy utilization ratio

Figure 6 shows the EUR for the parameters of temperature and air 
velocity. The highest obtained EUR was 0.882 at the temperature of 
70°C and airspeed of 1.8 m/s, while the lowest EUR was 0.061 at the 
temperature of 40°C and the airspeed of 0.6 m/s.

3.7.1 | Effect of temperature

The results of Figure 6 show that the EUR increases by increasing 
the temperature of the dryer chamber from 50 to 70οC. The high-
est EUR was observed at the beginning of the drying process, after 
which EUR decreased over time. According to the results, the EUR 
increases with increasing wall temperature in the hot air dryer be-
cause increasing the temperature of the dryer chamber increases 
the heat transfer between the dryer's walls and thus increases the 
evaporation rate of the MC of the product (Darvishi, Azadbakht, & 
Noralahi, 2018). Aviara, Onuoha, Falola, and Igbeka (2014) showed 
that in a tray dryer used to dry native cassava starch, EUR increased 
by increasing air temperature. Nikbakht, Motevali, and Minaei (2014) 
reported the use of hot air with microwave pretreatment for drying 
pomegranate seeds and concluded that increasing the temperature 
of the input air would increase the EUR.

3.7.2 | Effect of air velocity

The results show that the EUR increases by increasing airspeed. 
Besides, increasing air velocity increases the removal of moisture 

from the surface of solid material, which in turn would lead to an 
increase in the EUR in the hot air dryer wall (Yogendrasasidhar & 
Setty, 2018). Yogendrasasidhar and Setty (2018) have studied on 
energy and exergy analysis of kodo millet grains and fenugreek 
seeds in fluidized bed dryer and showed that EUR increased with 
increasing air temperature from 40 to 60°C and airspeed from 1.01 
to 1.7 m/s.

3.8 | Exergy loss

The effects of two parameters of air temperature and input air-
speeds on the exergy loss of drying quince fruits in an HA dryer were 
studied and its results are shown in Figure 7. The highest exergy loss 
for drying quince fruits was 0.044 kJ/s at the temperature of 70°C 
and airspeed of 1.8 m/s, and the lowest exergy loss was 0.0088 kJ/s 
at the temperature of 50°C and the airspeed of 0.6 m/s.

3.8.1 | Effect of temperature

To calculate the input exergy, the air temperature of the dryer wall is 
taken into account (Equation 22) and output exergy is determined by 
the temperature of the output air (Equation 23). The results for exergy 
loss are shown in Figure 7. According to Figure 7, exergy loss raised by 
an increase in air temperature. Exergy loss is higher at the initial drying 
stage and decreases with drying time. In the initial drying phase, exergy 
loss is high due to the greater evaporation of the product water. This 
can be attributed to the fact that the difference between the input 
and output temperature of the drying chamber is high initially and thus 
more water evaporation from the product takes place (Darvishi et al., 
2018). As time passes, the driving force of mass and moisture transfer 
decreases and the speed of increase in quince fruit exergy decreases 
over time, which results more significant exergy loss during the pro-
cess (Corzo, Bracho, Vasquez, & Pereira, 2008).

Aghbashlo, Kianmehr, and Arabhosseini (2008) conducted an ex-
ergy loss study on potatoes in a continuous semi-industrial dryer and 

F I G U R E  4   Specific energy 
consumption over temperature and input 
air velocity
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concluded that exergy loss raised with rising air temperature. The 
maximum exergy loss was reported to be 13.71 kJ/s at 70°C, and 
the minimum exergy loss was reported with a rate of 0.5987 kJ/s 
at 50°C. Colak, Kuzgunkaya, and Hepbasli (2008) reported that ex-
ergy loss rises from about 0.09 to about 0.12 kJ/s by increasing air 
temperature from 40 to 50°C for mint leaves in a tray dryer. In an-
other study by Motevali and Minaei (2012) reported the maximum 
and minimum exergy loss for pomegranate values of 0.1090 and 
0.0336 kJ/s, respectively, for an HA dryer with microwave pretreat-
ment. They also reported that by rising air temperature (from 50 to 
70°C), the exergy loss rate increases.

3.8.2 | Effect of air velocity

To determine the exergy loss, the experiments were performed in 
the velocity range of 0.6 to 1.8 m/s. The results shown in Figure 7 
indicate that the exergy loss decreases by rising airspeed due to the 
high mass propagation force and it also decreases with the pas-
sage of the drying time (Azadbakht, Torshizi, Aghili, & Ziaratban, 
2018). Nikbakht et al. (2014) have conducted a study on thermody-
namic analysis of pomegranate arils in an HA dryer with microwave 
treatment and reported that exergy loss increased from 0.0235 to 
0.1573 kJ/s with increasing airspeed from 0.5 to 1.5 m/s which is 

F I G U R E  5   Energy utilization variations 
against drying time at different air 
temperature and airflow velocities
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in agreement with the present study where exergy loss increased 
(for quince fruit 0.0088 to 0.044 kJ/s) with increase in air velocity 
Hence, the exergy loss rose by rising the air velocity, being in line 
with the results of Erbay and Icier (2011) on the olive leaves by ex-
ergy analysis in a tray dryer.

3.9 | Exergy efficiency

Exergy efficiency was obtained for quince fruit in the drying ex-
periments at different temperatures and air velocities. The highest 

amount of exergy efficiency was about 0.879 at the temperature of 
70°C and an air velocity of 1.8 m/s. The lowest exergy efficiency was 
approximately 0.344 at the temperature of 50°C and an air velocity 
of 0.6 m/s.

3.9.1 | Effect of temperature

Exergy efficiency in an HA dryer within the temperature range 
of 50 to 70°C is shown in Figure 8. It can be seen that exergy 
efficiency increases by rising air temperature and drying time. 

F I G U R E  6   Energy utilization ratio 
variations against drying time at different 
air temperature and airflow velocities
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Exergy efficiency clearly determines the output exergy of the 
dryer system in such a way that the output exergy reduces the 
exergy efficiency due to its high amount of loss in the output air. 
Exergy loss occurs when the bordering temperature in the dryer 
is higher than ambient temperature. According to the theory of 
thermodynamics, exergy efficiency is a proper measure of a dry-
ing system (Corzo et al., 2008). These results are similar to what 
Aktas, Khanlari, Amini, and Sevik (2017) and Ranjbaran and Zare 
(2013) found about a dryer with infrared-heat pump on carrot and 
about drying soybeans in microwave-assisted fluidized bed dryer, 
respectively.

3.9.2 | Effect of air velocity

Exergy efficiency increases by raising the air velocity (Figure 8). 
This increase in exergy efficiency can be attributed to the high 
rate of heating and rapid evaporation that takes place in the 
quince fruit. The entropy and enthalpy of the input air also in-
crease by raising the input air velocity, which results in raised ex-
ergy efficiency (Akpinar, Midilli, & Bicer, 2005). In similar studies, 
researchers reported that exergy efficiency increased by raising 
the input airspeed (Akpinar et al., 2005; Azadbakht et al., 2017; 
Yogendrasasidhar & Setty, 2018).

F I G U R E  7   Exergy loss (kJ/s) variations 
against drying time at different air 
temperature and airflow velocities
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The dryer's thermodynamic efficiency can be improved by the 
insulation of the drying chamber, designing and choosing the right 
components, and selecting optimum drying conditions, using other 
drying techniques such as microwave, infrared, etc. Exergy effi-
ciency is a valuable tool for detecting key system losses and the op-
timal performance of industrial dryers.

3.10 | Artificial neural networks

In this study, a multilayer perceptron (MLP) was used to predict MR, 
Eu, and EUR as well as exergy loss and exergy efficiency. Air velocity, 

temperature, and drying time were considered as inputs of the network. 
Moreover, kinetic parameters of drying, Eu, and EUR as well as exergy 
loss and exergy efficiency were selected as network output. The training 
of the network was based on the two algorithms of BR and LM. Before 
data entering to the network, they were normalized between 0 and 1.

3.10.1 | Statistical analysis using neural network

The results of modeling artificial neural networks for predicting (a) 
MR, (b) Eu, (c) EUR, (d) exergy loss, and (e) exergy efficiency are re-
ported in Table 7.

F I G U R E  8   Exergy efficiency variations 
against drying time at different air 
temperature and airflow velocities
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1) To predict the MR of the FFBP network, with the topology 
3-12-12-1, the tansig–tansig–tansig transfer functions and the LM 
training algorithm with R2 = .9993 and RMSE = 0.0016, had the 
best performance. The results indicate that the ANNs modeling 
technique can be used effectively to predict MR. Similar results 
have been reported by other researchers for other products such 
as almond (Kaveh, Jahanbakhshi, et al., 2018), onion (Jafari, Ganje, 
Dehnad, & Ghanbari, 2016), and mushroom (Omari, Behroozi-
Khazaei, & Sharifian, 2018).

2) ANNs modeling results for predicting Eu during the process of 
drying quince fruits are given in Table 7. Given the estimated value 
of RMSE = 0.0037 and R2 = .9985, the best FFBP network has a to-
pology of 3-10-10-1, with the tansig–logsig–tansig transfer func-
tions and LM training algorithm. Similar results have been reported 
to predict Eu by other authors including Nikbakht et al. (2014) for 
pomegranate arils and Azadbakht et al. (2017) for potato cubes using 
artificial neural networks.

3) According to Table 4, the FFBP network, with 20 neurons in 
the first hidden layer and 15 neurons in the second hidden layer, 
with the tansig–logsig–purlin transfer function, as well as the LM 
algorithm, had the best performance in predicting the EUR. In ad-
dition, in this network, RMSE = 0.0029 and R2 = .9977. Nikbakht 
et al. (2014) used ANNs to predict the EUR. They obtained a value 
of R2 = .9680.

4) The CFBP network with BR algorithm, the tansig–tansig–tansig 
transfer function, with eight neurons in the first and second hidden 
layers, and RMSE = 0.0032 and R2 = .9980, had the best prediction 
for exergy loss.

5) The results of ANNs prediction for exergy efficiency in 
drying quince fruit in a HA dryer showed that the FFBP network, 
with a topology 3-10-10-1, the transfer function of tansig–log-
sig–logsig and the LM training algorithm with RMSE = 0.0047 and 

R2 = .9970, was selected as the best network. Taheri-Garavand et 
al. (2018) used ANNs to predict exergy efficiency in drying ba-
nana slices in a forced convective dryer. They reported a value 
of R2 = .9902. Aghbashlo, Mobli, Rafiee, and Madadlou (2012) 
also predicted exergy efficiency using artificial neural networks 
for fish oil and skim milk powder. They obtained R2 = .9994 and 
MSE = 7.79 × 10−5.

3.11 | ANFIS

Some changes are required in order to find the best ANFIS network 
for predicting MR, Eu, EUR, exergy loss, and exergy efficiency. These 
changes include the type of membership function, the number of 
membership functions, and the number of cycles.

The best results for predicting the parameters in question are 
shown in Table 8. The best MF to predict each of the five parameters 
after the various changes in the type of membership function was 
gaussmf membership function. The number of the MFs was deter-
mined by the number of the inputs of each ANFIS model.

According to Table 2, R2 for MR, Eu, EUR, exergy loss, and exergy 
efficiency was .9997, .9989, .9988, .9986, .9978, respectively. Also, 
the values RSME for MR, Eu, EUR, exergy loss, and exergy efficiency 
were 0.0011, 0.0028, 0.0022, 0.0030, and 0.0046, respectively.

3.12 | Comparison between ANNs and ANFIS model

Comparison of statistical parameters between ANFIS and ANNs 
models confirms that the ANFIS model has a more accurate per-
formance for predicting each of the five parameters (MR, Eu, EUR, 
exergy loss, and exergy efficiency). According to Tables 7 and 8, it 

TA B L E  7   ANN result for MR, Eu, EUR, exergy loss, and exergy efficiency

Parameter Network
Training 
algorithm Threshold function

Number of layers 
and neurons RMSE R2 Epochs

Moisture ratio (MR) FFBP LM tansig- tansig- tansig 3-12-12-1 0.0016 .9993 122

Energy utilization (Eu) FFBP LM tansig-logsig- tansig 3-10-10-1 0.0037 .9985 97

Energy utilization ratio (EUR) FFBP LM tansig-logsig-purlin 3-20-15-1 0.0029 .9977 65

Exergy loss CFBP BR tansig-tansig-tansig 3-8-8-1 0.0032 .9980 142

Exergy efficiency FFBP LM tansig-logsig-logsig 3-10-10-1 0.0047 .9970 115

TA B L E  8   ANFIS result for MR, Eu, EUR, exergy loss, and exergy efficiency

Parameters

Type of MF Number of MF

Learning method RMSE R2Input Output Input Cycle

Moisture ratio (MR) Gaussmf Linear 3-3-3 1,200 Hybrid 0.0011 .9997

Energy utilization (Eu) Gaussmf Linear 3-3-3 1,200 Hybrid 0.0028 .9989

Energy utilization ratio (EUR) Gaussmf Linear 3-5-3 1,200 Hybrid 0.0022 .9988

Exergy loss Gaussmf Linear 3-3-3 1,200 Hybrid 0.0030 .9986

Exergy efficiency Gaussmf Linear 3-5-3 1,200 Hybrid 0.0046 .9978
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can be seen that the value of R2 for each of the five parameters pre-
dicted in the ANFIS model was higher than the artificial neural net-
works model. Moreover, the value for the ANFIS in all the predicted 
parameters was lower than the artificial neural networks model.

Khoshnevisan, Rafiee, Omid, and Mousazadeh (2014) used arti-
ficial neural networks and ANFIS models to predict the performance 
of potatoes. They reported that the ANFIS model performed better 
than the artificial neural network model with respect to its higher 
R2 and lower MSE. Kaveh, Sharabiani, et al. (2018) predicted four 
parameters (Deff, SEC, MR, and DR) in drying potato, garlic, and canta-
loupe using HA dryers. The ANFIS model showed a higher ability to 
predict these parameters than artificial neural networks.

4  | CONCLUSIONS

In this research, the effect of temperature and air velocity on dry-
ing time, Deff, SEC, Eu, EUR, exergy loss, and exergy efficiency was 
investigated. The results of the research showed that among the ex-
perimental models, the model of Midilli et al. to describe the kinetics 
of drying the thin layer of quince fruit slices can be introduced as the 
most suitable model. The range of Deff in quince fruit samples varied 
from 4.19 × 10−10 to 1.18 × 10−9 m2/s, regardless of shrinkage, in the 
range of temperatures and velocities studied. The highest value of 
Deff was obtained at the highest levels of temperature and inlet air 
velocity. With increasing air temperature and air velocity, specific 
energy consumption, energy utilization, energy utilization ratio, ex-
ergy loss, and exergy efficiency increased. The highest Eu and EUR 
were 0.0694 and 0.882 kJ/s at 70°C, respectively. The lowest Eu and 
EUR were 0.009 and 0.061 kJ/s at 50°C, respectively. The highest 
exergy losses and exergy efficiencies were calculated as 0.044 and 
0.879 kJ/s, respectively. Also, the lowest exergy losses and exergy 
efficiencies were calculated as 0.0088 and 0.344 kJ/s, respectively. 
ANFIS was one of the fastest methods compared to artificial neural 
networks with lower RMSE and higher R2 for estimating MR, Eu, EUR, 
exergy loss, and exergy efficiency for quince fruit. By insulating the 
drying chamber, designing and selecting the right components, as 
well as selecting the optimum drying conditions, the thermodynamic 
efficiency of the hot air dryer can be increased. Exergy efficiency is 
a valuable tool for identifying key system losses and optimizing the 
performance of hot air dryers.
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NOMENCL ATURE
Adc Surface area drying chamber (m2)
Cpa Specific heat (kJ/kg C)
Cpda Specific heat of inlet and outlet air
Eu Energy utilization (kJ/s)
EUR Energy utilization ratio (dimensionless)
EUmec Mechanical energy consumption (Kwh/kg)

EUter Thermal energy consumption (Kwh/kg)
Ea Activation energy (kJ/mol)
̇Exdci Exergy inlet air (kJ/s)
̇Exdco Exergy outlet air (kJ/s)
̇Exy Exergy loss (kJ/s)
D0 Width from the source, which is a constant value
Deff Effective moisture diffusivity coefficient (m2/s)
L Half of the thickness of each sample
Mw Weight loss in the samples (kg)
hfg Latent heat of vaporization of water (kJ/kg)
hda Specific enthalpy drying air (kJ/kg)
hdai Specific enthalpy of inlet air (kJ/kg dryair)
hdao Specific enthalpy of outlet air
hdae Specific enthalpy of air environment (kJ/kg dry air)
Cpda Specific heat drying air (kJ/kg K)
ṁv Mass transfer rate (kg water/s)
ṁda Mass flow rate of drying air (kg/s)
MR Moisture ratio
Me Equilibrium moisture content (% d.b.)
Mt Moisture content (% d.b.)
Mb Initial moisture content (% d.b.)
n  index of a summation and the number of terms taken into 

consideration
N Number of observations
P Atmospheric pressure (kPa)
Pvs Saturated pressure (kPa)
R2 Correlation coefficient
RMSE Root Mean Square Error
Rg Universal gas constant equal to 8.3143 kJ/mol
SEC Specific energy consumption (kWh/kg)
t Drying time
Ta Air temperature inside the drying chamber (K)
Tref Refers to characteristic value
T Temperature (K)
Tdci Inlet air temperature of drying chamber (K)
Tdco Outlet air temperature of drying chamber (K)
T
∞

 Temperature of outlet air (°C)
Va Input air velocity (m/s)
wt+Δt Weight of product at time t + t (kg)
w Humidity ratio of air (kg water/kg drying air)
wt Weight of product at time t and
wdao Outlet humidity ratio of air (kg water/kg drying air
wdai Inlet humidity ratio of air (kg water/kg drying air)
y Stands for the experimental values
y′  Predicted values by calculating from the model for this 

measurements
ỹ The average predicted values
Δt Time between two sample weighing (s)
� Relative humidity of air
�a Air density (kg/m3)
ΔP Pressure difference (mbar)
Δt Temperature difference (°C)
�Ex exergy efficiency
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