
Frontiers in Oncology | www.frontiersin.org

Edited by:
Ning Wen,

Henry Ford Health System,
United States

Reviewed by:
Wei Zhao,

Stanford University, United States
Hui Lin,

University of Pennsylvania,
United States

*Correspondence:
Jiazhou Wang

wjiazhou@gmail.com
Weigang Hu

jackhuwg@gmail.com

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Radiation Oncology,
a section of the journal
Frontiers in Oncology

Received: 05 December 2020
Accepted: 15 April 2021
Published: 05 May 2021

Citation:
Zhong Y, Yang Y, Fang Y,
Wang J and Hu W (2021)

A Preliminary Experience of
Implementing Deep-Learning Based

Auto-Segmentation in Head and
Neck Cancer: A Study on
Real-World Clinical Cases.
Front. Oncol. 11:638197.

doi: 10.3389/fonc.2021.638197

ORIGINAL RESEARCH
published: 05 May 2021

doi: 10.3389/fonc.2021.638197
A Preliminary Experience of
Implementing Deep-Learning Based
Auto-Segmentation in Head and
Neck Cancer: A Study on Real-World
Clinical Cases
Yang Zhong1,2,3†, Yanju Yang1,2,3†, Yingtao Fang1,2,3, Jiazhou Wang1,2,3*
and Weigang Hu1,2,3*

1 Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 2 Department of Oncology,
Shanghai Medical College, Fudan University, Shanghai, China, 3 Shanghai Key Laboratory of Radiation Oncology, Shanghai, China

Purpose: While artificial intelligence has shown great promise in organs-at-risk (OARs)
auto segmentation for head and neck cancer (HNC) radiotherapy, to reach the level of
clinical acceptance of this technology in real-world routine practice is still a challenge. The
purpose of this study was to validate a U-net-based full convolutional neural network
(CNN) for the automatic delineation of OARs of HNC, focusing on clinical implementation
and evaluation.

Methods: In the first phase, the CNN was trained on 364 clinical HNC patients’ CT
images with annotated contouring from routine clinical cases by different oncologists. The
automated delineation accuracy was quantified using the Dice similarity coefficient (DSC)
and 95% Hausdorff distance (HD). To assess efficiency, the time required to edit the auto-
contours to a clinically acceptable standard was evaluated by a questionnaire. For
subjective evaluation, expert oncologists (more than 10 years’ experience) were
randomly presented with automated delineations or manual contours of 15 OARs for
30 patient cases. In the second phase, the network was retrained with an additional 300
patients, which were generated by pre-trained CNN and edited by oncologists until to
meet clinical acceptance.

Results: Based on DSC, the CNN performed best for the spinal cord, brainstem,
temporal lobe, eyes, optic nerve, parotid glands and larynx (DSC >0.7). Higher
conformity for the OARs delineation was achieved by retraining our architecture, largest
DSC improvement on oral cavity (0.53 to 0.93). Compared with the manual delineation
time, after using auto-contouring, this duration was significantly shortened from hours
to minutes. In the subjective evaluation, two observes showed an apparent inclination
on automatic OARs contouring, even for relatively low DSC values. Most of the
automated OARs segmentation can reach the clinical acceptance level compared to
manual delineations.
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Conclusions: After retraining, the CNN developed for OARs automated delineation in
HNC was proved to be more robust, efficiency and consistency in clinical practice. Deep
learning-based auto-segmentation shows great potential to alleviate the labor-intensive
contouring of OAR for radiotherapy treatment planning.
Keywords: clinical evaluation, head and neck cancer, organs at risk, deep learning, auto segmentation
INTRODUCTION

Radiation therapy represents one of the primary treatment
modalities used in the management of head and neck cancer
(HNC). Advanced radiotherapy techniques, such as intensity-
modulated radiotherapy (IMRT), stereotactic body radiotherapy
(SBRT), and volumetric-modulated arc therapy (VMAT)
facilitate high conformal radiation doses to the tumor target
while sparing of normal tissue to reduce the radiation toxicity
(1). One of the most challenging steps in radiotherapy treatment
planning is accurate delineation of the target volume and the
adjacent organs at risk (OARs). The drawbacks of manual
delineation of the OARs of HNC is that it is extremely time-
consuming, labor-intensive and subject to the variability of the
radiation oncologists’ anatomical knowledge (2–5).

Segmentation of HNC CT images accurately and
automatically is a challenging due to the following three
reasons: (1) The complexity and variability of the underlying
anatomies are high; (2) Many anatomical structures involved in
segmentation are relatively small in terms of their volumes; (3)
The contrast of soft tissues is poor in the CT images. One of the
common methods for automatic OARs segmentation is atlas-
based auto-segmentation (ABAS) (6–8). For patients with HNC,
atlas-based models may achieve acceptable image delineation for
OARs (9, 10), but a clinical quality segmentation requires a
tremendous atlas database under the assumption of perfect atlas
selection (4, 11–14). Additional modification of contours is
required, with a long execution time after ABAS, which does
not reduce time in the segmentation workflow (15, 16). Lately,
the focus has turned to deep learning (DL)-based methods due to
their great success in medical image segmentation (12, 17–21).
The major evident advantage of DL-based autosegmentation is
that it can systematically learn the adequate features, which was
never possible with the naked eye for segmentation, from a large
amount of a given training database. Then, the same features can
be searched automatically in a validation set (22).

Although, DL-based methods have achieved impressive
results in OARs auto segmentation for HNC radiotherapy (18,
23–25), prospective clinical application of this technology
remains stymied by two key challenges. First, the majority of
these studies trained on selective training sets or databases from
single open-access resource (26, 27). These datasets are limited in
diversity. Therefore, to improve the performance of architecture,
the network should rely on a much larger range of annotated
dataset, which covers diverse real-world routine clinical cases.
Second, it is extremely difficult to compare the segmentation
performance between these state-of-the-art techniques directly,
because they do not, in general, provide detailed statistical
2

descriptions (e.g., image acquisition setups, image properties,
manual delineation guidelines and patient cohorts) of the
corresponding gold-standard. Furthermore, different
performance metrics are often used in these studies for
different OARs (22). As an emerging clinically relevant tool,
therefore, adequate assessment methods that relate more directly
to clinical judgment of contours are required.

Hence, in this study, not only the performance metric but also
a clinical evaluation was introduced to evaluate the performance
of convolutional neural networks (CNNs). Combining these two
approaches can provide a more comprehensive approach for the
evaluation of the clinical acceptance level of automatic
contouring. Moreover, a larger range of annotation datasets
relevant to real-world clinical routine cases were included in
our architecture training. To improve the performance of the
auto-segmentation model, a two-phase training was conducted
in our study. The retraining data came from the first phase,
which were edited by experienced oncologists until they believed
them to be clinically acceptable.
MATERIALS AND METHODS

Study Design
The workflow of this study can be divided into four steps: initial
survey, model development, clinical implementation, and model
updating. The time and details of every step are presented in
Figure 1.

CNN and Patients
A U-net similar network was implemented in this study. The
details of the network architecture were presented in our
previous study (28). The number of fi lters for each
convolutional layer was 64, 64, 128, 256, and 512, respectively,
with the feature map size reduced by half after the max-pooling
layer. All convolutional layers applied 3×3 kernel. A 5 channels
input tensor were input into the network. The output data was
the 15 contouring of OARs. The model was implemented in
Keras, and the loss function used in training process was dice
index. The network was trained for 200 epochs with a learning
rate of 1e-4. The optimizer is RMSprop. It took about 3 - 5 days
to complete the whole training procedure.

Images from 364 HNC patients were included. All patients were
treated with primary curative radiotherapy, with or without
systemic treatment, between January 2015 and September 2017 at
the Fudan University Shanghai Cancer Center (FUSCC). According
to the conventional clinical protocol, each patient underwent a
contrast-enhanced planning CT scan in the supine position with a
May 2021 | Volume 11 | Article 638197
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custom thermoplastic mask for immobilization. The CT images
were made on a multidetector-row spiral CT scanner Philips
Brilliance Big Bore (Philips Healthcare, Cleveland, OH). The
acquisition parameters were: 350 mA tube current, 120 kVp tube
voltage, 0.92 × 0.92 mm pixel size, 5 mm thickness, 512 × 512
matrix. All of the training datasets were delineated by oncologists in
our center. A total of 15 OARs were contoured, including the spinal
cord, lens, brainstem, parotid gland, temporal lobe, oral cavity,
larynx, eyeball, optic nerve and optic chiasm.

Quantitative and Subjective Evaluation
In this study, the results evaluation and analysis were mainly
divided into two parts: quantitative evaluation and subjective
evaluation. For quantitative evaluation, the similarity between
the automatic and manual contours in clinical practice is often
assessed by calculating the “Distance”. The geometric accuracy of
each approach was evaluated by comparing the difference
between the automated segmentation and the manual
segmentation using two metrics: the Dice similarity coefficient
(DSC) (29) and the Hausdorff distance (HD) (30). Segmentation
accuracy was quantified using both of them by measuring the
degree of mismatch between the automatically generated (A) and

manual contours (B). The DSC is calculated as DSC = 2*
jA∩Bj
jAj+jBj

which quantifies the overlap between contours A and B. It ranges
from 0, indicating no spatial overlap between the two
segmentations, to 1, indicating a complete overlap.

The HD is the greatest of all the distances from a point in A to
the closest point in B. Smaller values usually represent better
segmentation accuracy. HD95 considers the 95th-percentile of
the closest point distances instead of their maximum:

HD95th(X,  Y) = max (h95(X, Y), h95(Y,  X))
Where h95(X,  Y) = K95th

x∈Xmin
y∈Y

fjx − yjg,and K95th
x∈X is the kth

ranked minimum Euclidean distance with K/Nx = 95%.
A subjective evaluation of the contouring methods was

carried out to further analyze the deficiency of automated
contouring by the model and its clinical usability. A
nasopharyngeal carcinoma (NPC) panel (2 or 3 oncologists
Frontiers in Oncology | www.frontiersin.org 3
with more than 10 years’ experience) were invited to grade the
results of contouring of 30 patients in the predictive data. A total
of 900 organ contours (15 ROIs for each patient) were divided
into 60 random combination queues. The observers were blinded
to the origin of the contours in each session. During the
evaluation process, the oncologist does not know whether the
outline of the current evaluation was drawn automatically or
manually. The evaluation was completely determined by the
actual contouring effect. In this way, doctors’ subjective bias can
be avoided as much as possible.

The evaluation method mainly includes two aspects: On the
one hand, the oncologists make a comprehensive evaluation of
the position, contour and edge details of each organ at risk. There
are four evaluation levels for clinical use. Would you:

a) ‘‘Require it to be corrected; there are large, obvious errors”,

b) ‘‘Require it to be corrected; there are minor errors”,

c) ‘‘Accept it as it is; but it needs a small amount of editing”,

d) ‘‘Accept it as it is; the contour is very precise”.

On the other hand, two contours were blindly presented with
random slices: “which contour do you prefer?” There are
five scales:

(1) Strong tendency to manual

(2) More inclined to manual

(3) No tendency

(4) More inclined to auto

(5) Strong inclination to auto

Meanwhile, a follow-up questionnaire was conducted, which
was test piloted among 17 experienced oncologists from different
institutions. More details about this questionnaire can be found
in Appendix I. The results are presented in part 3.1.

Model Updating
The DL-based autosegmentation is strongly based on reference
OAR delineations in the given image database. With the help of
FIGURE 1 | Schematic of the study design representing the timeline and the details of every step.
May 2021 | Volume 11 | Article 638197
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the auto-contouring method, physicians may have more time to
focus on the details, delineations, and modifications. These
improved delineations can be used for model updating.
Therefore, another three hundred patients (300) were collected
and used for model retraining without updating model
hyperparameters. The 15 OARs were automatically generated
by the pre-training CNN network. All delineations were verified
and approved with or without modification by the oncologists to
ensure their clinical validity.
RESULTS

Results of the Questionnaire
Figure 2A shows that too many organs and the complex
anatomical structure of the OARs are the two main obstacles
for HNC OAR delineation. The time for manual delineation and
modification of auto-contours are shown in Figure 2B. It can be
seen that for NPC, the manual time of contouring varies from
more than 3 hours to less than 30 minutes for different
oncologists without the assistance of a DL-based method.
Compared with the manual delineation time of one HNC
patient, after using auto-contouring this duration was
shortened from hours to minutes. The minimum time of
contouring can be less than 5 minutes. From this, we
concluded that the DL-based method has great potential to
reduce the delineation time required to produce acceptable
contours for oncologists.
Frontiers in Oncology | www.frontiersin.org 4
Qualitative Evaluation
To investigate the accuracy, the HD and DSC values of the OAR
segmentation for the two training times are summarized inTable 1.
The network performed well in the first training for the spinal cord,
brainstem, temporal lobe, eyes, optic nerve, parotid glands and
larynx [with a mean DSC >0.7 as the “good” criteria (2)], especially
with the best contour similarity of the left and right eye, reaching
approximately 0.83. The mean DSC for all other structures was
below 0.6. The corresponding evaluation parameters for HD are
listed in the second column of Table 1.

For the retraining model, the performance of the network was
improved significantly for the OARs in HNC patients. The
largest DSC score increase was 0.4 for the oral cavity
(14.53 mm for 95% HD). For clearly visible boundaries organs,
the mean DSC scores increased from 0.79 to 0.87 for the spinal
cord, from 0.72 to 0.84 for the larynx, from 0.82 to 0.93 for the
left eye, from 0.83 to 0.93 for the right eye, from 0.79 to 0.92 for
the right parotid and from 0.79 to 0.85 for the left parotid.
Similar observations could also be acquired for 95% HD in the
fourth column of Table 1. For small organs, the retraining
process could significantly improve the performance of
delineation (such as the optic nerve, lens and lobe). The
average DSC scores improved to approximately 0.2, and the
highest values appeared for the right lens (0.27). However, there
was no improvement for the brainstem, and the corresponding
HD parameter decreased by 1.14 mm. Moreover, the feature of
the chiasm could not be delineated by our CNN net after the
training data updating.
A B

FIGURE 2 | (A) The main obstacles of HNC OAR delineation (to present the questionnaire data, for each issue every item was given corresponding values according to
the ranking. Therefore, the average score of every item can be obtained); (B) The time consumed for manual contouring and auto-contouring modification.
May 2021 | Volume 11 | Article 638197

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhong et al. Deep Learning Implementing in HNC
Subjective Evaluation
The results obtained by the physicians after the grade
assessments are shown in Figure 3. From the graph, it can be
seen that whether it is auto or manual contouring, most of the
contouring organs are graded “very satisfied” or “minor
modification but still can be used for clinical applications”.
Frontiers in Oncology | www.frontiersin.org 5
A huge deviation only appears for the oral cavity in the group
of manual contours.

Figure 4 shows the statistical map of the selection tendency
between the results of the auto and manual contouring. Except
for the oral cavity, the majority of choices are the “no tendency”
in the blind selection. This means that for oncologists, for the
TABLE 1 | The DSC and HD values of 2 evaluation parameters for the 15 OARs segmentation.

HD*(mm) DSC*(%) HD**(mm) DSC**(%)

Spinal cord 9.03 ± 0.11 0.79 ± 0.04 6.36 ± 2.96 0.87 ± 0.06
Brain stem 7.91 ± 1.64 0.79 ± 0.01 9.05 ± 3.05 0.80 ± 0.06
Lobe-R 27.47 ± 6.99 0.72 ± 0.06 14.53 ± 6.9 0.88 ± 0.073
Lobe-L 23.26 ± 6.00 0.73 ± 0.06 14.28 ± 8.56 0.87 ± 0.09
Eye-R 6.13 ± 1.73 0.82 ± 0.03 3.86 ± 1.66 0.93 ± 0.04
Eye-L 5.62 ± 0.93 0.83 ± 0.02 3.23 ± 1.94 0.93 ± 0.05
Lens-R 5.19 ± 0.34 0.51 ± 0.09 2.75 ± 1.81 0.78 ± 0.16
Lens-L 5.06 ± 0.91 0.56 ± 0.10 3.50 ± 3.30 0.71 ± 0.19
Oral cavity 23.04 ± 6.55 0.53 ± 0.12 8.51 ± 5.54 0.93 ± 0.07
Optic nerve-R 10.55 ± 2.12 0.44 ± 0.06 6.72 ± 3.6 0.65 ± 0.21
Optic nerve-L 7.82 ± 1.94 0.51 ± 0.10 6.50 ± 8.9 0.69 ± 0.18
Parotid-R 12.73 ± 3.40 0.79 ± 0.05 7.04 ± 4.56 0.92 ± 0.07
Parotid-L 14.06 ± 4.60 0.79 ± 0.04 7.3 ± 4.5 0.85 ± 0.13
Larynx 13.01 ± 1.73 0.72 ± 0.04 8.93 ± 3.55 0.84 ± 0.08
Chiasm 9.95 ± 2.63 0.46 ± 0.11
May 2021 | Volume 11 | A
*the results of model trainings; **the results of model updating.
FIGURE 3 | The evaluation of the OARs for the network performance by clinicians. The left bar is the count number by the auto segmentation method and the right
bar is manual.
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majority of cases the results of auto-contouring and manual
contouring are pretty close. In most cases, the automatic
delineations had more “strong inclination” ratings than the
manual ones. Even in the small and unclear organs with high
difficulty in delineation, such as the left and right lens and optic
nerves, automatic delineation also shows a good performance.
However, for the larynx and brain stem, there is more of an
inclination toward manual-contouring cases.
DISCUSSION

For measuring the geometrical agreement with the corresponding
ground truth, the DSC is usually used. This parameter has been
proven to be useful for larger-volume structures. For smaller organs,
the performance was poor (31). This conclusion is consistent with
the findings of our study. As seen, DSC is a relative volumetric
measurement. The bigger the organ, the smaller the relative error
becomes (31). Again, it is important to mention that the results of
the DL-based methods, human performance, and commercial
software are not a direct comparison obtained on the same
database. Therefore, the results of DSC can only be part of the
assessment of the performance of the DL methods. To further
evaluate the performance of the CNN, apart from the volumetric
overlap of two segmentation masks, automatic delineation results
should have to also be evaluated from a clinical point of view. The
effect of efficient autosegmentation on the clinical workflowmay still
be clinically relevant.

A subjective assessment was performed. The comparison
between the contours of the manual and DL (Figure 3) suggests
that the performance of auto-contouring for most of the OARs were
acceptable by oncologists and decreased the intra- and inter
Frontiers in Oncology | www.frontiersin.org 6
observer variability except for the oral cavity and chiasm. For
these two OARs, the oncologist’s perspective is that part of
the manual-contouring lacks inclusion of the teeth, and some
of them include part of the structure of the larynx as shown in
Figures 5C, D. For further evaluation of the quantitative assessment
between auto and manual-contouring, the results of the
classification of contours as human or automatically generated are
shown in Figure 4. This suggests that the auto-contouring
outperforms the manual-contouring (excluding the larynx and
brainstem). The delineation problem of the brain stem is mainly
reflected in the scope of the contouring; namely, there are a few
more layers in the upper and lower boundaries. For the larynx, the
physicians gave the opinion that the larynx is not included bone in
some cases. From the comparison of the images, it can also be seen
that the greatest delineation difference is the optic chiasm. The
manually delineated optic chiasma (Figure 5A) presents a fuzzy
shape, while the automatically delineated optic chiasma (Figure 5B)
is relatively obvious in shape.

To improve the performance of the DL-based model, a
number of automated and semiautomated methods have been
proposed to address this problem. Meanwhile, the DL-based
autosegmentation performance is also strongly based on the
quality and representativeness of the training data. In this
study, therefore, we collected an additional 300 CT images,
which were generated by the CNN model and modified by
oncologists in our center to ensure their clinical validity. The
retraining model DSC values of the OARs are shown in Table 1.
Except for the optic nerve and chiasm, all other OAR DSCs
produced in our research were larger than 0.7, which is viewed as
acceptable in practice (32). For all OARs, the retraining results
outperformed the first-time training results. The largest DSC
improved for the oral cavity from 0.53 to 0.93. The reason why
FIGURE 4 | Rates of correct and incorrect classification of contours as human or automatically generated.
May 2021 | Volume 11 | Article 638197
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there was a better performance of the retrained model can be
explained as follows: As a supervised technique, CNNs
considerably relies on annotated OAR delineations in the given
image database. It has been demonstrated that enriching the
training dataset may contribute to more accurate and acceptable
segmentation. If the training database contains low quality or
inconsistent images, it cannot represent the actual manual
delineations of the OAR. The underlying automated
segmentation network will either fail to train or will produce
inaccurate or inconsistent delineation.

We summarized the studies previously reported on the topic
of HNC OARs segmentations, comparing the published results
with the proposed retrained model performance for individual
OARs, as shown in Figure 6. It can be seen that the values of the
DSC in our study outperformed the most current state-of-the-art
nets for the spinal cord, lobe, eyes, oral cavity, parotid and larynx.
Only the small and unclear boundaries organs, such as the lens
and optic nerve in our study, had a lower DSC than the average
results of the existing segmentation methods. For the chiasm, it is
a pity that our net failed to segment it in the second phase of
Frontiers in Oncology | www.frontiersin.org 7
training. This shortcoming is the subject of our next
research project.

Segmentation of an OAR strongly depends on its size, shape,
clarity of boundaries, presence of pathologies, and overall
visibility in the CT image modality (21). For the small tissues,
such as the lens and optic nerve, it is difficult to identify the
contour accurately even in the manual delineation process.
Similar conclusions could be drawn from the previous
research. A relatively low accuracy of DSC values [e g., 0.38
(31) and 0.39 (33)] were found because of the small size and
unclear boundaries of the optic nerves. For large size and clear
boundaries organs, such as the eyeball, brain stem, spinal cord,
temporal lobe and oral cavity, it is quite difficult to directly see the
differences in the same layers of the CT images (Figures 5E, F).
We obtained segmentation results of larger than 0.87 DSC for
these well-defined shapes and clear visibility OARs that were
superior or comparable to the best performing automated
segmentation. The position of the OARs in all predicted CT
images can be accurately located, which indicates that the two-
phase model training was successful.
FIGURE 5 | Visualization of the convolution neural network-based segmentation results of the chiasm (A, B) and oral cavity (C, D). The DL performance of the OARs
with model updating are listed in the right column (E, F). The ground truth segmentations are depicted in red, and the auto segmentations are depicted in green.
May 2021 | Volume 11 | Article 638197
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A limitat ion of this study is that al though the
autosegmentation methods do decrease the required
contouring time and the intra/inter observer variability, from
the viewpoint of radiotherapy, both target volume and adjacent
OARs delineation has direct clinical implications. The DL-based
segmentation results should be assessed from the perspective of
their dosimetric impact. This is because the relationship between
the geometrical performance metrics and the dosimetric impact
cannot be predicted. Even if the geometric differences are small,
the impact on the final dose distribution may still be clinically
relevant. Future studies should therefore focus on combining
existing multiple geometric performance metrics with clinical
dosimetric impact assessments for RT treatment.
CONCLUSIONS

This study has two main new contributions or novelties
summarized as fol lows. First , combining object ive
(performance metric) and subjective (clinical evaluation)
assessment can provide a more comprehensive way to evaluate
the clinical acceptance level of automatic contouring. Second, a
two-phase training phase was conducted in our study to further
improve the performance of the autosegmentation network. The
model updating or retraining could significantly improve the
performance of the delineation of the OARs in HNC patients and
subsequent manual corrections that required considerably less
time than direct manual delineation to produce acceptable
contours in routine use.
Frontiers in Oncology | www.frontiersin.org 8
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