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Single-cell RNA-seq (scRNA-seq) technologies are broadly applied to dissect the cellular
heterogeneity and expression dynamics, providing unprecedented insights into single-
cell biology. Most of the scRNA-seq studies mainly focused on the dissection of
cell types/states, developmental trajectory, gene regulatory network, and alternative
splicing. However, besides these routine analyses, many other valuable scRNA-seq
investigations can be conducted. Here, we first review cell-to-cell communication
exploration, RNA velocity inference, identification of large-scale copy number variations
and single nucleotide changes, and chromatin accessibility prediction based on single-
cell transcriptomics data. Next, we discuss the identification of novel genes/transcripts
through transcriptome reconstruction approaches, as well as the profiling of long non-
coding RNAs and circular RNAs. Additionally, we survey the integration of single-cell
and bulk RNA-seq datasets for deconvoluting the cell composition of large-scale
bulk samples and linking single-cell signatures to patient outcomes. These additional
analyses could largely facilitate corresponding basic science and clinical applications.

Keywords: single-cell RNA-seq, cell-to-cell communication, RNA velocity, copy number variations, non-coding
RNAs, cell-type deconvolution

INTRODUCTION

In recent years, single-cell RNA-seq (scRNA-seq) technologies and related bioinformatics methods
have been developing and innovating rapidly, which significantly revolutionized our understanding
of the expression heterogeneity and transcriptome dynamics of individual cells for diverse species
including human (Quadrato et al., 2017), mouse (Brown et al., 2016), zebrafish (Wagner et al.,
2018), and Drosophila (Karaiskos et al., 2017). The data generated by scRNA-seq can be generally
grouped into read-based and unique molecular identifier (UMI)-based, depending on the full-
length transcript sequencing [e.g., Smart-seq2 (Picelli et al., 2014)] or 3′/5′-end capturing [such
as 10× Chromium (Zheng et al., 2017), and Drop-seq (Macosko et al., 2015)] protocols used
(Chen et al., 2019). A series of preprocessing steps are required for overcoming the high noise
of raw scRNA-seq data to obtain robust results from downstream analysis. Quality control (QC)
of scRNA-seq data is important to remove the low-quality cells resulting from RNA degradation,
break of the cell membrane, or multicells to avoid misinterpretation of downstream results, which
have been reviewed recently (Luecken and Theis, 2019). Then normalization is needed to eliminate
the influence of technical effects on molecular counts (e.g., sequencing depth) to make gene
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expression comparable between cells. For the two main types
of data generated from the full-length transcript and 3′/5′-
end enrichment scRNA-seq protocols, distinct normalization
methods are needed. It is recommended to take gene length
into account for full-length transcript scRNA-seq data (such as
the common approach of TPM normalization), while disparate
methods like scran (Lun et al., 2016) are required for normalizing
3′/5′-tag scRNA-seq data (Luecken and Theis, 2019). However,
normalization cannot directly address the biases of technical
noises (e.g., batch effect and dropout) and biological covariates
(such as cell cycle); further data processing like batch effect
correction and imputation may be needed to mitigate such effects
according to the data properties and research goals.

After data preprocessing, a range of common analyses
can be conducted, like cell type/state identification and
annotation, trajectory inference, alternative splicing detection,
gene regulatory network (GRN) reconstruction, which has
been reviewed by us and other colleagues (Chen et al., 2019;
Luecken and Theis, 2019). Because scRNA-seq data usually
involve many cells and thousands of genes, feature selection
and dimensionality reduction methods are needed to reduce
the dimensionality of high-dimensional datasets to lighten the
computational burden of downstream analysis (Andrews and
Hemberg, 2018). Generally, 500–5,000 highly variable genes are
often used depending on the data complexity in feature selection
approaches (Yip et al., 2019). Linear [e.g., principal component
analysis (PCA)] or non-linear {such as t-distributed stochastic
neighbor embedding [t-SNE (van der Maaten and Hinton,
2008)]} and uniform approximation and projection (UMAP)
(Diaz-Papkovich et al., 2019) dimensionality reduction methods
can be used to further reduce the data dimension and visualize
the data in two or three dimensions (Moon et al., 2018).

Based on the data with reduced dimensions, the cell clusters
are typically identified in single-cell analysis. Methods for
clustering (such as k-means) or community detection (e.g.,
K-nearest neighbor graph) are often applied to determine
the clusters according to the expression similarity of genes
(Duò et al., 2018; Kiselev et al., 2019). Once the clusters of
single cells are determined, marker genes can be identified
through differential expression (DE) analysis to annotate the
clusters with meaningful biological insight. Moreover, for the
scRNA-seq data generated from full-length transcript sequencing
protocols, the alternative splicing changes between distinct
cell clusters can be further investigated as we summarized
previously (Chen et al., 2019). On the other hand, for the
single-cell datasets involving developmental or differentiation
process, trajectory inference methods can be utilized to infer
the order of cells along developmental trajectories. Saelens
et al. (2019) benchmarked dozens of trajectory inference tools
and revealed that these methods are complementary with
variable performances depending on the dataset dimensions and
trajectory topology. Additionally, cellular differentiation and cell
state transition processes are controlled by the underlying GRNs.
An increasing number of approaches have been developed to
infer the GRNs from scRNA-seq data generally based on the
assumption that the genes with similar expression profiles could
be regulated by a common transcription factor [such as SCENIC

(Aibar et al., 2017)], but more efforts are needed to improve the
accuracy of these analytical approaches (Chen and Mar, 2018;
Fiers et al., 2018; Pratapa et al., 2020).

However, besides those common analyses, many other
valuable explorations can be conducted to gain additional
insights into scRNA-seq data (Figure 1). In this review, we
first describe the progress and related methods for cell–
cell communication network inference, RNA velocity analysis,
interrogation of chromosomal-scale copy number variations
(CNVs) and single nucleotide variations, as well as novel
gene/isoform identification. Then we summarize the integration
of single-cell and bulk RNA-seq data to cost-effectively analyze a
large sample size. In particular, we discuss their implications and
potential challenges as well as future directions.

CELL-TO-CELL COMMUNICATION
NETWORK INFERENCE

Cells often do not function independently but can communicate
with each other and change their behaviors by transmitting
and receiving signals within their environment. In multicellular
organisms, cell signaling is critical for joining different cell
types together to form tissues (e.g., brain, lung, muscle, and
liver). Specifically, autocrine (interact with the same or similar
cells) and paracrine (communicate with nearby cells) signaling
networks within and across cell types play fundamental roles
for cells working together to coordinate diverse organismal
processes. Moreover, an abundance of cell fate decisions are
made to react to extracellular signals from the interactions
between secreted ligands and cell-surface receptors in the local
environment (Watabe and Miyazono, 2009). Especially for
cancers, the tumor microenvironment is typically composed of
various cell types (including malignant, immune, and stromal
cells). Understanding the cell-to-cell communication/interaction
network among distinct cell populations can facilitate the
elucidation of underlying mechanisms for tumorigenesis,
tumor progression, metastasis, therapy resistance, and immune
infiltration (Hanahan and Weinberg, 2011). Defects in cell-to-
cell interaction have been demonstrated to be associated with
different cancers (Haass et al., 2004), autoimmune (Gorelik and
Flavell, 2000), and metabolic diseases (Hotamisligil, 2006).

ScRNA-seq enables expression quantification of transcripts
encoding ligands and their cognate receptors in each cell,
which provides unprecedented opportunities for decoding
the diversity, complexity, and dynamics of intercellular
communication networks (Figure 2). An increasing number of
studies investigated the cell-to-cell communications between
distinct cell populations and uncovered meaningful biological
insights. For example, interlineage communications mediated
by ligand–receptor complexes among single cells can regulate
liver bud development (Camp et al., 2017), and functionally
important ligand-receptor interactions associated with cancer
metastasis were recently identified in head and neck squamous
cell carcinoma (Puram et al., 2017). We also detected a set
of intercellular communications between macrophages and
cancer stem-like cells (CSCs) in glioma that the expression levels
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FIGURE 1 | Overview of diverse common and additional valuable analyses of scRNA-seq data. The heterogeneous cells can be sequenced with the full-length
transcript or 3′/5′-end capturing scRNA-seq protocols. Then the expression count matrices for all genes in each cell can be quantified from scRNA-seq data. Before
downstream analysis, a series of preprocessing steps are needed to be conducted including quality control (e.g., elimination of low-quality cells), normalization, and
correction (if need, such as batch effect). The common scRNA-seq data analyses in most studies include cell type identification, differential expression calling,
trajectory inference, gene regulatory network reconstruction, and alternative splicing detection. Besides these routine explorations, other valuable analyses can be
carried out, such as cell-to-cell communication exploration, RNA velocity inference, large-scale copy number variation, and single nucleotide change detection,
chromatin accessibility prediction, transcriptome reconstruction for novel gene/isoform identification, lncRNA, and circRNA profiling, cell type decomposition, and
patient outcome prediction.

of involved ligands and receptors are significantly correlated
with the survival of patients (Yuan et al., 2019). Moreover,
lung basophils were found to widely communicate with both
immune and non-immune compartments (Cohen et al., 2018),

and cell–cell interactions were useful in identifying the cell
types of human placenta (Pavlicev et al., 2017). Interaction
network analysis between distinct cell types within the melanoma
microenvironment highlighted that tumor cell composition is
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FIGURE 2 | Cell-to-cell communication exploration of different cell types. (A) Network view of autocrine and paracrine cell-to-cell communications within and across
cell types. Autocrine signaling represents the signaling cells and the target cells that are the same or similar cells (such as belonging to the same cell type), while
paracrine signaling could be the interactions between different cell types in a microenvironment. The circles and edges are in proportion to the counts of
ligand–receptor interaction pairs. (B) Heatmap showing the interaction scores of ligand–receptor pairs in each cell type. Interaction scores could be the significance
(e.g., P-value) or the weighted scores for ligand–receptor interactions.

critical for diagnostic and therapeutic strategies (Tirosh et al.,
2016a). Additionally, extensive intercellular communication
networks were observed between diverse mouse heart cell types,
which contributed to the transcriptional program of sexual
dimorphism (Skelly et al., 2018).

To identify the potential interactions within or between cell
subpopulations from scRNA-seq data, an increasing number
of computational methods have been developed based on the
expression abundance of ligand and receptor pairs (Table 1).
For instance, Kumar et al. (2018) proposed a computational
approach to characterize cell–cell communications across the
cell types in a microenvironment (such as tumor ecosystem) by
scoring the ligand–receptor interactions between two cell types
as the product of average expression of ligands and receptors
in corresponding cell types. PyMINEr integrates ligand and
receptor information, protein–protein interactions as well as
pathway analyses to build the autocrine–paracrine signaling
networks (Tyler et al., 2019). scTensor defines the cell–cell
interactions as directed hypergraphs (nodes are cell types, and
edges represent ligand–receptor pairs) and can infer many-to-
many interactions with tensor decomposition (Tsuyuzaki et al.,
2019). iTALK identifies the intercellular crosstalk signals based
on curated ligand–receptor pairs and can visualize the results
in different plot formats like Circos, network, and errorbar
(Wang Y. et al., 2019). Moreover, CellPhoneDB provides a
repository of curated receptors, ligands, and their interactions,
and can allow users to search particular ligand/receptor or predict
enriched cellular interactions with inquired scRNA-seq data
efficiently (Efremova et al., 2020). CellChat quantitatively infers
intercellular communication networks using mass action models,

which also enables the visualization of cellular interactions
(Jin et al., 2020a). Additionally, SingleCellSignalR allows the
assessment of the confidence of predicted ligand–receptor
(Cabello-Aguilar et al., 2020), while NicheNet can enable
a functional understanding of cell–cell communications by
providing the information on how ligand–receptor interactions
influence the target gene expression (Browaeys et al., 2020).
However, the study for systematic performance evaluation of
these methods is currently lacking. Moreover, the available
approaches for inferring cell–cell interactions are generally
based on the known and/or curated ligand–receptor pairs;
the interactions mediated by unknown ligand–receptor pairs
will be missed. When interpreting the resulting cell–cell
communications between cell types, especially the number
of interactions, it would be better to consider the missing
interactions. Therefore, dissecting the cellular communications
in health and disease states will largely benefit the elucidation of
the underlying molecular mechanisms.

RECONSTRUCTION OF SPATIAL
CELLULAR COMMUNICATIONS AND
GENE EXPRESSION

Additionally, the spatial organization of cells is closely associated
with diverse cell functions and behaviors including cell–cell
interactions, but such information is usually missing from
scRNA-seq data as the cells are needed to be dissociated before
sequencing. Interestingly, novoSpaRc was recently developed to
enable de novo spatial reconstruction of gene expression using
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TABLE 1 | Computational approaches for additional analyses of scRNA-seq data.

Categories Suitable scRNA-seq
protocols

Tools URL References

Cell to cell
communication

Full-length transcript or
3′/5′-tag sequencing

PyMINEr https://bitbucket.org/scottyler892/pyminer_release Tyler et al., 2019

scTensor https://rdrr.io/bioc/scTensor/ Tsuyuzaki et al., 2019

iTALK https://github.com/Coolgenome/iTALK Wang Y. et al., 2019

CellPhoneDB https://github.com/Teichlab/cellphonedb Efremova et al., 2020

RNA velocity Full-length transcript or
3′/5′-tag sequencing

velocyto https://github.com/velocyto-team/velocyto.R La Manno et al., 2018

scVelo https://github.com/theislab/scvelo Bergen et al., 2019

Copy number
variation

Full-length transcript or
3′/5′-tag sequencing

inferCNV https://github.com/broadinstitute/inferCNV Patel et al., 2014

HoneyBADGER https://github.com/JEFworks/HoneyBADGER Fan et al., 2018

Chromatin
accessibility

Full-length transcript
sequencing or 3′/5′-tag
sequencing

BIRD https://github.com/WeiqiangZhou/BIRD Zhou et al., 2017

Single nucleotide
variants

Full-length transcript
sequencing

SAMtools http://samtools.sourceforge.net/ Li, 2011

Strelka2 https://github.com/Illumina/strelka Kim et al., 2018

FreeBayes https://github.com/ekg/freebayes Garrison and Marth,
2012

RNA editing Full-length transcript
sequencing

GIREMI https://github.com/zhqingit/giremi Zhang and Xiao, 2015

REDItools https://github.com/BioinfoUNIBA/REDItools Picardi and Pesole,
2013

Transcriptome
reconstruction

Full-length transcript
sequencing

TransComb
(genome-guided)

https://zenodo.org/record/61994#.XiEfaOgzaUk Liu J. T. et al., 2016

StringTie (genome-guided
and de novo)

https://ccb.jhu.edu/software/stringtie/ Pertea et al., 2015

Cufflinks (genome-guided) http://cole-trapnell-lab.github.io/cufflinks/ Trapnell et al., 2010

Trinity (de novo) https://github.com/trinityrnaseq/trinityrnaseq/wiki Grabherr et al., 2011

Trans-ABySS (de novo) https://github.com/bcgsc/transabyss Robertson et al., 2010

rnaSPAdes (de novo) http://cab.spbu.ru/software/rnaspades/ Bushmanova et al.,
2019

Coding potential
assessment

Full-length transcript
sequencing

CPAT http://rna-cpat.sourceforge.net/ Wang et al., 2013

LncRNA-ID https://github.com/zhangy72/LncRNA-ID Achawanantakun et al.,
2015

LGC http://bigd.big.ac.cn/biocode/tools/BT000004 Wang G. Y. et al., 2019

Circular RNA
identification

Total RNA (poly (A+)
and poly (A−) RNAs)
sequencing

find_circ2 https://github.com/rajewsky-lab/find_circ2 Memczak et al., 2013

CircExplorer2 https://circexplorer2.readthedocs.io/en/latest/ Zhang et al., 2016

CIRI2 https://sourceforge.net/projects/ciri/ Gao et al., 2018

Cell composition
deconvolution

Full-length transcript or
3′/5′-tag sequencing

CMP https://cran.r-project.org/web/packages/scBio/index.html Frishberg et al., 2019

MuSiC https://github.com/xuranw/MuSiC Wang X. R. et al., 2019

DWLS https://bitbucket.org/yuanlab/dwls Tsoucas et al., 2019

CIBERSORTx https://cibersortx.stanford.edu/ Newman et al., 2019

Survival analysis Full-length transcript or
3′/5′-tag sequencing

Cox regression https://github.com/therneau/survival Li, 2003

scRNA-seq data alone (Nitzan et al., 2019). Specifically, CSOmap
cannot only predict the cellular interactions but also can infer the
cell spatial organizations de novo from single-cell transcriptomic
data (Ren et al., 2020). Furthermore, the sequencing-based or
image-based spatial technologies that can preserve the spatial
coordinates of cells have achieved great progress (Mayr et al.,

2019). Integrative analysis of the spatial and scRNA-seq data may
enable us to gain novel insights into cell–cell communications by
constructing the spatial expression patterns of signaling ligands
and receptors using transfer learning or deep learning approaches
(Efremova and Teichmann, 2020). For instance, SpaOTsc can
allow the inference of spatial gene expression patterns and spatial
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cell–cell communications by incorporating scRNA-seq and
spatial data (Cang and Nie, 2020). With the innovation of scRNA-
seq and spatial transcriptomics as well as the computational
algorithms, the accuracy of intercellular communication network
inference will be improved as well. Specifically, such analysis
may shed light on the signaling mechanisms of cellular behaviors
and responses under various conditions like tumor progression,
development, or differentiation.

IDENTIFICATION OF LARGE-SCALE
COPY NUMBER VARIATIONS

Besides cellular communication detection, scRNA-seq data can
be used to identify different types of genomic variations.
Intratumoral heterogeneity is a ubiquitous feature for various
cancer types, which contributes to tumor progression and
therapy failure (Kreso and Dick, 2014). One of the well-studied
sources of intratumoral heterogeneity is genetic variation, such
as single nucleotide variations and CNVs that are the gains
or losses of genomic sequences larger than one kilobase in
size (Vogelstein et al., 2013). CNVs play an essential role
in generating both physiological and pathological phenotypes
through altering corresponding gene transcription or disrupting
neighboring or distant non-coding regulatory regions; some of
them could have pathogenic roles in common and rare cancers
(Shlien and Malkin, 2009).

As large-scale CNVs may cause the gain or loss of many genes,
they can result in the upregulation or downregulation of the
genes in the affected regions. It has been shown that scRNA-
seq data can provide informative large-scale CNV evidence
for corresponding cells (Figure 3A). For instance, Patel et al.
(2014) revealed coherent chromosomal-scale CNV pattern in
glioblastoma by averaging relative expression levels of genes
over large chromosomal regions and comparing with a set of
reference normal cells using their method of inferCNV. With a
similar approach, somatic large-scale CNVs were examined in
metastatic melanoma (Tirosh et al., 2016a), oligodendroglioma
(Tirosh et al., 2016b), as well as head and neck cancer (Puram
et al., 2017) at single-cell resolution, which allowed researchers
to effectively distinguish malignant cells from non-malignant
ones. Recently, another computational method that integrated
the hidden Markov model with a Bayesian approach, called
HoneyBADGER, has also been developed for identifying the
CNVs and loss of heterozygosity in single cells based on the allele
and expression information inferred from scRNA-seq data (Fan
et al., 2018) (Table 1). Since genomic instability is a hallmark
of diverse cancers (Negrini et al., 2010; Ferguson et al., 2015),
detecting the somatic large-scale CNVs in single cells could
discriminate tumor cells from normal ones and gain insights
into their roles in tumorigenesis. However, attention should
be paid to the sparsity and noise of scRNA-seq data because
currently available scRNA-seq approaches are generally with
high-dropout property, which may result in false positives and
influence the CNV detection. Collectively, scRNA-seq provides
an alternative and cost-effective way for exploring large-scale
CNVs in individual cells. It is valuable for unraveling the

evolutionary complexity of tumors and understanding cancer
development and progression.

ANALYSIS OF SINGLE NUCLEOTIDE
VARIANTS AND RNA EDITING

In addition to CNV detection, single nucleotide variants (SNVs)
and RNA editing events could also be inferred from single-
cell transcriptomic data. SNVs are the most prevalent type
of genetic variation and are closely associated with diverse
normal and disease phenotypes. The influences of SNVs could
manifest on gene expression by cis and/or trans effects (Bryois
et al., 2014), and a multitude of SNVs have been linked to
tumor evolution (Navin et al., 2011). Importantly, SNVs in
progenitors could be inherited by all the daughter cells during
DNA replication, thus systematic SNV calling in single cells is
one promising strategy for delineating cellular heterogeneity and
phylogenetic relationships, especially for cancer evolution (Navin
et al., 2010; Abbosh et al., 2017; Ju et al., 2017; Martincorena
et al., 2017). Although single-cell exome sequencing or whole-
genome sequencing technologies can be used to interrogate
SNVs, such approaches could introduce substantial error rates
due to inherent technical limitations (Xu et al., 2012; Zafar et al.,
2016), and they are highly expensive for sequencing a large
number of cells. By contrast, scRNA-seq is more affordable, and
the SNVs detected from single-cell transcriptomic data could
be interesting since they are expressed, and their functions are
easier to elucidate. A range of studies have revealed intriguing
findings by exploring SNVs from scRNA-seq data using the tools
originally developed for bulk sequencing data (Tirosh et al.,
2016b; Enge et al., 2017; Fan et al., 2018; Poirion et al., 2018; Ding
et al., 2019). For example, Enge et al. (2017) gained insights into
aging-related genetic and transcriptional processes of the human
pancreas by analyzing the somatic mutation patterns with single-
cell transcriptomic data. A linear modeling framework, SSrGE,
was recently proposed to detect the effective and expressed
SNVs that are associated with gene expression from scRNA-seq
data, which could facilitate the subpopulation identification and
genotype–phenotype relationship determination (Poirion et al.,
2018). Moreover, Ding et al. (2019) developed a method for
trajectory inference based on the SNPs inferred from scRNA-
seq data.

Currently, few tools were specially designed for SNV calling
based on single-cell transcriptomic data. However, Liu et al.
(2019) systematically evaluated the performance of traditional
variant callers on scRNA-seq datasets and recommended
SAMtools (Li, 2011), Strelka2 (Kim et al., 2018), and FreeBayes
(Garrison and Marth, 2012) to call SNVs for the data with low
supporting reads, with sufficient read depths, and with high
variant allele frequencies, respectively (Table 1). SAMtools calls
the SNVs directly based on the sequencing data with a statistic
model, while Strelka2 employs a mixture model to alleviate
the effects of context-specific variation, and FreeBayes uses a
Bayesian statistical framework to model multiallelic loci. With
these tools, the SNVs in each cell can be predicted by treating
each cell as a sample like bulk data. Notably, low read depths that
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FIGURE 3 | Inference of large-scale copy number alterations and single nucleotide changes based on scRNA-seq data. (A) Representative heatmap displaying the
large-scale copy number variations (CNVs) identified in different cell types with scRNA-seq data. Top panel shows that no significant large-scale CNVs were identified
in reference normal cells, whereas chromosomal-scale deletions (blue) and gains (red) were observed for several chromosomes in different cell subtypes of tumor
cells (second panel). The heatmap was created by inferCNV. (B) Graphic view of single nucleotide variations and RNA editing events. The reads of scRNA-seq data
generated from full-length transcript sequencing protocols are mapped to the reference genome first. Then specific SNV calling tools or RNA-editing detection
approaches can be applied to determine the SNVs or RNA-editing events based on the alignment result. Both SNV and RNA editing identifications are mainly suitable
for the scRNA-seq methods that can generate full-length transcripts. Moreover, sequencing depth could be an important factor influencing the detection accuracy.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 December 2020 | Volume 8 | Article 593007

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-593007 November 25, 2020 Time: 12:24 # 8

Li et al. Additional Valuable ScRNA-Seq Data Analyses

resulted from the biologically low expressions and/or technical
bias (e.g., dropout events) could reduce the sensitivity of SNV
detection. Therefore, the innovation of scRNA-seq strategies to
minimize the dropout events will greatly improve the accuracy
of SNV inference (Liu et al., 2019). Moreover, novel SNV
calling methods that are specifically designed for scRNA-seq are
also crucial for correcting the technical bias and increase the
sensitivity and specificity of variant calling. Overall, detecting
SNVs from single-cell transcriptomic data could provide another
layer of cellular heterogeneity among single cells besides gene
expression (Figure 3B), which could be useful for lineage tracing
and subpopulation identification as well as genotype–phenotype
linkage inference (Poirion et al., 2018; Tang, 2020).

Unlike genomic SNVs, RNA editing is a posttranscriptional
process that made nucleotide changes on RNA sequences, and
adenosine-to-inosine (A-to-I) editing is the most common type
in general (Nishikura, 2010) (Figure 3B). RNA editing has
been considered as a crucial mechanism for increasing the
molecular diversity and regulating the function of proteins (Maas
et al., 2006; Park et al., 2012). The known functional impacts
of RNA editing mainly include amino acid sequence changes,
alternative splicing alteration, RNA stability influence, and
alternations on miRNA sequence or miRNA targeting sequence
(Nishikura, 2016). Furthermore, aberrant RNA editing events
could be correlated with the etiology or progression of various
diseases, such as amyotrophic lateral sclerosis, astrocytoma,
hepatocellular carcinoma, and metastatic melanoma (Slotkin
and Nishikura, 2013; Kung et al., 2018; Kanata et al., 2019).
Although sequencing the genome and transcriptome from the
same sample/cell can theoretically enable more accurate RNA
editing detection, such data are relatively uncommon and costly.
Several computational tools are available for robustly identifying
RNA editing sites using bulk RNA-Seq data alone, such as
GIREMI (Zhang and Xiao, 2015), the pipeline proposed by
Ramaswami et al. (2013), and REDItools (Picardi and Pesole,
2013) (Table 1). However, the approaches specifically developed
for scRNA-seq data are currently lacking, and a few studies
investigated the RNA editome in individual cells. Recently, Ding
et al. (2019) suggested that an abundance of SNVs identified
from scRNA-seq data by their method are likely to be RNA-
editing events. Since aberrant RNA editing events could be
correlated with the etiology or progression of many diseases
including cancers (Slotkin and Nishikura, 2013; Kung et al.,
2018; Kanata et al., 2019), exploring the RNA editome in single
cells can facilitate a better understanding of their functional
implications to cellular heterogeneity and clinical utility in
diseases. Considering that RNA editing detection depends closely
on the sequencing depth, applying the tools originally designed
for bulk data to single-cell data should be careful due to the
inherent technical noise and low sequencing depth of current
scRNA-seq protocols. There is an urgent need to develop robust
methods for identifying RNA editing events with single-cell data.
Consequently, exploring the RNA editome in single cells will be
more feasible with the improvement of single-cell sequencing and
specialized algorithms, which will benefit the elucidation of the
functional implications of RNA editing to cellular variations and
disease development.

EXPLORING RNA VELOCITY

ScRNA-seq data have also been used to predict the future
transcriptional state of single cells (termed RNA velocity)
by deducing their directed dynamic transcriptome changes
(Figure 4A). RNA regulation involves multiple stages including
transcription, RNA maturation, and RNA degradation; thus,
the abundance of RNAs is a strong indicator of cell state.
Previous bulk RNA-seq study has shown that gene splicing and
degradation can be effectively estimated based on the relative
abundance of unspliced and spliced RNAs (Zeisel et al., 2011;
Gaidatzis et al., 2015). Thus, similar signals could be also
decoded from individual cells with single-cell transcriptomic
data (Svensson and Pachter, 2018). La Manno et al. (2018)
proposed a model named velocyto (Table 1) to estimate the rate
of change in mRNA abundance (RNA velocity) to predict the
future transcriptional state of individual cells by distinguishing
between spliced and unspliced mRNAs with scRNA-seq data.
This RNA velocity inference method has been applied to an
increasing number of researches. For instance, RNA velocity
analysis revealed dynamic transcriptional changes of immune
cells in hepatocellular carcinoma (Zhang et al., 2019) and could
also allow effective identification of the major directions of
cell progression for murine neural crest cells (Soldatov et al.,
2019). Moreover, Kanton et al. (2019) successfully uncovered the
differentiation of neural progenitor cells in human development
with RNA velocity exploration, but velocyto could not efficiently
process large datasets and even may run out of memory (e.g.,
cell number >40,000). More recently, Bergen et al. developed a
likelihood-based dynamical model, scVelo (can handle >300,000
cells), to infer the RNA velocity of cells by solving the full
transcriptional dynamics (Bergen et al., 2019), which is 10
times faster and less memory consuming than that of velocyto
(La Manno et al., 2018).

RNA velocity inference could predict the direction of cell
transition within and between cell clusters/states. By contrast,
pseudotime/trajectory analysis aims to identify the paths between
cell clusters/subtypes, which does not automatically infer a
direction like RNA velocity prediction. However, RNA velocity
analysis can benefit trajectory inference or pseudotemporal
ordering that aims to deduce the order of cells along
developmental paths by overlaying the directionality of velocity
to trajectories to better predict cell fate decisions (La Manno et al.,
2018). Therefore, integrative analysis of single-cell RNA velocity
and trajectory/pseudotime could provide deeper insights into
various dynamic cellular processes in development and evolution,
such as lineage decisions and gene regulation.

INFERRING CHROMATIN
ACCESSIBILITY

Besides transcriptome profiling, scRNA-seq could also provide
the potential for decoding the chromatin accessibility of
transcribed regions in single cells (Figure 4B). Chromatin
accessibility is essential for establishing and maintaining cellular
identity by governing cell- or context-specific gene expression
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FIGURE 4 | RNA velocity and chromatin accessibility analyses. (A) RNA velocity inference of single cells to predict their future transcriptional states. The velocity of
gene expression could be represented as the mRNA abundance over time, which enables the prediction of future transcriptional state of cells (the arrows denote the
directionality). (B) Graphic view of chromatin accessibility prediction with scRNA-seq data. Transcriptome and regulome could have bidirectional interplay because of
the feedback, thus scRNA-seq has the potential to predict the chromatin accessibility of transcribed regions using the corresponding computational approach.
However, it is worth noting that the chromatin accessibility of non-transcribed regions cannot be predicted with scRNA-seq.

(Pennacchio et al., 2013; Klemm et al., 2019). The landscape of
chromatin accessibility broadly reflects the regulatory capacity
and is dynamically changing in response to developmental
cues and environmental stimulation (Klemm et al., 2019).

Some single-cell technologies are emerging to measure the
chromatin accessibility of individual cells including single-
cell ATAC-seq (Cusanovich et al., 2015), single-cell DNase-seq
(Jin et al., 2015), and single-cell THSseq (Lake et al., 2018).
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Moreover, Yu et al. (2020) recently proposed a software, scATAC-
pro, for quality estimation and visualization of single-cell
chromatin accessibility sequencing data generated by different
experimental protocols.

Determining the accessible genome is crucial for
understanding the regulatory program of gene expression
control. Many studies have demonstrated that the transcriptional
activities of genes can be predicted based on the activities of
associated regulatory elements (Natarajan et al., 2012; Kumar
et al., 2013), but few researches investigated to what extent
activities of regulatory elements can be inferred from the
RNA-seq data. Gene transcription needs the chromatin to
be open and accessible; thus, bidirectional interplay exists
between transcriptome and regulome due to the feedback (Neph
et al., 2012; Voss and Hager, 2014). Previously, Zhou et al.
(2017) demonstrated that their method of BIRD (Table 1) can
effectively predict the activities of genome-wide regulatory
elements measured by DNase I hypersensitivity based on bulk
gene expression profiles. Since scRNA-seq technologies enable
capturing the gene transcriptional signals in each cell, it may
be also possible to predict the regulome of cells based on
single-cell transcriptomic data. Recently, Zhou et al. (2019)
further suggested that the chromatin accessibility of the genome
could be inferred from the scRNA-seq data of a small number
of cells. But currently available methods for inferring chromatin
accessibility from single-cell transcriptomic data are very few.
Both experimental chromatin accessibility profiling technologies
and computational methods that predict chromatin accessibility
from scRNA-seq data will continue to improve. It remains an
open question as to which method will be more accurate. To
answer that question, a systematic and independent benchmark
study in the future will be required.

Specifically, the data from single-cell RNA-seq and chromatin
profiling technologies can be combined to delineate cellular
heterogeneity and elucidate transcriptional regulatory
mechanisms. For instance, the computational tool of SOMatic
enables the integrative analysis of scATAC-seq and scRNA-seq
data for gene regulatory network reconstruction (Jansen et al.,
2019). ScAI can deconvolute the cellular heterogeneity based
on single-cell transcriptomic and epigenomic profiles (Jin
et al., 2020b). Additionally, MAESTRO supports cell clustering
and automatic cell-type annotation as well as transcriptional
regulator inference for both scRNA-seq and scATAC-seq datasets
(Wang et al., 2020). These analyses will help us better elucidate
the underlying mechanisms of gene regulation and cellular gene
expression heterogeneity.

TRANSCRIPTOME RECONSTRUCTION
FOR NOVEL GENE/ISOFORM
IDENTIFICATION

For full-length transcript scRNA-seq data, transcriptome
reconstruction at the single-cell level is promising to identify
cell-type-specific genes/isoforms. Currently, the annotated genes
and isoforms for many species including humans are still far

from complete, and a multitude of novel protein-coding and
non-coding genes/isoforms remain to be uncovered (Chen
et al., 2013). One major reason accounting for this is that gene
expression is often spatial and temporal specific; thus, those
unannotated genes/isoforms could be only expressed in specific
conditions and/or cell types/states. Since gene expression is
usually heterogeneous at the single-cell level, different cell
subpopulations may express unique and unannotated genes
and/or isoforms that could not be identified with bulk RNA-seq
data. Thus, scRNA-seq provides great potential for identifying
and annotating the novel genes and isoforms.

Transcriptome reconstruction is the most popular strategy for
detecting all the expressed genes and isoforms in a particular
sample (Garber et al., 2011; Chen et al., 2017). The approaches
for transcriptome reconstruction can be mainly grouped into
the following two categories: genome-guided and de novo
(genome independent) transcriptome assembly (Garber et al.,
2011) (Figure 5A and Table 1). Generally, genome-guided
strategies [such as TransComb (Liu J. T. et al., 2016), StringTie
(Pertea et al., 2015), and Cufflinks (Trapnell et al., 2010)]
assemble the overlapping reads aligned to the reference genome
into transcripts, which is suitable for the organisms with the
available qualified reference genome. By contrast, de novo
transcriptome assembly methods [e.g., Trinity (Grabherr et al.,
2011), Trans-ABySS (Robertson et al., 2010), and rnaSPAdes
(Bushmanova et al., 2019)] often utilize de Bruijn graph to
directly assemble the reads into transcripts without the need
of reference genome. When a qualified reference genome
is available, genome-guided approaches are the choice due
to their higher sensitivity than de novo assembly methods.
However, for cancer cells, large-scale rearrangement events
may exist in the genome and/or transcriptome; a combination
use of these two different strategies may generate a more
comprehensive set of transcripts (Garber et al., 2011). After
transcriptome reconstruction, the coding potential of those
assembled transcripts can be assessed to group them into
protein-coding or non-coding RNAs. Although the available
transcriptome reconstruction approaches are mainly designed for
bulk RNA-seq data, some studies have applied them to scRNA-
seq data and successfully identified many novel genes/transcripts
(Yan et al., 2013; Fan et al., 2015; Liu S. J. et al., 2016; Wu
et al., 2019). For example, Yan et al. (2013) integrated genome-
independent and genome-guided assembly methods to predict
the new transcripts and detected a set of novel long non-
coding RNAs (lncRNAs) that are functionally important in
human embryos. Notably, transcriptome assembly is mainly
applicable to the scRNA-seq approaches that can sequence
the full-length of transcripts [e.g., Smart-Seq2 (Picelli et al.,
2014), SUPeR-seq (Fan et al., 2015), and RamDA-seq (Hayashi
et al., 2018)] rather than the protocols that only capture
the 3′/5′-end of transcripts. Moreover, novel algorithms for
reconstructing single-cell transcriptome may be essential to
overcome the noise and low coverage of scRNA-seq data. Overall,
conducting single-cell transcriptome reconstruction is promising
for identifying the novel genes and isoforms (including both
protein-coding and non-coding RNAs) expressed in specific cell
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FIGURE 5 | Transcriptome reconstruction and identification of lncRNAs and circRNAs. (A) Schematic of single-cell transcriptome reconstruction with
genome-guided and genome-independent approaches. Genome-guided strategies need to map the sequencing reads to the reference genome first, whereas
genome-independent (de novo assembly) methods can assemble the sequencing reads directly without using the reference genome. (B) Novel lncRNAs can be
identified by assessing the protein-coding potential of the transcripts assembled from transcriptome reconstruction methods. Since lncRNAs can be with or without
poly (A) tails, the full-length transcript scRNA-seq technologies that can capture both poly (A+) and poly (A–) RNAs are preferred for comprehensively profiling
lncRNAs. Moreover, sufficient sequencing depth can also benefit the lncRNA identification in considering that lncRNAs are usually expressed at relatively lower levels
than that of mRNAs. (C) Profiling circRNAs with scRNA-seq data. CircRNAs are formed by back-splicing, which is different from linear RNAs. Unlike linear RNAs that
can be captured with standard poly-A enriched methods, circRNAs are covalently closed and usually need to be profiled with rRNA-depleted total RNA protocols.
Furthermore, the sequencing depth is also important to ensure the accuracy of circRNA identification and quantification.

types/states, which may transform our understanding of the
complexity of single-cell transcriptome.

PROFILING LONG NON-CODING RNAs
AND CIRCULAR RNAs

After transcriptome reconstruction, novel lncRNAs could
be identified from single cells. LncRNAs are the transcripts
with >200 nucleotides in length and have no protein-coding
potential. It has been shown that lncRNAs are fundamental
regulators and involved in a wide range of biological processes
and pathways related to transcriptional and posttranscriptional
regulation as well as chromatin remodeling (Mercer et al., 2009;

Slack and Chinnaiyan, 2019). Moreover, lncRNAs can play
critical roles in a variety of human diseases, and some of
them could be important biomarkers for many cancers
(Ransohoff et al., 2018). Additionally, the expression of
lncRNAs is more tissue- and cell-type specific than that of
mRNAs (Ransohoff et al., 2018); thus, scRNA-seq provides
unprecedented opportunities for profiling and annotating the
cell-type-specific lncRNAs. To identity lncRNAs with RNA-seq
data, the aforementioned transcriptome reconstruction is usually
conducted to define the map of all expressed transcription units
first (Figure 5B). Then a variety of methods can be applied to
discriminate lncRNAs from protein-coding RNAs, such as CPAT
(Wang et al., 2013), LncRNA-ID (Achawanantakun et al., 2015),
and LGC (Wang G. Y. et al., 2019) (Table 1). CPAT employs a
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logistic regression model to discriminate between non-coding
and protein-coding transcripts, while LncRNA-ID utilizes the
machine learning model of random forest, and LGC is based
on the feature relationship between the length of open reading
frame (ORF) and GC content. The protein-coding potential
assessment tools have been widely used in numerous studies to
predict the protein-coding potential of transcripts, which have
been reviewed previously (Han et al., 2016; Lorenzi et al., 2019).

An increasing number of studies have explored the lncRNA
expression profiles and functions at the single-cell level. For
example, Fan et al. (2015) developed SUPeR-seq to sequence
both poly (A+) and ploy (A−) RNAs and identified hundreds
of novel lncRNAs that showed developmental stage-specific
expression in mouse. The random (AnchorX-T15N6) primers
were used in SUPeR-seq to enable the simultaneous capture
of both polyadenylated and non-polyadenylated RNAs from
individual cells. Moreover, novel lncRNAs associated with human
early embryonic development were identified (Yan et al., 2013),
and cell-type-specific lncRNAs were observed to be abundantly
expressed in human neocortex (Liu S. J. et al., 2016). Besides, Wu
et al. (2019) detected over 3,000 lncRNAs using the scRNA-seq
data of human bone marrow and revealed that a fraction of them
could play crucial roles in dysplastic hematopoiesis. It is worth
noting that lncRNAs can localize in the nucleus and cytoplasm,
and are usually less abundant than mRNAs, and can be expressed
simultaneously with relevant protein-coding genes. If cells can
be directly lysed without RNA extraction and sequenced with
substantial depth, it may allow more comprehensive lncRNA
identification. Furthermore, lncRNAs can be with or without poly
(A) tails; thus, the full-length transcript scRNA-seq technologies
that enable total RNA [including poly (A+) and ploy (A−) RNAs]
capturing [e.g., SUPeR-seq (Fan et al., 2015), MATQ-seq (Sheng
et al., 2017), and RamDA-seq (Hayashi et al., 2018)] are more
suitable for comprehensive lncRNA profiling, whereas those
single-cell protocols that only sequence poly (A+) RNAs will miss
the lncRNAs without poly-A tails. However, currently available
scRNA-seq strategies that can provide whole gene body coverage
are still suffering certain bias at the 3′/5′-end of transcripts;
further improvement of these technologies will greatly benefit
single-cell lncRNA profiling.

Additionally, circular RNAs (circRNAs) are an essential class
of circularized non-coding RNAs, which are formed by back-
splicing of linear pre-mRNAs (Figure 5C). CircRNAs can act
as sponges for miRNAs or proteins, interfere with pre-mRNA
processing, and even produce polypeptides (Lasda and Parker,
2014; Li et al., 2018). Moreover, a multitude of circRNAs have
been associated with a variety of human cancers, and some of
them could be important biomarkers for cancer diagnosis or
prognosis (Greene et al., 2017). However, the specific functions
for the great majority of circRNAs in biological systems are still
unknown. Multitudinous studies have identified and annotated
circRNAs with different bioinformatic pipelines based on bulk
RNA-seq data (Memczak et al., 2013; Jakobi and Dieterich, 2019).
However, circRNA exploration at the single-cell level is just
emerging. Since circRNAs are covalently closed continuous loop
and do not have poly (A) tail, they cannot be profiled with
standard poly (A) enrichment protocols. Recently, an abundance

of circRNAs involved in the early embryonic development of
mice was identified using SUPeR-seq protocol to sequence total
RNAs from individual cells (Fan et al., 2015). Furthermore,
Verboom et al. (2019) proposed SMARTer technology for
conducting single-cell strand-specific total RNA sequencing
and detected over 500 circRNAs in neuroblastoma cell lines.
A range of computational methods are available for identifying
circRNAs with RNA-seq data [such as find_circ2 (Memczak
et al., 2013), CircExplorer2 (Zhang et al., 2016), and CIRI2 (Gao
et al., 2018)], which have been reviewed recently (Jakobi and
Dieterich, 2019) (Table 1). These tools could be applicable to
explore the circRNAs in single cells. The commonly used bulk
sequencing strategies for circRNA detection are ribosomal RNA
(rRNA)-depleted total RNA and poly (A)-depletion methods,
but none of them can guarantee that the enriched RNAs are
exclusively circular as some other types of ncRNAs would
be also captured (Kristensen et al., 2019). By contrast, the
scRNA-seq protocols for profiling circRNAs are still in the early
phases of development, and the bioinformatic methods specially
designed for single-cell circRNA exploration are still lacking.
Furthermore, the reliable identification and quantification of
circRNAs generally need a substantial sequencing depth to obtain
sufficient supporting reads spanning the back-splice junction
region of circRNAs.

Currently, available scRNA-seq protocols are still with high
technical noise, and the sequencing depth for each cell is
relatively low in consideration of the cost, which hinders
the identification of lncRNA and circRNA. Additionally, the
computational methods specially developed to process single-
cell transcriptomic data by taking the data sparsity and noise
into account for lncRNA and circRNA investigation are currently
lacking. With the development of both single-cell total RNA
sequencing methods and related computational approaches,
exploring the lncRNAs and circRNAs in individual cells, will
be more feasible. These advancements will largely promote
the profiling and functional characterization of lncRNAs and
circRNAs in different cell types/states under various conditions.

CELL COMPOSITION DECONVOLUTION
OF BULK SAMPLES USING
SINGLE-CELL DATA

The aforementioned analyses are mainly based on scRNA-seq
data alone; single-cell transcriptomic data can also be
analyzed with the bulk RNA-seq dataset to infer the cell-type
proportions/compositions for a large number of bulk samples
(Figure 6A). ScRNA-seq has great advantages in dissecting
the heterogeneity of cellular compositions within a given
sample; however, such researches were mainly focused on a
limited number of samples/individuals in consideration of cost
effectiveness and scalability. Bulk RNA-seq is still the primary
workhorse for dissecting gene expression for a host of samples in
biomedical research due to the low cost and technical simplicity.
For investigating the cell-subset specific information in a plethora
of samples, an attractive approach is to directly decode the cell-
type composition of large-scale heterogeneous bulk samples
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FIGURE 6 | Integration of single-cell and bulk RNA-seq data for cell-type decomposition and survival analysis. (A) Deconvolution of cell-type composition in bulk
samples with single-cell reference signatures. The computational approaches for deconvoluting the cell-type compositions or proportions of bulk samples often need
the reference expression profile of the markers for specific cell types. Performing scRNA-seq on a few samples is an efficient and cost-effective way to generate the
cell-type-specific gene expression profile as the reference. (B) Linking the expression of single-cell signatures to patient outcomes with related large-scale bulk
datasets. The signatures or markers identified in diverse types of single-cell analyses (such as cell type identification, alternative splicing inference, cell–cell
communication exploration, and gene regulatory network reconstruction) can be further investigated with relevant large-scale bulk RNA-seq dataset to check
whether they are associated with different patient outcomes (e.g., survival of patients) based on available clinical information of involved patients. Such analysis can
further gain insights into the associations of cell-type-specific markers with certain phenotypes of patients in a multitude of samples.

via deconvolution algorithms (Shen-Orr and Gaujoux, 2013).
Such a strategy is not only cost effective but could also preserve
both whole-system level perspective and cell-based view of cell
heterogeneity. For example, Li T.et al. (2017) have explored
the composition of different tumor-infiltrating immune subsets
in 32 cancer types of The Cancer Genome Atlas (TCGA).
Moreover, Donovan et al. (2020) deconvoluted the cellular
composition of 28 distinct human tissues from Genotype-Tissue
Expression (GTEx) project (Aguet et al., 2017), which allowed
cell-type-specific functional investigation for the impacts of
genetic variation on gene expression.

Currently, a dozen of deconvolution approaches are available
for inferring the composition of cell types from bulk RNA-seq
data (Cobos et al., 2018), such as CMP (Frishberg et al., 2019),
MuSiC (Wang X. R. et al., 2019), DWLS (Tsoucas et al., 2019), and
CIBERSORTx (Newman et al., 2019) (Table 1). CMP uses linear
regression to estimate the expression abundance of reference
cells in the given bulk samples, while MuSiC weights the genes
exhibiting cross-subject and cross-cell consistency to transfer
cell-type-specific gene expression profile across different datasets.
DWLS employs a weighted least squares method to estimate cell-
type proportions, and CIBERSORTx is based on the machine

learning method to determine cell type abundance and cell-
type-specific gene expression. A systematic comparison of the
performance for recently developed deconvolution approaches
is very valuable, but such a study is currently lacking. Existing
deconvolution tools generally rely on the prior knowledge of
reference expression profiles of known cell-type signatures, which
can be obtained from the scRNA-seq data of one or a few samples
(Figure 6A). At present, it is still highly expensive and time
consuming to sequence a multitude of samples using scRNA-seq.
Therefore, deconvoluting cell-type compositions from large-scale
bulk RNA-seq dataset with a small sample size of single-cell
transcriptomic data as the reference is an economically practical
and time-saving way. Such analysis is valuable for identifying
the cell types vulnerable to disease and detect the cellular targets
of disease/cancer.

LINKING SINGLE-CELL SIGNATURE TO
PATIENT OUTCOMES WITH BULK DATA

Another important joint analysis of scRNA-seq and bulk RNA-
seq data is to associate the signatures identified in single-cell
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transcriptomic data exploration to predict patient outcomes.
Intratumoral heterogeneity is a pivotal determinant of tumor
biology, survival, and treatment response of patients. A major
goal of cancer profiling studies is to identify the genetic
biomarkers that are predictive for the survival status of cancer
patients. The advance in scRNA-seq largely facilitates the
biomarker/signature detection at a higher resolution beyond
traditional bulk data. Such single-cell signatures can be screened
out from different types of single-cell analyses, such as cell
clustering, differential expression calling, alternative splicing
exploration, and gene regulatory network inference. Specifically,
important signatures could be identified from the scRNA-seq
data of the tumor ecosystem to potentially predict cancer stage,
therapy response, disease-free interval, metastatic probability,
or overall patient survival. Although it may not be practical to
perform scRNA-seq on an abundance of patients for prognosis
prediction, those publicly accessible bulk datasets with available
clinical information are valuable resources for such analysis.
It is an alternative way to assess whether the single-cell
signatures could be useful biomarkers for predicting patient
outcomes (Figure 6B).

A host of studies have used the bulk datasets from
public databases like TCGA (Weinstein et al., 2013) and
Gene Expression Omnibus (GEO) to determine the association
between the expression level of single-cell signatures and
the patient survival of corresponding cancers. For example,
signatures from scRNA-seq analysis were successfully applied
to predict the overall survival of patients for TCGA melanoma
(Nirschl et al., 2017) and hepatocellular carcinoma (Zheng
et al., 2018). Furthermore, Li H. P. et al. (2017) identified
single-cell biomarkers that can stratify the colorectal tumors
from TCGA and GEO databases into subgroups with divergent
survival. For survival analysis, Raman et al. (2019) revealed
that highly variable results are usually obtained from different
methods, and Cox regression (Li, 2003) is superior to other
compared approaches based on tests of reliability, accuracy,
and robustness. Cox regression is a flexible method that can
improve the accuracy of estimation between gene expression
level and patient survival by enabling the inclusion of multiple
covariates to accommodate explanatory variables. It is worth
noting that the single-cell signatures are used to build a model,
while the actual data using the model is the bulk RNA-seq
data. The continuous decreasing cost and time for scRNA-seq
will make single-cell transcriptomic profiling on a large sample
size become more affordable and practicable, which will greatly
benefit the association analysis between single-cell signatures
and patient outcomes. Consequently, the signatures/biomarkers
screened out from diverse kinds of single-cell analyses could
be further linked to the patient outcomes with related bulk
datasets and clinical information to assess their associations
and clinical value.

CONCLUSION AND OUTLOOK

ScRNA-seq is widely applied to diverse organisms to dissect a
range of biological questions related to developmental biology,

oncology, immunology, neurology, and microbiology at the
single-cell resolution. Besides those routine analyses conducted
in most studies (e.g., cell type identification, alternative splicing
detection, trajectory, and GRN inference), much more other
valuable information can be mined from scRNA-seq data. As
we summarized in this review, cell-to-cell communications, RNA
velocity, and large-scale CNVs and chromatin accessibility could
be effectively extracted from single-cell transcriptomic data.
Nucleotide sequence changes of SNVs and RNA editing events
also could be derived from scRNA-seq experiments to enable
multiple modalities. Moreover, transcriptome reconstruction
with full-length transcript scRNA-seq data is promising for
identifying and annotating the novel genes and isoforms mainly
expressed in certain cell types/states. The innovation and
optimization of scRNA-seq protocols that can effectively capture
both poly (A+) and ploy (A−) RNAs with increased throughput
will improve the feasibility of profiling and characterizing of
lncRNAs and circRNAs at single-cell resolution. Additionally,
the results of scRNA-seq analysis can be further explored
with traditional bulk RNA-seq data to deconvolute the cell
compositions in a multitude of bulk samples or assess the
association between single-cell signatures and patient outcomes
in a cost-effective way.

Notably, the accuracy of any kind of single-cell analysis largely
depends on the quality of single-cell sequencing data (e.g., cell
quality, sequencing quality, coverage, and depth) as well as
the performance of corresponding bioinformatics algorithms.
Special attention needs to be paid to the noise and sparsity
of scRNA-seq data, and stringent criteria may be needed to
minimize the false positives. Besides, since there is a general
lack of studies for benchmarking the computational approaches
of the single-cell analyses we summarized in this review, it
would be useful to conduct such researches in the future.
In consideration of the absence of a gold-standard method,
running more than one bioinformatic tools could be an effective
way to reduce the number of false positives. Additionally,
performance comparison for several commonly used scRNA-
seq technologies revealed that if the research goal aims to
pursue the highest sensitivity, the low-throughput methods
that can produce full-length transcripts (e.g., Smart-seq2) are
significantly better than the high-throughput approaches that
mainly capture the 3′/5′-end of transcripts (like 10x Chromium)
(Ziegenhain et al., 2017; Ding et al., 2020). Future comparative
analysis for the newly developed single-cell transcriptome
profiling protocols will be very helpful to provide better
guidance in experimental designs. The fast evolution of both
scRNA-seq approaches and bioinformatics methods will make
the single-cell analyses we discussed become more feasible.
We anticipate that these useful analyses will add much more
value to scRNA-seq data and largely facilitate biomedical and
clinical researches.

On the other hand, the states of single cells are determined
by the intricate interplay of various molecules from multi-
omic levels, such as genomics, transcriptomics, proteomics,
and epigenomics. Integrative analysis of multi-omic data will
enable a much more comprehensive and systematic view of
each cell, which will greatly benefit the study of a variety
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of normal development and disease processes. An increasing
number of single-cell protocols have been developed to measure
different modalities including genome (Vitak et al., 2017),
epigenome (Mulqueen et al., 2018), proteome (Darmanis et al.,
2016), and chromatin accessibility (Cusanovich et al., 2015), as
well as profile spatial (Wang et al., 2018) or lineage (Raj
et al., 2018) information. Furthermore, some assays can even
simultaneously capture multimodal data from the same cell
(Stuart and Satija, 2019). Additionally, the third-generation
sequencing technologies like nanopore can sequence RNA
and DNA with super long reads (Rand et al., 2017; Garalde
et al., 2018); such technological advances and improvements
will effectively accelerate the refinement of single-cell multi-
omic approaches. As single-cell technology matures (including
sensitivity, coverage, and throughput) and the continuous
decrease in cost, multi-omic studies will be more feasible and
affordable. Collectively, we envision that the advances of multi-
omic assays coupled with novel computational approaches will
enable a more comprehensive understanding and elucidation of

diverse cellular processes and significantly transform the single-
cell biology.
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