Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Methyl 4-(trifluoromethyl)-1H-pyrrole-3carboxylate

P. A. Suchetan, ${ }^{\text {a }}$ S. Sreenivasa, ${ }^{\text {b }}$ B B. S. Palakshamurthy, ${ }^{\text {c }}$ K. E. ManojKumar, ${ }^{\text {b }}$ S Madan Kumar ${ }^{\text {d }}$ and N. K. Lokanath ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, ${ }^{\mathbf{b}}$ Department of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, ${ }^{\text {c }}$ Department of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India
Correspondence e-mail: drsreenivasa@yahoo.co.in

Received 9 September 2013; accepted 13 September 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.065 ; w R$ factor $=0.180 ;$ data-to-parameter ratio $=8.7$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{2}$, all the non- H atoms except for one of the F atoms lie on a crystallographic mirror plane. In the crystal, the molecules are linked into inversion dimers by pairs of $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions, forming $R_{2}^{2}(10)$ loops. These dimers are connected into $\mathrm{C}(6)$ chains along [001] through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Aromatic $\pi-\pi$ stacking interactions [centroid-centroid separation $=3.8416$ (10) A°] connect the molecules into a three-dimensional network.

Related literature

For background to the pharmacological activity of pyrrole derivatives, see: Toja et al. (1987); Muchowski et al. (1985); Dannhardt et al. (2000); Burnham et al. (1998); Krowicki et al. (1988).

Experimental

$$
\begin{aligned}
& \text { Crystal data } \\
& \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{2}
\end{aligned} \quad M_{r}=193.13
$$

Monoclinic, $\mathrm{C} 2 / \mathrm{m}$
$a=16.643$ (2) A
$b=7.1118$ (10) \AA
$c=6.9618$ (11) \AA
$\beta=98.903$ (7) ${ }^{\circ}$ 。
$V=814.1(2) \AA^{3}$

$Z=4$

Mo $K \alpha$ radiation
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.24 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.963, T_{\text {max }}=0.969$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.180$
$S=1.09$
707 reflections
81 parameters

3752 measured reflections
707 independent reflections 645 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.076$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.83(6)$	$2.03(5)$	$2.810(4)$	156
C5-H5 $\cdots 1^{\mathrm{ii}}$	0.93	2.52	$3.442(4)$	171
Symmetry				

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1, y,-z$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINTPlus (Bruker, 2009); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge the IOE X-ray diffractometer Facility, University of Mysore, Mysore, for collecting the data.

[^0]
References

Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnham, B. S., Gupton, J. T., Krumpe, K. E., Webb, T., Shuford, J., Bowers, B., Warren, A. E., Barnes, C. \& Hall, I. H. (1998). Arch. Pharm. Pharm. Med. Chem. 331, 337-341.
Dannhardt, G., Kiefer, W., Kramer, G., Maehrlein, S., Nowe, U. \& Fiebich, B. (2000). Eur. J. Med. Chem. 35, 499-510.

Krowicki, K., Jan Balzarini, T., Clercq, E. D., Robert, A., Newman, J. \& Lawn, J. W. (1988). J. Med. Chem. 31, 341-345.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Muchowski, J. M., Unger, S. H., Ackrell, J., Cheung, P., Cook, J., Gallegra, P., Halpern, O., Koehler, R. \& Kluge, A. F. (1985). J. Med. Chem. 28, 10371049.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Toja, E., Depaoli, A., Tuan, G. \& Kettenring, J. (1987). Synthesis, pp. 272-274.

supplementary materials

Acta Cryst. (2013). E69, o1566 [doi:10.1107/S160053681302549X]

Methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate

P. A. Suchetan, S. Sreenivasa, B. S. Palakshamurthy, K. E. ManojKumar, S Madan Kumar and N. K. Lokanath

1. Comment

Pyrrole derivatives are given considerable attention due to their synthetic importance and their extensive use in drug discovery (Toja et al., 1987) and pharmacological activity such as anti-inflammatory (Muchowski et al., 1985), cytotoxicity (Dannhardt et al., 2000), in vitro cytotoxic activity against solid tumour models (Burnham et al., 1998), antitumour agents (Krowicki et al., 1988]) etc. As part of our studies in this area, the title compound was synthesized and its structure determined.
In the title compound, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{2}$, the $\mathrm{C}=\mathrm{O}$ and $O-C$ (methoxy) bonds are syn to each other (Fig 1). The molecules are linked into inversion dimers along a axis through C5-H5 $\cdots \mathrm{F} 1$ interactions, thus forming $R_{2}{ }^{2}(10)$ loops (Fig 2). These dimers are further connected into $\mathrm{C}(6)$ chains through strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 1$ hydrogen bonds along c axis (Fig 2). Further, π π stacking interactions [centroid-centroid separation $=3.8416(10) \mathrm{A}^{\circ}$] connects the molecules into a three dimensional network (Fig 3).

2. Experimental

Sodium hydride (0.02 mol) and methyl 4,4,4-trifluorobut-2-enoate (0.01 mol) were taken in dry Tetrahydrofuran (THF). The reaction mixture was stirred for 15 min . Toluenesulfonylmethyl isocyanide (TosMIC, 0.01 mol) was added to the reaction mixture and the mixture was heated to $50^{\circ} \mathrm{C}$ for 2 h . Reaction was monitored by TLC. Ethyl acetate was added to the mixture. Sodium hydride was quenched by using saturated solution of ammonium chloride and the organic layer was separated, dried and concentrated. The crude compound was purified by column chromatography using petroleum ether / ethyl acetate (7:3) as eluent to give the title compound as a colorless solid.
Colourless prisms were obtained from slow evapouration of the solution of the compound in a mixture of petroleum ether/ethyl acetate (7:3).

3. Refinement

The H atom of the NH group was located in a difference map and later refined freely. The other H atoms were positioned with idealized geometry using a riding model with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the $U_{\text {eq }}$ of the parent atom).

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1
Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Symmetry code for F2a: ($\mathrm{x},-\mathrm{y}, \mathrm{z}$).

Figure 2
Molecular packing in the title compound displaying $R_{2}{ }^{2}(10)$ loops and $\mathrm{C}(6)$ chains. H atoms not involved in H -bonding is omitted for clarity.

Figure 3
$\pi-\pi$ stacking interactions observed in the crystal structure.

Methyl 4-(trifluoromethyl)-1 H-pyrrole-3-carboxylate

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{2}$

> prism $D_{\mathrm{x}}=1.576 \mathrm{Mg} \mathrm{m}$ Melting point: 405 K Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$ Cell parameters from 645 reflections $\theta=3.0-24.4^{\circ}$ $\mu=0.16 \mathrm{~mm}^{-1}$ $T=293 \mathrm{~K}$ Prism, colourless $0.24 \times 0.22 \times 0.20 \mathrm{~mm}$ 3752 measured reflections 707 independent reflections 645 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.076$ $\theta_{\max }=24.4^{\circ}, \theta_{\min }=3.0^{\circ}$ $h=-19 \rightarrow 19$ $k=-8 \rightarrow 8$ $l=-3 \rightarrow 7$
$T_{\min }=0.963, T_{\text {max }}=0.969$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.180$
$S=1.09$
707 reflections
81 parameters
0 restraints
0 constraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1299 P)^{2}+0.3175 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.32$ e \AA^{-3}
Extinction correction: SHELXL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.08 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
H	$0.275(3)$	0.0000	$-0.341(8)$	$0.073(13) *$	

C1	$0.0515(2)$	0.0000	$0.2701(6)$	$0.0765(12)$	0.50
H1A	0.0456	0.1254	0.3171	0.115^{*}	0.50
H1B	0.0701	-0.0816	0.3777	0.115^{*}	0.50
H1C	0.0000	-0.0438	0.2042	$0.0436(9)$	
C2	$0.18890(17)$	0.0000	$0.2149(4)$	$0.0391(8)$	
C3	$0.24211(16)$	0.0000	$0.0673(4)$	$0.0480(8)$	
C4	$0.21641(19)$	0.0000	$-0.1280(4)$	0.058^{*}	
H4	0.1625	0.0000	-0.1881	$0.0563(10)$	
C5	$0.3504(2)$	0.0000	$-0.0863(5)$	0.068^{*}	
H5	0.4034	0.0000	-0.1137	$0.0443(8)$	
C6	$0.32889(16)$	0.0000	$0.0952(4)$	$0.1048(9)$	
C7	$0.38690(18)$	0.0000	$0.2762(5)$	$0.0853(8)$	
F1	$0.46353(14)$	0.0000	$0.2439(4)$	$0.0587(9)$	
F2	$0.38017(10)$	$0.1475(2)$	$0.3904(2)$	$0.0718(9)$	
N	$0.28189(18)$	0.0000	$-0.2200(5)$	$0.0586(8)$	
O1	$0.20994(15)$	0.0000	$0.3872(3)$	$0.1358(3)$	
O2	$0.11034(12)$	0.0000			

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.057(2)$	$0.116(3)$	$0.058(3)$	0.000	$0.0154(17)$	0.000
C2	$0.0503(16)$	$0.0517(15)$	$0.026(2)$	0.000	$-0.0038(11)$	0.000
C3	$0.0478(15)$	$0.0422(13)$	$0.0235(19)$	0.000	$-0.0066(11)$	0.000
C4	$0.0574(17)$	$0.0589(16)$	$0.0237(19)$	0.000	$-0.0065(12)$	0.000
C5	$0.0570(17)$	$0.0708(19)$	$0.042(2)$	0.000	$0.0092(14)$	0.000
C6	$0.0491(16)$	$0.0483(14)$	$0.0331(18)$	0.000	$-0.0007(11)$	0.000
C7	$0.0481(16)$	$0.0667(17)$	$0.045(2)$	0.000	$-0.0052(13)$	0.000
F1	$0.0486(13)$	$0.185(3)$	$0.076(2)$	0.000	$-0.0056(11)$	0.000
F2	$0.0959(13)$	$0.0903(13)$	$0.0570(14)$	$-0.0019(7)$	$-0.0278(8)$	$-0.0240(7)$
N	$0.077(2)$	$0.0781(18)$	$0.020(2)$	0.000	$0.0034(13)$	0.000
O1	$0.0645(15)$	$0.125(2)$	$0.0230(17)$	0.000	$-0.0013(10)$	0.000
O2	$0.0470(13)$	$0.0914(16)$	$0.0352(16)$	0.000	$-0.0006(9)$	0.000

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 2$	$1.455(4)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9600	$\mathrm{C} 5-\mathrm{N}$	$1.356(5)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9600	$\mathrm{C} 5-\mathrm{C} 6$	$1.366(5)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 2-\mathrm{O} 1$	$1.196(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.464(5)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.338(4)$	$\mathrm{C} 7-\mathrm{F} 1$	$1.329(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.457(4)$	$\mathrm{C} 7-\mathrm{F} 2^{\mathrm{i}}$	$1.332(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.360(4)$	$\mathrm{C} 7-\mathrm{F} 2$	$1.332(3)$
$\mathrm{C} 3-\mathrm{C} 6$	$1.427(4)$	$\mathrm{N}-\mathrm{H}$	$0.84(5)$
$\mathrm{C} 4-\mathrm{N}$	$1.347(4)$		
		$\mathrm{N}-\mathrm{C} 5-\mathrm{H} 5$	125.6
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	125.6
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 3$	$106.2(3)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5		

supplementary materials

$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$124.3(3)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 7$	$129.5(3)$
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{~F} 1-\mathrm{C} 7-\mathrm{F} 2^{\mathrm{i}}$	$105.81(19)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$	$121.9(3)$	$\mathrm{F} 1-\mathrm{C} 7-\mathrm{F} 2$	$105.81(19)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$126.3(3)$	$\mathrm{F} 2-\mathrm{C} 7-\mathrm{F} 2$	$104.0(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$111.8(3)$	$\mathrm{F} 1-\mathrm{C} 7-\mathrm{C} 6$	$112.2(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6$	$106.9(3)$	$\mathrm{F} 2-\mathrm{C} 7-\mathrm{C} 6$	$114.12(17)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$125.0(3)$	$\mathrm{F} 2-\mathrm{C} 7-\mathrm{C} 6$	$114.12(17)$
$\mathrm{C} 6-\mathrm{C} 3-\mathrm{C} 2$	$128.1(3)$	$\mathrm{C} 4-\mathrm{N}-\mathrm{C} 5$	$109.3(3)$
$\mathrm{N}-\mathrm{C} 4-\mathrm{C} 3$	$108.8(3)$	$\mathrm{C} 4-\mathrm{N}-\mathrm{H}$	$119(3)$
$\mathrm{N}-\mathrm{C} 4-\mathrm{H} 4$	125.6	$\mathrm{C} 5-\mathrm{N}-\mathrm{H}$	$131(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	125.6	$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1$	$116.6(3)$
$\mathrm{N}-\mathrm{C} 5-\mathrm{C} 6$	$108.8(3)$		

Symmetry code: (i) $x,-y, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} \cdots \mathrm{O}^{\mathrm{ii}}$	$0.83(6)$	$2.03(5)$	$2.810(4)$	156
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{Fl}^{1 i i}$	0.93	2.52	$3.442(4)$	171

Symmetry codes: (ii) $x, y, z-1$; (iii) $-x+1, y,-z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7136).

