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In Brief
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acquisition to a single memory, thereby

speeding up learning.
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Summary

In ball sports, we are taught to follow through, despite the
inability of events after contact or release to influence the

outcome [1, 2]. Herewe show that the specificmotormemory
active at any given moment critically depends on the move-

ment that will be made in the near future. We demonstrate
that associating a different follow-through movement with

two motor skills that normally interfere [3–7] allows them
to be learned simultaneously, suggesting that distinct future

actions activate separate motor memories. This implies that
when learning a skill, a variable follow-through would acti-

vate multiple motor memories across practice, whereas a
consistent follow-through would activate a single motor

memory, resulting in faster learning. We confirm this predic-
tion and show that such follow-through effects influence

adaptation over time periods associated with real-world skill
learning. Overall, our results indicate that movements made

in the immediate future influence the current active motor

memory. This suggests that there is a critical time period
both before [8] and after the current movement that deter-

mines motor memory activation and controls learning.

Results and Discussion

For a motor skill to be learned over a prolonged period of time,
the motor memory of the skill must be stored, protected from
interference by intervening tasks, and reactivated for modifi-
cation when the skill is practiced. Given the widespread notion
of the importance of a consistent follow-through in many
sports [1, 2], here we examine whether the currently activemo-
tor memory might depend on the movement that we are going
to make in the near future. We examine a motor skill that is
known to be long lasting but also subject to interference—
learning to reach in the presence of a dynamic (force-field)
perturbation generated on the hand by a robotic interface
[4, 9]. When two force fields that act in opposing directions
are presented alternately, there is substantial interference,
preventing learning of either [4–7]. We first examined whether
linking such skills that interfere to different follow-through
movements might activate separate motor memories for
each, thereby allowing both skills to be learned without
interference.
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Participants grasped the handle of a robotic interface
(Figure S1) and made a reaching movement (in one of four di-
rections) through a perturbing force field to a central target,
followed immediately by a second unperturbed, follow-
through movement to one of two possible final targets (Fig-
ure 1A, follow-through; see the Supplemental Experimental
Procedures for full details). The field direction (clockwise or
counter-clockwise) was randomly selected on each trial but
was uniquely specified by the target (present throughout the
trial) to which the follow-through movement would be made
(association of force-field direction and follow-through move-
ment was counter-balanced across participants). So that
predictive force compensation could be assessed indepen-
dently from co-contraction, channel trials [10, 11], in which
the movement was confined to a simulated mechanical chan-
nel from the starting to central target, were randomly applied
throughout the experiment. Participants performed 75 blocks
of 18 trials each in the force field, and to examine learning,
we compared differences in the kinematic error and force
compensation between the first four blocks and final four
blocks in the exposure phase using an ANOVAwith amain fac-
tor of epoch (two levels) and random factor of participant (eight
levels). We found both a significant reduction in kinematic er-
ror (Figure 1B, brown; F1,7 = 16.8; p = 0.005; hand paths shown
in Figure S2A) and increase in force compensation (Figure 1C,
brown; F1,7 = 17.706; p = 0.004) reaching around 40% of full
compensation over a session. In contrast, when a second
group of participants were presented with the final target,
which again was predictive of the field direction, but did not
follow-through to the target (Figure 1A, no follow-through),
there was substantial interference between the motor skills,
as expected [8, 12, 13]. Although we observed a small reduc-
tion in kinematic error in this group (Figure 1B, blue; F1,7 =
12.371; p = 0.01; hand paths shown in Figure S2B) there was
no significant increase in force compensation (Figure 1C,
blue; F1,7 = 0.434; p = 0.531), suggesting that participants
solely used non-specific co-contraction to reduce their error
[14–16]. Finally, we contrasted the adaptation in the two
groups of subjects using an ANOVA with epoch (two levels)
and group (follow-through or no follow-through). There was a
significant interaction effect for both kinematic error (F1,124 =
7.388; p = 0.08) and force compensation (F1,124 = 21.55; p <
0.001), indicating that interference was strongly reduced in
the follow-through group.
These results show that (despite the unperturbed kine-

matics of the movements to the central target being similar
for both final targets; Table S1), when a follow-through move-
ment is made that is predictive of the field direction, there is
substantial reduction in interference. This suggests that
different follow-throughs may activate distinct motor mem-
ories. Therefore, during skill learning on a single task, identical
futuremovements on each trial (i.e., consistent follow-through)
may access a single motor memory. In contrast, a variable
follow-through may access multiple motor memories across
trials, with any learning being spread across multiple mem-
ories, leading to a decrease in the speed of skill acquisition.
We tested this prediction in two groups who experienced a

single force field whose direction was fixed across all trials.
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Figure 1. Associating Different Follow-Through Movements with Motor

Skills Reduces Interference

(A) Participants made an initial movement to a central target (green circle).

During exposure trials, a velocity-dependent curl force field (force vectors

shown as blue arrows) was applied during this movement, and the field di-

rection (clockwise [CW] or counter-clockwise [CCW]) was determined by a

visual target location (T1 or T2). A follow-through group made a subsequent

unperturbed movement to the target location, whereas a no-follow-through

group remained at the central target. The directions of the force-field (CW or

CCW) and follow-through movement (+45� or245�) were counter-balanced

across participants. Participants made movement in four directions but for

clarity only one direction is shown.

(B and C) The kinematic error (B) and force adaptation (C) (mean 6 SE

across participants for pairs of blocks, combining adjacent even and odd

blocks) for the follow-through (brown) and no-follow-through (blue) groups.

See also Figures S1 and S2 and Table S1.
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Both groups made a movement in the force field to a central
target followed by an unperturbed follow-through movement
to a final target (Figure 2A). For one group, the follow-through
movement was always made to the same target (consistent
follow-through), whereas the other group made a follow-
through movement on each trial to a randomly selected target
from nine possible locations (variable follow-through). The di-
rection of the force-field and follow-through movements was
counter-balanced across participants. Importantly, the kine-
matics (and variability) of unperturbed movements to the cen-
tral target were not significantly different between the two
groups (Table S2), and there was no difference in the initial
errors in the force field between the two groups (ANOVA on
maximum perpendicular error of the first two exposure trials
with a main factor of experimental group: F1,46 = 0.801; p =
0.375). However, significantly faster learning was observed
for the consistent, compared to the variable, follow-through
group for both kinematic error (Figure 2B; F1,5940 = 155.041;
p < 0.001) and force compensation (Figure 2C; F1,660 = 3.921;
p = 0.048) as shown using an ANOVA across all exposure trials
with the main effects of experimental group and trial number.
The same analysis, performed on the first one-third of the
exposure trials, showed significantly faster learning for the
consistent compared to the variable follow-through group for
both kinematic error (F1,1980 = 93.171; p < 0.001) and force
compensation (F1,220 = 9.057; p = 0.003). By the end of the ses-
sion, there were no significant differences in either the kine-
matic error (F1,94 = 1.668; p = 0.2) or force compensation
(F1,94 = 0.163; p = 0.687) (ANOVA on the last four trials with
the main effect of experimental group), showing that both
groups eventually learned the same amount for this simple skill.
We used a dual-rate model to examine whether changes in

the parameters that govern learning might account for the dif-
ferences that we observed in skill acquisition rate, but not final
level of learning. The time course of learning novel dynamics is
well accounted for by two interacting processes: a fast pro-
cess that adapts and decays quickly and a slower process
that adapts and decays more gradually [17]. Each process is
characterized by a learning rate that controls how strongly
the motor memory is updated based on errors and a retention
factor determining the movement-to-movement retention of
the motor memory. We fit this dual-rate model to our par-
ticipants’ learning (model is fit to the group-averaged data;
Figure 2C, thick lines), and this showed that the differences
between the groups was primarily due to the retention factor
of the fast process (Figure 2D; Afast p < 0.001 between groups,
other parameters non-significant), suggesting that variable
follow-through leads to decreased retention across trials [18].
Could our results on simple force-field learning over the

course of an experimental session apply to real-world learning
taking place over much more extended periods? In real-world
tasks, such as a tennis or golf stroke, the lead-in to the move-
ment is critical for task success, as it will determine character-
istics such as variability at contact [19, 20]. Moreover, the
recent past has been shown to also affect the selection of
the current motor memory [8]. We examined the extent to
which two motor skills, opposing force fields, could be simul-
taneously learned when the skill being currently experienced
depended on a nonlinear combination of the past (lead-in)
and future (follow-through) movements.
Participants made movements from two possible starting

locations (Figure 3A; S1 or S2) through two via points (V1
and V2) to one of two possible target locations (T1 or T2). A
force field was applied between the via points whose direction
on each trial was uniquely specified, according to an exclu-
sive-or (XOR) rule, by the starting and target locations used
on that trial (Figure 3A). Critically, the direction of the force field
could not be predicted based on either the start location or the
target location alone, but rather depended on both the start
and final locations in a non-linear manner. The direction of
the force field relative to the movements was counter-
balanced across participants. Participants performed 240
blocks of 26 trials over 5 days, and to examine learning, we
compared differences in the kinematic error and force
compensation for the first four blocks and final four blocks in
the force field using an ANOVA with a main factor of epoch
(two levels) and random factor of participants (six levels).
This was a surprisingly hard task to learn, and over the
5 days of practice, participants showed both a strong and
gradual reduction in error (Figure 3B; F1,5 = 36.750; p =
0.002) and increase in force compensation (Figure 3C; F1,5 =
61.981; p = 0.001) to around 50%. Participants learned to ac-
cess the motor memories based on the nonlinear rule as
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Figure 2. Consistent Follow-Through Improves Learning Rate

(A) Participants made a movement to a central target (green circle) followed by a follow-through movement to a target. During exposure trials, a curl force

fieldwas applied on themovement to the central target. The consistent-follow-through group alwaysmade the follow-throughmovement to the same target,

whereas for the variable-follow-through group the target was randomly selected from nine possible locations on each trial. The direction of the force-field

and follow-through movement was counter-balanced across participants.

(B and C) The kinematic error (B) and force adaptation (C) (ten-trial running mean6 SE across participants) for consistent-follow-through (red) and variable-

follow-through (blue) groups. Solid lines show fits of a dual-rate model to force compensation. There are 40 channel trials for each participant, plotted

according to the trial number at which they were presented in a pseudo-random fashion.

(D) Parameters of fits (with 95% confidence intervals) of the dual-rate model to both groups.

See also Table S2.
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shown by the force compensation being of the appropriate
sign for all four possible movements (Figures 3D and S3),
with the largest variance in the data accounted for by an
XOR rule (Figure 3E). These results demonstrate that partici-
pants can utilize both past and future movements to produce
a nonlinear separation of motor memories. This shows that
the temporal events in close proximity to a movement, both
before and after, are critical in determining the motor memory
in which the skill is stored. Moreover, even for a relatively sim-
ple skill, such as force-field learning (compared to a tennis or
golf stroke), the learning is slowly acquired over time courses
on the order of real-world skill learning and is highly dependent
on both the lead-in and follow-through. Although we have
focused on learning simple force fields in constrained arm
movements, previous work suggests that the mechanisms un-
derlying such learning generalize to whole-body movement
such as posture [21] and walking [22–24], as well as other
more naturalistic movements [25].

Previous studies have examined a range of contextual cues
that might allow the separation of motor memories. While
static cues (e.g., color) have a very limited ability to separate
motor memories [12, 13], dynamic moving cues [13, 26],
different concurrent motion of the other arm [27–29], or the
lead-in to a movement [8, 30] often have a substantial effect.
Moreover, separating the location of learning either proprio-
ceptively or visually facilitates learning of opposing force fields
[13, 31, 32]. Models of such contextual effects in themotor sys-
temposit that they arise from the engagement of separate neu-
ral populations, e.g., [27]. Since it known that that future motor
planning affects neural activity [33], it seems likely that the
follow-through effect that we report either directly engages
the separate neural populations that leads to the generation
of movement or does so by affecting the initial state of the
dynamical systems of neurons in themotor system that control
movement [34].
Although we have shown that consistent follow-through

leads to faster learning through selection of a single memory,
this does not preclude other potential advantages of the
follow-though, such as injury reduction or other biomechanical
advantages [2]. Although several contextual cues have previ-
ously been shown to reduce interference [13, 26, 27, 29, 30,
32, 35, 36], our study is the first to show that different follow-
through movements can reduce interference substantially,
demonstrating the importance of future motor events in con-
trolling current motor learning. Our findings suggest that
distinct follow-throughs associated with different motor skills,
such as different tennis strokes, will help maintain these skills
in separate motor memories, thereby protecting them from
interference when learning other skills. Moreover, even for a
single skill, maintaining a consistent follow-through will speed
up learning. An intriguing question is why a particular follow-
through might be preferred when learning a skill. Our results
suggest that variability in the follow-through, whichmight arise
from planning variability [37], motor noise [19, 20, 38], or other
sources of variability [39], would lead to a reduction in the
speed of skill acquisition. Therefore, it may be optimal to
choose the follow-through for a skill that can be executed
with the minimum variability.
Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, three figures, and two tables and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2014.12.037.
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Figure 3. Participants Show Extended Learning of Skills that Nonlineary Depend on Both Lead-In and Follow-Through

(A) Participants mademovements from one of two start locations to one of two target locations (four possible movements). Movements had to pass through

two via points (V1 and V2). On each exposure trial, a force fieldwas applied in the region between the via points (exposure region), and the field direction (CW

or CCW) was uniquely specified by the combination of the start and target locations according to an XOR rule (table). The direction of the force field (CW or

CCW) was counter-balanced across participants.

(B and C) The kinematic error (B) and force adaptation (C) (mean6 SE across participants for pairs of blocks, combining adjacent even and odd blocks) over

the 5 days of the experiment.

(D) The force compensation averaged over the last 20 blocks (mean6 SE across participants) for each of the four movements, with dashed bars indicating

full compensation.

(E) Average of the variance explained by a regression analysis across participants. The regression analysis was used to predict the pattern of compensation

(D) by fitting weights to the four possible patterns (bias, start, target, XOR) across themovements. The percentage shows the amount of the variance in force

compensation explained by these four patterns (see the Supplemental Experimental Procedures for details).

See also Figure S3.
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