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Abstract

Motivation: Existing computational models can predict single- and double-mutant fitness but they do have limita-
tions. First, they are often tested via evaluation metrics that are inappropriate for imbalanced datasets. Second, all of
them only predict a binary outcome (viable or not, and negatively interacting or not). Third, most are uninterpretable
black box machine learning models.

Results: Budding yeast datasets were used to develop high-performance Multinomial Regression (MN) models
capable of predicting the impact of single, double and triple genetic disruptions on viability. These models are
interpretable and give realistic non-binary predictions and can predict negative genetic interactions (GIs) in
triple-gene knockouts. They are based on a limited set of gene features and their predictions are influenced by
the probability of target gene participating in molecular complexes or pathways. Furthermore, the MN models
have utility in other organisms such as fission yeast, fruit flies and humans, with the single gene fitness MN
model being able to distinguish essential genes necessary for cell-autonomous viability from those required for
multicellular survival. Finally, our models exceed the performance of previous models, without sacrificing
interpretability.

Availability and implementation: All code and processed datasets used to generate results and figures in this manu-
script are available at our Github repository at https://github.com/KISRDevelopment/cell_viability_paper. The reposi-
tory also contains a link to the GI prediction website that lets users search for GIs using the MN models.

Contact: baderalanzi13@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advancements in sequencing technology have allowed the sequenc-
ing of entire genomes in a very short time (Hu et al., 2021). But it is
still challenging to experimentally determine the contribution of
each individual gene within these genomes to organismal viability.
This problem is compounded by the fact that the impact of many of
these genes often depends on the genetic background of the target
individual due to a phenomenon known as Genetic Interaction (GI)
(Collins et al., 2010; Costanzo et al., 2010; Costanzo et al., 2016;
Costanzo et al., 2019) (Summary of the different types of GIs is pro-
vided in Supplementary Fig. S1).

Computational and mathematical models are becoming an es-
sential component for analyzing large biological data sets, such as
the one generated by genomics, since they enable the simulation of

thousands of manipulations, thereby reducing the number of
required laboratory experiments to a more manageable set of key
validations. Indeed, significant effort has been invested in develop-
ing models that can either predict essential genes, characterized by
a lethal phenotype upon deletion (Campos et al., 2019; Campos
et al., 2020; Cheng et al., 2014; Gabriel del Rio, 2009; Li et al.,
2012; Luo and Wu, 2015; Zhang et al., 2016), or identify novel
negative GIs (Al-Aamri et al., 2019; Benstead-Hume et al., 2017;
Benstead-Hume et al., 2019; Chipman and Singh, 2009; Paladugu
et al., 2008; Srivas et al., 2016; Wong et al., 2004; Young and
Marcotte, 2017; Yu et al., 2016). However, analysis of the outputs
of many existing models reveals some limitations (for review, see
Madhukar et al., 2015). First, in the majority of cases, the main
evaluation metric is the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) (Al-Aamri et al., 2019;
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Benstead-Hume et al., 2019; Gabriel del Rio, 2009; Alanis-Lobato,
2013; Li et al., 2012; Mistry et al., 2017; Wong et al., 2004; Wu
et al., 2014), which measures the ability of a binary classifier to
distinguish one class from another (e.g. lethal versus viable) at dif-
ferent false positive rates (Bradley, 1997). Unfortunately, this
method has been shown to overestimate model performance when
the classes being evaluated are imbalanced in size (Davis and
Goadrich, 2006; Saito and Rehmsmeier, 2015). Indeed, a consider-
able portion of biological datasets exhibits such class imbalance. For
example, in budding yeast, negative GIs comprise only about 0.8%
of all double mutant combinations. Some researchers compensate for
this issue by explicitly balancing conditions, either by over-sampling
(e.g. generating a higher count of exceptional conditions) or under-
sampling (e.g. eliminating frequent conditions) (Benstead-Hume
et al., 2019; Campos et al., 2019; Li et al., 2012; Wu et al., 2014).
However, applying such artificial balancing schemes changes the tar-
get statistical distribution, resulting in an overestimation of model
performance. Second, most published models are limited to only bin-
ary predictions (e.g. essential versus non-essential (Campos et al.,
2019; Campos et al., 2020; Li et al., 2012; Luo and Qi, 2015; Luo
and Wu, 2015; Mistry et al., 2017; Zhang et al., 2016), or negative
GIs versus all other interactions (Benstead-Hume et al., 2019; Li
et al., 2012; Wang et al., 2015; Wu et al., 2014). Since most diseased
states are not binary, but rather exhibit variations in their outcome, a
model that can predict more than two states would be more realistic
and biologically relevant. Nevertheless, binary classifications are still
helpful in understanding which features lead to lethality and which
do not. Third, a considerable portion of proposed models is of the
black box type, in which the internal workings of the model are not
made explicit. Indeed, even in cases where the authors assess the ef-
fect of various input features on model performance, such attempts
still do not explain how the model uses the input features to produce
its predictions, i.e. they are still black box models (Benstead-Hume
et al., 2019; Li et al., 2012; Wu et al., 2014). Finally, most of these
studies do not provide comparisons between the proposed, and often
elaborate, computational model to simpler baseline models.

In this article, we used custom feed-forward Neural Networks
(NNs) (Géron, 2019; Goodfellow et al., 2016) to predict the impact
of single, double and triple gene knockout on growth of the budding
yeast Saccharomyces cerevisiae using multiple molecular character-
istics of proteins encoded by the genome. Feature selection was then
performed on these models to create refined models composed of
the smallest set of input features capable of achieving comparable
performance to the full NN models. Additional constraints that
allowed for direct interpretation of these models’ internal structures
resulted in simpler open-box multinomial regression (MN) models
(for model development see Supplementary Fig. S2). All of these
models achieved relatively high performance when evaluated by sev-
eral metrics that are appropriate for imbalanced datasets, such as
Balanced Accuracy (BA), which calculates the average of the per-
class accuracies (Brodersen, 2010; Velez, 2007) and confusion ma-
trix, which shows a complete picture of classifier performance at a
given decision threshold by counting the frequency of all predicted
versus observed class combinations (Ting, 2017). Furthermore, even
though the frequently used AUC-ROC metric is not appropriate for
unbalanced datasets, the performance of these MN models in per-
class classification (lethal versus everything else or interacting versus
neutral) was superior to the null model and was also better than the
reported performance of previously published models (Brodersen,
2010; Ting, 2017; Velez, 2007). Finally, we examined the utility of
these models in other organisms such as the fission yeast
Schizosaccharomyces pombe, the fruit fly Drosophila melanogaster
and humans Homo sapiens. In these organisms, all MN models
showed considerable utility in predicting the impact of single and
double genetic disruptions on viability.

To summarize, we’ve shown that simple MN models can easily
handle tasks that were tackled previously with ML approaches. This
finding is analogous to the well-known work of Ba and Caruana
(Lei Jimmy Ba, 2014) where the authors found that simple shallow
NNs can achieve comparable accuracy to multi-layered convolu-
tional NNs, with the appropriate training algorithm.

2 Results

2.1 A mathematical model predicting the impact of

single gene removal in budding yeast
Genome-wide bioinformatic datasets from budding yeast were
used to generate target gene input features (Breitkreutz et al., 2010;
Gavin et al., 2002; Ho et al., 2002; Oughtred et al., 2019; The Gene
Ontology, 2019; Venters et al., 2011). Overall, close to 300 input
features that are classified into seven broad categories were used.
The yeast single mutant knockout dataset was split into develop-
ment and testing sets. All model development described below was
performed on the development set via repeated cross-validation, and
the final evaluation was performed on the test set. In all cases, mod-
els are trained with weighted categorical cross-entropy, which penal-
izes the models if they fail to assign a high probability to the true
class. For details regarding computational models, input and output
datasets, training and testing dataset splits, cross-validation and
hyperparameter optimization (Supplementary Table S1, sheet 1),
please see Supplementary Materials and Methods.

As stated earlier, one of our main arguments in this article is that
an appropriate metric for evaluating model performance under class
imbalance should be used. We primarily rely on BA, which, for bin-
ary classification, is defined mathematically as follows:

BA ¼ TPRþ TNR

2
(1)

where TPR and TNR are the true positive and negative rates of the
model, respectively. The TPR is the proportion of positively labeled
examples that the model predicted, and the TNR is the proportion
of negatively labeled examples that the model predicted. BA ensures
that a model can’t simply do well by always predicting the majority
class (e.g. saying no all the time) and that a model with no predictive
power would have a BA of 0.5. The BA is extended to handle multi-
class classification as follows:

BA ¼ 1

K

XK

c¼1

fcc

Nc
(2)

where K is the number of classes, Nc is the number of examples in
class c and fcc is the number of correctly identified examples of class
c. Again, this formulation penalizes models that perform poorly on
the minority classes and assigns a BA of 1

K for models with no pre-
dictive power (so for three-way classification, a null model would
achieve BA ¼ 0:333).

A feed-forward NN was used to construct the initial black-box
model (Géron, 2019; Goodfellow et al., 2016) (Supplementary Fig.
S3A). This single gene fitness full model (S-Full), which uses all input
feature sets, performs well when identifying lethal and normal class
single mutants and performs moderately when predicting the reduced
growth class on the development dataset (Fig. 1A, solid purple).

Feature selection was performed on the development dataset by
enumerating all possible combinations of input feature sets generat-
ing 127 models, followed by selecting the model with the smallest
set of input features that achieves the highest prediction perform-
ance (Supplementary Table S2). This produces a single gene fitness
refined model (S-Refined) that uses three types of input features:
First, the basic 45 slim Gene Ontology (sGO) terms shared with
other organisms that broadly describe the biological processes of the
target protein, its localization in cellular compartments and its mo-
lecular activity (The Gene Ontology, 2019). The second feature is
the LID centrality, which is the density of connections remaining be-
tween the direct neighbors of the protein encoded by the target gene
after its removal in the protein-protein interaction network (PPI)
(Luo and Qi, 2015) and is considered to be a proxy for the level of
internal connectedness of the target protein complex. The third fea-
ture is the sequence percent identity, which is the level of sequence
homology between the target protein and its closest BlastP match in
the yeast genome. The relevance of these selected input features was
confirmed by assessing their statistical differences in the different
output classes (Fig. 1B–D).
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It is worth noting that the most prevalent sGO terms in the lethal
class are terms for processes that are essential for survival, meaning
they are required under optimal growth conditions (Zhang and Ren,
2015), such as nucleolus (essential for rRNA production and proc-
essing; Alberts B, 2002), nucleotidyltransferase activity (necessary
for DNA repair; Yuan Liu, 2007) and transcription factor binding
(necessary for RNA synthesis; Babu, 2004). For genes whose muta-
tion was predicted to result in normal growth, however, the opposite
distribution pattern was observed, with the normal class being
enriched with sGO terms such as hydrolase activity, which acts on
glycosyl bonds and is required to break complex carbohydrates and
amino acid transport. Both of these are less essential as budding
yeast, which is capable of synthesizing most amino acids de novo,
and can grow in media supplemented with simple monosaccharides
(i.e. dextrose) as an energy source (Dever and Hinnebusch, 2005).

Using this minimum set of input features, we generated a simpler
interpretable multinomial regression model (S-MN). This model has

one equation per output class (i.e. lethal and reduced growth), each
specifying the log odds of the probability of the corresponding class
relative to a reference normal growth class. All equations follow the
same structure:

LOG
p x

p n

� �
¼ box þ b1xLIDþ b2xPident þ

P
ib iþ2ð ÞxsGOi (3)

The S-MN model equations are defined in terms of log odds
with respect to the neutral class for the purpose of interpreting the
model coefficients only. Thus, similar to the NN models, it still must
distinguish between all classes in order to achieve high performance.

In Equation (3), x denotes the lethal and reduced growth classes, px

represents the probability of the corresponding class and pn represents
the probability of the normal growth class. The input features are the
same as the refined model: The LID, the percent identity to the closest
BlastP match and the sGO terms. Each feature has a coefficient bix

which quantifies its contribution to the prediction. Those coefficients are

Fig. 1. Performance of computational models when predicting the impact of single gene disruption on budding yeast viability. (A) Models’ performance as measured by overall

BA on both the development dataset (solid color) and test dataset (hatched color), confusion matrices on the test dataset and per-class ROC on the test dataset (with the corre-

sponding AUC-ROC values). The purple, red, blue and gray colors correspond to the S-Full, S-Refined, S-MN and null models, respectively. Error bars in the development set

BA plots (solid color) correspond to SDs. The lack of error bars on test dataset BA results (hatched color) is due to the models being tested on a single withheld test dataset.

Asterisks represent Bonferroni-corrected P-values, P < 0:05
C (*), P < 0:01

C (**), P < 0:001
C (***), and P <0:0001

C (****), where C¼6, and asterisk colors correspond to the models

being compared. (B and C) Differences in the distributions of input features used in the S-Refined and S-MN models across the three single mutant fitness classes. (B) A heat-

map representing the prevalence of a given sGO term in the lethal (L), reduced growth (R) and normal growth (N) output classes. The heatmap is sorted along the prevalence

in the L class. The values inside the cells correspond to the class distribution for each term. (C and D) Violin plots showing the distribution in each output class of the LID and

percent amino acid identity, with an illustration of these input features in the upper portion of each panel. The circle in each violin corresponds to the median value and the

thick black line corresponds to the interquartile range (middle 50% of observations). Asterisks in (B) and (C) represent the Bonferroni-corrected reliability of the Kruskal–

Wallis test with C¼ 3 (A color version of this figure appears in the online version of this article.)
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free parameters and are learned from the training set via stochastic gra-
dient descent (see Supplementary Materials and Methods). On the devel-
opment dataset, the S-MN model achieved similar performance in terms
of overall BA to the S-Refined and S-Full models (Fig. 1A, solid blue).
The coefficient values can be easily interpreted, for example, the removal
of genes with sGO term Ligase activity increases the odds of a lethal
phenotype by a factor of 2.31. For a full list of the three-way S-MN clas-
sifier coefficient values, please see Supplementary Table S3, sheet 1.

Finally, on the withheld test dataset, the S-Full, S-Refined and
S-MN models achieved similar prediction performance, indicating
that our methodology did not overfit (Chicco, 2017) (Fig. 1A, hatched
purple, red and blue, respectively). We note that the performance on
the withheld test set is higher than on the development set which might
be counter-intuitive. However, since the withheld test set was random-
ly sampled from the original dataset, it could be the case that it just
happened to be slightly easier than the development set by chance (re-
call that the results on the development set are obtained by averaging
over 50 replications). All in all, all models achieve BA > 0.6, which is
double the chance rate of 0.33, and shows that they are not merely
predicting the majority normal class all the time.

2.2 The D-MN model can predict double-gene GIs in

budding yeast
An approach similar to the one employed to generate the single mutant
fitness models was used to construct a model capable of predicting GIs
in budding yeast. However, additional input features were considered,
such as impact of removing each gene in the target gene pair on cell via-
bility, and pairwise gene features, such as the shortest path length be-
tween the proteins encoded by the target gene pair. The NN
architecture was also modified to account for the symmetry between
genes in a pair (i.e. pair A-B is the same as B-A). Specifically, a Siamese
NN architecture (Jane Bromley, 1993) containing three sub-NNs mod-
ules was used: The first two modules were identical and contained sub-
NNs that process input feature sets of either gene in a given gene pair
while the third module contained a sub-NN that processes pairwise fea-
ture sets that jointly characterize both genes in the pair (Supplementary
Fig. S3B). All model development was performed similarly to the single
mutant fitness models stated above (please see Supplementary Materials
and Methods and Supplementary Table S1, sheet 2).

The double gene GI full model (D-Full) reliably, but modestly, out-
performed the control null baseline model on the test dataset
(Supplementary Fig. S5A, purple). However, it is known that budding
yeast genes can remain functionally inactive under normal growth con-
ditions and only become activated under specific sets of culture condi-
tions (e.g. high salt, high temperature, growth on non-fermentable
sugars, etc.) (Imbeault et al., 2008; Raja et al., 2017; Waples et al.,
2009). GIs between such genes will be undetectable under normal
growth conditions, given that the relevant signaling pathways are not
active to begin with and thus cannot be suppressed or enhanced. To
overcome this issue, a hybrid dataset was created by combining the
neutral interactions in the Costanzo et al. (2016) dataset with GI data-
sets from BioGRID (Imbeault et al., 2008; Raja et al., 2017; Waples
et al., 2009; See Supplementary Materials and Methods).

On the development portion of this hybrid dataset, the D-Full
model performed well with the only exception being the positive GI
class (Fig. 2A, purple). This difference in performance between the
two datasets can be explained by the stricter criteria of inclusion in
the hybrid datasets (at least three reported publications).

The same feature selection procedure used on the single mutant fit-
ness model was applied to determine the smallest number of input fea-
ture sets that can be used without loss of predictive performance on the
development portion of the dataset (see Supplementary Table S4). This
produced a double gene GI refined model (D-Refined) with comparable
performance to the D-Full model (Fig. 2A, solid red). The D-Refined
model takes only four input feature sets: the LID centrality score of the
proteins encoded by the target genes, the experimentally derived impact
of removing the target genes on cell viability, the shortest path length
between the proteins encoded by the target gene pairs, and the sGO
terms associated with the genes in the gene pair. Analysis of selected in-
put features indicates that the frequent mislabeling of positive GIs as

negative GIs is most likely due to both GI classes being enriched in
gene pairs with reduced growth phenotypes in single mutants (Fig. 2B)
and have statistically insignificant differences in the distributions of
shortest path length and LID scores (Fig. 2C and D, respectively). This
is unlike the suppression and neutral GI classes, in which a clear and
statistically difference between the negative and positive GI classes with
respect to all three input features is observed (Fig. 2B–D, blue).

The above analysis indicates that an enrichment in interacting gene
pairs occurs if they encode proteins that are part of the same molecular
complex, since proteins within such context are expected to share a sig-
nificant number of sGO terms, to be in close contact with one another
and have a high LID score. Such a possibility is supported by previously
published literature (Bandyopadhyay et al., 2008; Bellay et al., 2011;
Costanzo et al., 2016). The analyses from these published works were
further expanded in order to distinguish between interactions within
complexes from those within pathways (for data processing and list of
selected molecular complexes and pathways please see Supplementary
Material and Methods and Supplementary Table S5). Our analysis
indicates that less than 5% of gene pairs that encode proteins that are
not part of the same molecular complex or pathway show GIs with
each other. This proportion significantly increases if the gene pair enco-
des proteins that are part of the same complex or pathway (40% and
20%, respectively; Fig. 2H–J).

Using the minimum set of input features required for making
good predictions, we created a simpler open box double gene GI
predicting MN model (D-MN) which has three equations, each
specifying the log odds of the probability of the corresponding class
(negative, positive and suppression) relative to a ‘reference’ neutral
class. All equations followed the same structure:

LOG
p x

p n

� �
¼ /0x þ /1xðLIDA þ LIDBÞ þ /2xLLþ /3xLR

þ /4xLN þ /5xRRþ /6xRN þ /7xNN þ /8xSPL

þ
X

i

/ðiþ8ÞxðsGOA
i þ sGOB

i Þ

(4)

Similar to the S-MN model, the D-MN model equations are defined
in terms of log odds with respect to the neutral class for the purpose
of interpreting the model coefficients only.

In the equation, x denotes the negative, positive and suppression
classes and px represents the probability of the corresponding class
(with pn representing the probability of the neutral class). The input
features are as follows: the sum of LID scores of the two genes
LIDA þ LIDBð Þ, all possible combinations of single mutant fitness

readings of the two genes (both lethal LL, one lethal and one reduced
LR, one lethal and one normal LN, both reduced RR, one reduced and
one normal RN, and both normal NN), the shortest path length be-
tween the genes (SPL), and finally whether both genes share the same
sGO terms or if either of them has a given sGO term (sGOA

i þ sGOB
i ).

The coefficients /ix correspond to weights imposed on the input fea-
tures, which, as with the S-MN model, are free parameters and are
learned via stochastic gradient descent. Since these coefficients are
indexed by x, there is a separate set of coefficients for each of the GI
classes. The D-MN performs similarly to the D-Refined model on the
development dataset (Fig. 2, solid blue). For a full list of the four-way
D-MN model coefficient values, see Supplementary Table S6, sheet 1
which can be easily interpreted as with the S-MN model.

Finally, on the withheld test dataset, the D-Full, D-Refined and
D-MN models achieved very similar prediction performance (Fig. 2,
hatched purple, red and blue, respectively) with a BA of about 0.55,
which is more than double the chance rate of 0.25, indicating that
despite the significant imbalance in the budding yeast GI dataset (al-
most 7 000 000 neutral versus about 23 000 GIs), the models are
able to distinguish the classes from each other (except for the posi-
tive class, which is often confounded with the negative class).

2.3 The T-MN model can predict negative GI of a triple

gene knockout in budding yeast
An extensive dataset reporting triple gene knockout manipulation
covering 310 genes in budding yeast was published (Kuzmin et al.,
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Fig. 2. Performance of computational models when predicting double gene knockout GIs in the budding yeast. (A) Models’ performance on the development and test sets as

measured by overall BA, confusion matrices and per-class AUC-ROC. The purple, red, blue and gray colors correspond to the D-Full, D-Refined, D-MN and null models, re-

spectively. In all panels, the output classes are negative (�), neutral (N), positive (þ) and suppression (S). Statistical analysis (error bars and asterisks) is similar to Figure 1

with the asterisk color reflecting the model being compared. (B–G) Differences in the distributions of input features used in the D-Refined and D-MN models across the four

double gene knockout GI classes. (B) Matrices showing rows and columns which correspond to the single mutant fitness of the first and second gene in a pair: lethal (L),

reduced growth (R) and normal (N). Each cell in a table shows the relative frequency of a particular pair of single mutant fitness classes in a GI class. (C) The distributions of

the shortest path lengths separating proteins encoded by the target gene pairs in each GI class as compared to the average shortest path length between any protein pair in the

PPI network (gray dashed line). (D) Violin plot showing the distribution of sum LID of proteins encoded by the target gene pairs in each of the four output classes. Statistical

tests and symbols in the violin plot are similar to Figure 1. (E–G). The prevalence of sGO term pairs in a given GI class in matrix format. In each matrix, the cell color intensity

indicates how often the sGO term of gene A (rows) appears with the sGO term of gene B (columns). The tick marks correspond to specific sGO terms: kinase activity (1), pro-

tein targeting (2) and chromosome (3). For a magnified version which includes the full labels of the sGO terms, see Supplementary Figure S6. (H) Cartoon of possible GIs com-

binations that can occur between genes in molecular complexes and pathways. The arrow represents negative (red), positive (green) and suppression (blue) GIs between genes
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2018). However, this dataset only reports the negative and neutral
phenotypes with the positive and suppression phenotypes being
excluded by the authors due to low signal-to-noise ratio. Despite
this caveat, the dataset remains worthy of examination.

Models predicting the impact of triple gene knockout on bud-
ding yeast viability were constructed using a similar approach to the
one used to generate the D-MN model (Supplementary Fig. S3C).
For details regarding computational models, input and output data-
sets, training and testing dataset splits and cross-validation, please
see Supplementary Materials and Methods.

The triple gene GI full model (T-Full), which utilizes all input
features, reliably outperformed the control null baseline model
(Fig. 3, solid purple) on the development set. Feature selection
showed that the most important prediction features are sGO terms,
single mutant fitness of individual genes, LID and shortest path
length (full feature selection results are reported in Supplementary
Table S7). Indeed, results show that a triple gene GI refined
(T-Refined) model based on these features alone performs almost as
well as the T-Full model (Fig. 4, solid red). Analyses of these input
features confirm this as they show reliable statistical differences be-
tween the neutral and negative classes (Fig. 3B–G).

Similar to what is observed in the double-gene GI data, within-
complex triplets are more enriched in GIs than across-complex trip-
lets. An observation that was confirmed by analyzing same set of
curated protein complexes used in the double-gene knockout GI
analysis (Fig. 3H–L).

Based on the T-Refined model, a simpler triple gene GI MN
model (T-MN), which uses the same features, was constructed. The
model has one equation specifying the log-odds of the probability of
the negative class relative to the neutral class:

log
p�
pn

� �
¼ x0 þ x1ðLIDA þ LIDB þ LIDCÞ þx2SCLþ x3LLL

þ x4LLRþ x5LLN þ x6LRRþ x7LRN þx8RRN
þ x9RNN þ x10RRRþ x11NNN þ x12NNL

þ
X

i

xðiþ12ÞðsGOA
i þ sGOB

i þ sGOC
i Þ

(5)

The input features are guided by the above-mentioned feature
analysis: the sum of LID scores, all possible unique combinations of
single-mutant fitness readings of the three genes (a total of 10 com-
binations), the shortest circuit length (SCL) and the number of genes
sharing each sGO term. Similarly to the weights in the previous
equations, the coefficients xk are free parameters learned via sto-
chastic gradient descent. Figure 3 shows that the T-MN model
slightly lags behind the T-Refined model in terms of overall BA on
the development dataset (Fig. 3, blue). For a full list of the T-MN
classifier coefficient values, please see Supplementary Table S8.

Finally, on the withheld test dataset, the T-Full, T-Refined and
T-MN models achieved very similar prediction performance, indi-
cating that our methodology did not produce overfitting (Fig. 3
hatched purple, red and blue bars, respectively). Again, BA of
0.65–0.70 shows that the models can distinguish neutral and nega-
tive GIs despite the former class having significantly more examples
than the latter (about 72 000 neutral versus approximately 3000
negative GIs).

2.4 The S-MN model has utility in other organisms
Next, we examined the ability of both the S-Refined and S-MN
models to predict the impact of single gene disruptions on the fitness
of other organisms: specifically, fission yeast, fruit flies and humans.
However, the available datasets for these organisms differ from
those available for budding yeast in two important aspects. First, the
volume of bioinformatic data is not as extensive as the ones

available for budding yeast, making it challenging to construct an S-
Full black box model equivalent to the one generated for budding
yeast. Second, even though the effect of knocking out a given gene
on cell viability, i.e. its cell-autonomous (CA) role, can be directly
evaluated in unicellular organisms such as fission yeast, the same
cannot be said for fruit flies and humans, as those organisms likely
possess sets of genes that are essential only at the multicellular level,
i.e. multi-cellular organismal (MO) lethal.

To identify cell autonomous CA genes, we obtained data from
single mutant gene knockouts in fission yeast (Kim et al., 2010;
Ryan et al., 2012), the fruit fly S2 cell line (Viswanatha et al., 2019)
and the human embryonic stem cell line HUES62 (Shalem et al.,
2014). Given that the data for the latter two cell lines were collected
from studies that utilized CRISPR, a method that is more specific
than RNAi and that cell viability was directly evaluated, we can
confidently state that the reported results for these target genes are
CA-specific.

Since no model development was performed on these datasets,
we evaluated models using the input feature types identified in the
budding yeast dataset. In all three organisms, the S-Refined and
S-MN models were significantly better than the null model, with
confusion matrices showing a strong performance in predicting both
the lethal and normal classes (Supplementary Fig. S7A–C).
However, only in the human datasets do we observe a moderate
ability of the S-MN model in distinguishing among genes that cause
reduced growth when knocked out from other genes that cause le-
thality or normal growth. For a full list of the three-way organism-
specific S-MN model coefficient values, see Supplementary Table
S3, sheet 1.

The tremendous interest in identifying essential/lethal genes in
specific pathological cell contexts (Cheng et al., 2014; Li et al.,
2012; Luo and Wu, 2015) prompted us to reevaluate our model’s
performance when the output classes of single mutant fitness are
grouped into only two classes: viable (including reduced growth
and normal) and lethal. Both the S-Refined and S-MN models
perform significantly better when this grouping scheme is utilized
(Fig. 4A–D). The BA score of about 0.77 in the human and fruit fly
datasets is especially impressive given the significant class imbalance
in those organisms (16 000 viable human genes versus 586 lethal
and 12 000 viable fruit fly genes versus 1214 lethal). Again, this
BA score indicates that the models are not trivially predicting the
majority class all the time. For a full list of coefficient values for
the binary organism-specific S-MN models, see Supplementary
Table S3, sheet 2.

Recently, a human sequencing dataset has become available in
which polymorphisms that cause early stop codons in various
human subject genes were detected (Karczewski et al., 2020). Using
this data, we extracted a list of genes that are essential for multi-
organismal (MO) viability and those that are not by subtracting CA
lethal genes identified by Shalem and others (Shalem et al., 2014).
We also used a similar approach for fruit fly datasets by subtracting
CA lethal genes identified by Viswanatha et al. (2018) from the list
of lethal genes deposited in Flybase (Thurmond et al., 2019; For the
methodology used to identify MO genes see Supplementary
Material and Methods). Both the S-Refined and S-MN models
perform well in distinguishing MO lethal from MO viable genes
(Fig. 4E and F).

This performance prompted the next question: can our models
distinguish between CA, MO and viable genes? Results show that
the S-Refined and S-MN models can indeed distinguish between
these three classes in humans and fruit flies (Supplementary Fig. S8).
We note that on the fruit flies, the viable class is 10 and 5 times as
large as the CA and MO classes, respectively, yet the model still
achieves BA > 0.6, showing that it is not merely predicting the
viable class all the time.

Fig. 2. Continued

that belong to the same molecular complex (left panel), between genes that belong to different molecular complexes (a and b) but are on the same pathway as indicated by the

black arrow, and between genes that belong to different molecular complexes and pathways (right panel). For each complex (I) and pathway (J), we compute the distributions

of within-complex (solid bars) and across-complex (textured bars) interactions over the four output classes. Asterisks correspond to P-value levels of two-sided t-test (A color

version of this figure appears in the online version of this article.)
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Fig. 3. Performance of computational models predicting triple gene knockout negative GIs in the budding yeast. (A) Models’ performance on the development and test sets as

measured by the same metrics in Figures 1 and 2. The purple, red, blue and gray colors correspond to the T-Full, T-Refined, T-MN and null models, respectively. In all panels,

the output classes are negative (�) and neutral (N). Statistical analysis (error bars and asterisks) is similar to Figure 1. (B–G) Differences in the distributions of the input

features used in the T-Refined model in the negative (magenta) and neutral (cyan) triple gene knockout GI classes. (B) Shows the percentages for each possible combination of

single mutant fitness readings. Each tick along the x-axis shows the number of lethal (L), reduced growth (R) and normal genes (N) in the combination. (C) The 10 combina-

tions in (A) are pooled into two categories: combinations where the number of genes with normal single mutant fitness is less than 2 and combinations where the number is

greater than or equal to 2. (D) Violin plot showing the distribution of the sum LID of the proteins in the two classes. (E) Distributions of the SCL connecting the protein triplets

in each class. (F) The data in E are combined into two categories: the first contains protein triplets that are connected by less than eight steps, while the other contains protein

triplets connected by more than eight steps. (G) The number of sGO terms shared by proteins in the triplets in each class. A triplet is deemed to share an sGO term if at least

two genes in the triplet are associated with the given sGO term. Asterisks correspond to the significance of Chi-squared test comparing the negative (magenta) and neutral

(cyan) feature distributions. (H) The percentage of gene triplets encoding proteins in the same molecular complex (Within) or from different molecular complexes (Across)

that cause negative GI (magenta) or neutral GI (cyan). (I–L) feature distributions of gene triplets encoding proteins in the same molecular complex (Within, magenta color) or

different molecular complexes (Across, cyan color). (I) Triplets containing at most one normal gene (N<2) or at least two normal genes (N� 2). (J) Violin plot showing the

distribution of the sum LID of the proteins encoded by gene triplets in the two categories. (K) Percentage of triplets connected by a circuit of less than eight steps (<8) or at least

eight steps (�8). (L) Percentage of triplets sharing 0, 1, 2, 3, 4 and 5 sGO terms (A color version of this figure appears in the online version of this article.)
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2.5 D-Mn models can predict GIs in other organisms
In fission yeast, a methodology that can generate extensive double
mutant pairs between non-essential genes has been used to produce
a comprehensive list of GIs (Roguev et al., 2007; Roguev et al.,
2018). We used this list in combination with data from BioGRID to
create a hybrid dataset. The D-Refined and D-MN models perform

reasonably well and can distinguish most GI categories, with the ex-
ception of the positive GI class (Supplementary Fig. S5B).

Unlike budding and fission yeast, most human and fruit fly GI
datasets were generated using either enhancement or suppression of
an overexpressed hyperactive or dominant negative target gene
(Grimm, 2004; Jorgensen and Mango, 2002; St Johnston, 2002).

Fig. 4. Performance of binary S-Refined and S-MN models when predicting single gene knockouts with CA or MO lethality in (A) S. cerevisiae, (B) S. pombe, (C) H. sapiens

(cellular autonomous), (D) D. melanogaster (cellular autonomous), (E) H. sapiens (multiorganismal), and (F) D. melanogaster (multiorganismal). Statistical analysis (error

bars and asterisks) is similar to Figure 1 with the asterisk color reflecting the model being compared
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Fig. 5. Performance of the D-Refined and D-MN models when predicting GIs in S. cerevisiae, S. pombe, H. sapiens and D. melanogaster. (A) Representation of schemes used

to generate GIs in a hypothetical signaling pathway controlling fruit fly eye development. Gene A is in a positive signaling relationship with gene C (red arrow), gene B is in an

inhibitory relationship with gene C (blue line) and gene C sends a signal that promotes eye development. In this example, a transgene is used to express either dominant nega-

tive or hyperactive forms of gene A specifically in the eye: the dominant negative gene A reduces pathway signaling which produces mildly rough eyes, while the hyperactive

form causes a reduced eye with abnormal pigmentation. Both transgenes can be used either in a haploinsufficiency screen in which one copy of gene B or C is removed (gray

circles), or overexpression screen in which gene B is overexpressed. Thickness of arrows and lines reflects changes in signaling levels. (B–E) Performance of the D-Refined (red),

D-Refined with no sGO (orange), D-MN (blue), D-MN with no sGO (cyan) and null GI model (white) when predicting interacting (I) versus neutral (N) on the S. cerevisiae

(B), S. pombe (C), H. sapiens (D) and D. melanogaster (E) GI datasets. Statistical analysis (error bars and asterisks) is similar to Figure 1A with the asterisk color reflecting the

model being compared (A color version of this figure appears in the online version of this article.)
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This is typically followed by introduction of gene manipulation
strategies that include RNAi, haploinsufficiency (removal of one
copy of a gene in a diploid genome) or systematic overexpression of
target genes (Belfiori-Carrasco et al., 2017; Boutros and Ahringer,
2008; Gregory et al., 2007; Raymond et al., 2004; Therrien et al.,
2000). These different manipulations can potentially convert what is
classified as a negative GI in certain experimental contexts into a
suppressor GI in other contexts (Fig. 5A). While these differences
can be addressed by systematically identifying the experimental ap-
proach used within each primary reference cited by BioGRID or
FlyBase, manual revision of existing curated entries is a daunting
task. Therefore, to reduce this context-dependent nature of observa-
tions, we grouped negative, positive and suppression observations in
all organisms into a single category simply referred to as GI.
Another disadvantage of the BioGRID and FlyBase databases is their
lack of reporting on non-interacting gene pair data that can be
placed in the neutral class. To overcome this lability, we randomly
generated such a class by negative sampling such that no neutral
pair was ever present in the GI pairs dataset, an approach that has
been done previously (Benstead-Hume et al., 2019).

In all tested organisms, both the D-Refined and D-MN models ex-
hibit superior performance compared to the null model (Fig. 5B–E;
for a full list of coefficient values and confidence intervals for the
binary classification tasks, see Supplementary Table S6, sheet 2). We
note that the BA of the D-Refined and D-MN models are highest on
the human and fruit fly GI datasets, which is most likely due to the
randomly sampled neutral GIs in those organisms. However, even
though these two datasets where explicitly constructed to have a
high negative to positive ratio (1 000 000 neutral GI versus a few
thousand GIs) to mimic the imbalance in the yeast GI dataset, the
high BA of D-Refined and D-MN models shows that they perform
well on both neutral and GI classes and that they are not trivially
predicting the majority class, i.e. they are not predicting neutral GI
all the time.

Our previous analyses in budding yeast indicate that most GIs
occur between gene pairs that encode units of the same molecular
complexes or pathways. Therefore, it is possible that both the
D-Refined and D-MN models will only show a minor drop in per-
formance if input features are limited to those that are good proxies
for complex/pathway membership and the impact of each gene in
the pair on viability, namely LID, shortest path length and single
mutant fitness. To examine this possibility, models without sGO
(D-Refined-No sGO and D-MN-No sGO) were evaluated on the
binary classification task (interacting versus neutral). With the ex-
ception of humans, which show no difference in performance, all
other GI predicting models that are missing the sGO components
show a modest, but statistically significant, drop in performance
(Fig. 5B–E, cyan). This indicates that the models’ GI predictions are
not simply based on common biological function between the target
gene pair, as might be indicated by them sharing sGO terms that re-
flect biological function. Nevertheless, the observed modest and
statistically significant drop in performance when these sGO terms
are removed justifies their inclusion as an input feature in both the
D-Refined and D-MN models.

2.6 Mn models show superior performance to

previously published models
Given the existence of previous computational models designed to
predict the impact of single gene knockout on organismal viability,
and the development of models that can predict negative GIs, it is
critical to compare the construction/architecture and performance
of the MN models described here to these previously published mod-
els. However, such direct comparisons pose some challenges: First,
the same performance metrics must be used for the comparisons to
be valid. Unfortunately, most of the previously published models
employ AUC-ROC (Al-Aamri et al., 2019; Benstead-Hume et al.,
2017; Gabriel del Rio, 2009; Mistry et al., 2017; Wong et al., 2004;
Wu et al., 2014) to assess model performance, which is not an ap-
propriate metric for imbalanced datasets (Davis and Goadrich,
2006; Saito and Rehmsmeier, 2015). Second, the majority of single

mutant fitness models were not evaluated in a training/testing setup
since they make very strong and restrictive assumptions about the
relationship between input features and output phenotype (i.e. gene
X is essential because it has a high score in only one or two features;
Gabriel del Rio, 2009; Luo and Qi, 2015; Luo and Wu, 2015;
Mistry et al., 2017). Third, some of the GI models were evaluated
on artificially balanced test sets, which can inflate their performance
(Benstead-Hume et al., 2019; Campos et al., 2019; Wu et al., 2014).
Fourth, the majority of previous models only predict binary out-
comes (i.e. lethal/essential genes versus everything else or negative
GIs versus everything else) while the MN models have a harder task
of predicting more outcomes (lethal, reduced growth and normal for
the single gene knockout prediction, and negative, neutral, positive
and suppression for GI prediction). Nevertheless, some measure of
comparison is needed, and the budding yeast dataset was selected
for this purpose as it is the most widely used.

Published models that are recent and/or have high reported per-
formance were selected for the comparisons, and all were evaluated
via the exact same pipeline used to evaluate the MN models
described in this work (the same cross-validation splits and evalu-
ation metrics of BA, confusion matrix and AUC-ROC) without arti-
ficial balancing. In all cases, these models were compared to the
interpretable binary S-MN models that predicts lethal versus viable,
and the binary D-MN models that predict negative versus everything
else (for details, see the Comparisons with Other Models Section in
the Supplementary Materials and Methods).

For the single mutant fitness, we compared the models developed
by Campos et al. (2019), Mistry et al. (2017) and Luo and Qi
(2015). The Campos et al. model uses 9920 amino acid sequence
features of proteins encoded by the budding yeast genome to distin-
guish essential genes. The Mistry et al. model utilizes the DiffSLC
graph centrality metric developed by the authors to distinguish es-
sential genes. This centrality uses a weighted combination of eigen-
vector centrality and the sum of protein co-expression correlations
of a particular protein to characterize the importance of the gene
that encodes it. Finally, Lou et al. developed the LID-IDC metric,
which uses a weighted combination of LID centrality and complex
membership of a protein to determine the importance of the gene
that encodes it. The single gene S-MN model outperforms all the
above-stated models in overall BA, confusion matrix and AUC-
ROC (Supplementary Fig. S9A).

Turning to the GI tasks, the models developed by Benstead-
Hume et al. (2019), Yu et al. (2016) and Alanis-Lobato et al. (2013)
were selected for comparison. The Benstead-Hume et al. model
exploits conserved patterns in the protein interaction network top-
ology both within and across species to predict negative GIs. The
model proposed by Yu et al utilizes the hierarchical organization of
the full set of budding yeast GO terms for its predictions. Finally,
the model proposed by Alanis-Lobato et al. uses topology-based
pairwise Adjusted-Czekanowski–Dice Dissimilarity (ACDD) feature
for negative GI prediction. The D-MN model outperforms all the
above-stated models in overall BA, confusion matrix and AUC-
ROC (Supplementary Fig. S9B). Note that while the models by Yu
et al. (2016) and Alanis-Lobato et al. (2013) achieve an AUC-ROC
of 0.74 and 0.67, respectively, their confusion matrices illustrate a
clear problem. Yu et al. (2016) model only identifies 47% of the
negative class, with the remaining 53% being incorrectly predicted
as not negative, while the Alanis-Lobato et al. (2013) model does
the opposite: it only identifies 41% of the non-negative class and in-
correctly predicts the remaining 59% as negative. Of course, using a
different decision threshold to generate the confusion matrices might
ameliorate the issue for both models, but we can say that at the com-
mon decision threshold of 0.5, both models confound the two GI
classes. The discrepancy between AUC-ROC and confusion matrices
shows why it is important to use multiple evaluation metrics, includ-
ing those that can handle class imbalance.

In conclusion, the analysis described above demonstrates that
the MN models frequently perform better than previously pub-
lished models when evaluated on equal grounds. Also, as stated
before, unlike the majority of these models, the MN models offer
direct interpretability of the relationship between input features
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and outputs, which is crucial for understanding the basis for a
model’s predictions.

3 Discussion

In this article, we report the development of MN models that can
predict the impact of genetic disruptions on organismal viability.
These models were developed via a sequential process that initial-
ly started with more than 300 gene input features classified into
seven broad categories which were then pared down via feature
selection. The selected features were then used to develop equally-
predictive open box MN models that provide clear explanations
of the form: if the value of feature X increases by one unit, the
odds of predicted lethality by the S-MN or GI by the D-MN mod-
els increase by factor Y.

The S-MN model, which can predict the impact of single gene
knockouts on organismal viability, is composed of three input
features: a set of sGO terms that broadly describe the biological pro-
cess, molecular function and the cellular compartment of the target
gene product, the LID score, which measures the connectivity of the
molecular complex to which the protein encoded by the target gene
belongs, and finally the level of homology between the target gene and
other genes encoded by the host genome. The D-MN model predicts
GIs and utilizes the sGO terms, LID score, single-mutant fitness of
both genes in a given gene pair, and the distance between the target
gene pair’s protein products in the PPI network, features that are clear-
ly related to whether the target gene pairs encode proteins in the same
molecular complex or pathway. A third MN model, T-MN, which
uses the same features as D-MN, also achieves good performance in
predicting negative GIs in triple gene knockout in budding yeast.

It is worth noting that, when compared on equal grounds, both S-
MN and D-MN models outperform previously published models.
Furthermore, our analyses show that the D-MN is not simply predict-
ing GIs involving gene pairs with direct protein-protein interaction or
common biological function as reflected by sGO terms (See
Supplementary Materials and Methods and Supplementary Fig. S10).

The input features used by these models give relatively straightfor-
ward explanation of their abilities to predict the impact of genetic dis-
ruption on organismal fitness: The more the target gene participates in
essential molecular processes, as described by sGO terms, the more
likely its removal will reduce cell viability. This impact will be ampli-
fied if the target gene encodes a protein that is part of a highly con-
nected complex, as reflected by its LID score, but it gets reduced when
the genome contains other genes with enough sequence similarity to
function as backups. The further removal of another target gene in
such a background can modify its impact on organismal viability if
both genes encode proteins that are part of the same complex or path-
way, as indicated by the shortest path length. Even though the S-MN,
D-MN and T-MN models differ in the types of input features used,
they do share some features such as LID centrality and sGO terms but
their contribution is task-specific (see Supplementary Materials and
Methods and Supplementary Fig. S11).

The input features utilized in all three models can easily be cura-
ted in other organisms. Indeed, when the S-MN and D-MN models
were trained only on the budding yeast dataset, they were still able
to perform well on other organisms’ datasets (without training on
those organisms). For details, please see Supplementary Materials
and Methods and Supplementary Figure S12.

In all cases, even though the MN models are only composed of
first-order terms, their performance still matches or is close to the
NN models, indicating that interactions among different input fea-
tures within a given MN model do not contribute synergistically to
prediction performance, with each feature contributing additively
and independently to the final predictions.

It is worth stating that these MN models have important bio-
medical applications, such as the identification of disease-specific es-
sential genes (Benstead-Hume et al., 2017). Due to these potential
biomedical applications, we have created a website (see Availability
and Implementation) that provides a list of novel GI predictions
at different thresholds for all tested organisms (Supplementary
Fig. S13). These predictions can be used by researchers to obtain

generalizable insights in order to design large-scale genetic experi-
ments in a rational, targeted and economically feasible way.
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Géron,A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, tools, and techniques to build intelligent systems.

O’Reilly Media.

Gregory,S.L. et al. (2007) A drosophila overexpression screen for modifiers of

rho signaling in cytokinesis. Fly (Austin), 1, 13–22. https://doi.org/10.4161/

fly.3806

Grimm,S. (2004) The art and design of genetic screens: mammalian culture

cells. Nat. Rev. Genet., 5, 179–189. https://doi.org/10.1038/nrg1291

Ho,Y. et al. (2002) Systematic identification of protein complexes in

Saccharomyces cerevisiae by mass spectrometry. Nature, 415, 180–183.

https://doi.org/10.1038/415180a

Hu,T. et al. (2021) Next-generation sequencing technologies: an overview.

Hum. Immunol., https://doi.org/10.1016/j.humimm.2021.02.012

Goodfellow,I.,Bengio,Y. and Courville,A. (2016). Deep Learning. The MIT

Press, Boston, MA.

Imbeault,D. et al. (2008) The Rtt106 histone chaperone is functionally linked

to transcription elongation and is involved in the regulation of spurious

transcription from cryptic promoters in yeast. J. Biol. Chem., 283,

27350–27354, https://doi.org/10.1074/jbc.C800147200

Jane Bromley,I.G. et al. (1993) Signature verification using a "siamese." Time

Delay Neural Network International Journal of Pattern Recognition and

Artificial Intelligence, 7, 25.

Jorgensen,E.M. and Mango,S.E. (2002) The art and design of genetic screens:

caenorhabditis elegans. Nat. Rev. Genet., 3, 356–369. https://doi.org/10.

1038/nrg794

Karczewski,K.J. Genome Aggregation Database Consortium. et al. (2020) The

mutational constraint spectrum quantified from variation in 141,456 humans.

Nature, 581, 434–443. https://doi.org/10.1038/s41586-020-2308-7

Kim,D.U. et al. (2010) Analysis of a genome-wide set of gene deletions in the

fission yeast Schizosaccharomyces pombe. Nat. Biotechnol., 28, 617–623.

https://doi.org/10.1038/nbt.1628

Kuzmin,E. et al. (2018) Systematic analysis of complex genetic interactions.

Science, 360, https://doi.org/10.1126/science.aao1729

Lei Jimmy Ba,a R. C. (2014) Do deep nets really need to be deep? Paper

Presented at the Advances in Neural Information Processing Systems, 27

(NIPS 2014).

Li,M. et al. (2012) A new essential protein discovery method based on the inte-

gration of protein-protein interaction and gene expression data. BMC Syst.

Biol., 6, 15. https://doi.org/10.1186/1752-0509-6-15

Luo,J. and Qi,Y. (2015) Identification of essential proteins based on a new

combination of local interaction density and protein complexes. PLoS One.,

10, e0131418. https://doi.org/10.1371/journal.pone.0131418

Luo,J. and Wu,J. (2015) A new algorithm for essential proteins identification

based on the integration of protein complex co-expression information and

edge clustering coefficient. Int. J. Data Min. Bioinform., 12, 257–274.

https://doi.org/10.1504/ijdmb.2015.069654

Madhukar,N.S. et al. (2015) Prediction of genetic interactions using machine

learning and network properties. Front. Bioeng. Biotechnol., 3, 172. https://

doi.org/10.3389/fbioe.2015.00172

Mistry,D. et al. (2017) DiffSLC: a graph centrality method to detect essential

proteins of a protein-protein interaction network. PLoS One., 12,

e0187091. https://doi.org/10.1371/journal.pone.0187091

Oughtred,R. et al. (2019) The BioGRID interaction database: 2019 update.

Nucleic Acids Res., 47, D529–D541. https://doi.org/10.1093/nar/gky1079

Paladugu,S.R. et al. (2008) Mining protein networks for synthetic genetic

interactions. BMC Bioinformatics., 9, 426. https://doi.org/10.1186/1471-

2105-9-426

Raja,V. et al. (2017) Loss of cardiolipin leads to perturbation of Acetyl-CoA

synthesis. J. Biol. Chem., 292, 1092–1102. https://doi.org/10.1074/jbc.

M116.753624

Raymond,K. et al. (2004) A screen for modifiers of RacGAP(84C)

gain-of-function in the drosophila eye revealed the LIM kinase cdi/TESK1

as a downstream effector of Rac1 during spermatogenesis. J. Cell Sci., 117,

2777–2789. https://doi.org/10.1242/jcs.01123

Roguev,A. et al. (2007) High-throughput genetic interaction mapping in the

fission yeast Schizosaccharomyces pombe. Nat. Methods., 4, 861–866.

https://doi.org/10.1038/nmeth1098

Roguev,A. et al. (2018) High-Throughput quantitative genetic interaction

mapping in the fission yeast Schizosaccharomyces pombe. Cold Spring

Harb. Protoc., 2018, https://doi.org/10.1101/pdb.top079905.

Ryan,C.J. et al. (2012) Hierarchical modularity and the evolution of genetic

interactomes across species. Mol. Cell., 46, 691–704. https://doi.org/10.

1016/j.molcel.2012.05.028

Saito,T. and Rehmsmeier,M. (2015) The precision-recall plot is more inform-

ative than the ROC plot when evaluating binary classifiers on imbalanced

datasets. PLoS One, 10(3), e0118432.

Shalem,O. et al. (2014) Genome-scale CRISPR-Cas9 knockout screening in

human cells. Science, 343, 84–87. https://doi.org/10.1126/science.1247005

Srivas,R. et al. (2016) A network of conserved synthetic lethal interactions for

exploration of precision cancer therapy. Mol. Cell., 63, 514–525. https://

doi.org/10.1016/j.molcel.2016.06.022

St Johnston,D. (2002) The art and design of genetic screens: Drosophila mela-

nogaster. Nat. Rev. Genet., 3, 176–188. https://doi.org/10.1038/nrg751

The Gene Ontology (2019) The gene ontology resource: 20 years and still

GOing strong. Nucleic Acids Res, 47, D330–D338. https://doi.org/10.1093/

nar/gky1055

Therrien,M. et al. (2000) A genetic screen for modifiers of a kinase suppressor

of ras-dependent rough eye phenotype in drosophila. Genetics, 156,

1231–1242.

Thurmond,J. FlyBase Consortium. et al. (2019) FlyBase 2.0: the next gener-

ation. Nucleic Acids Res, 47, D759–D765. https://doi.org/10.1093/nar/

gky1003

Ting,K. (2017). Confusion Matrix. Encyclopedia of Machine Learning and

Data Mining. Springer, Boston, MA.

Velez,D.R. et al. (2007) A balanced accuracy function for epistasis modeling

in imbalanced datasets using multifactor dimensionality reduction. Genet.

Epidemiol., 31, 306–315.

Venters,B.J. et al. (2011) A comprehensive genomic binding map of gene and

chromatin regulatory proteins in saccharomyces. Mol. Cell., 41, 480–492.

https://doi.org/10.1016/j.molcel.2011.01.015

Viswanatha,R. et al. (2018) Pooled genome-wide CRISPR screening for basal

and context-specific fitness gene essentiality in drosophila cells. Elife, 7,

https://doi.org/10.7554/eLife.36333

Viswanatha,R. et al. (2019) Pooled CRISPR screens in drosophila cells. Curr.

Protoc. Mol. Biol., 129, e111. https://doi.org/10.1002/cpmb.111

Wang,T. et al. (2015) Identification and characterization of essential genes in

the human genome. Science, 350, 1096–1101. https://doi.org/10.1126/sci

ence.aac7041

Waples,W.G. et al. (2009) Putting the brake on FEAR: tof2 promotes the bi-

phasic release of Cdc14 phosphatase during mitotic exit. Mol. Biol. Cell.,

20, 245–255. https://doi.org/10.1091/mbc.E08-08-0879

Wong,S.L. et al. (2004) Combining biological networks to predict genetic

interactions. Proc. Natl. Acad. Sci. U S A, 101, 15682–15687. https://doi.

org/10.1073/pnas.0406614101

Wu,M. et al. (2014) In silico prediction of synthetic lethality by Meta-analysis

of genetic interactions, functions, and pathways in yeast and human cancer.

Cancer Inform., 13, 71–80. https://doi.org/10.4137/CIN.S14026

Young,J.H. and Marcotte,E.M. (2017) Predictability of genetic interactions

from functional gene modules. G3 (Bethesda), 7, 617–624. https://doi.org/

10.1534/g3.116.035915

Yu,M.K. et al. (2016) Translation of genotype to phenotype by a hierarchy of

cell subsystems. Cell Syst., 2, 77–88. https://doi.org/10.1016/j.cels.2016.02.

003

Yuan Liu,R.P. et al. (2007) Coordination of steps in single-nucleotide base ex-

cision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA

polymerase b. J. Biol. Chem., 282, 13532–13541.

Zhang,X. et al. (2016) Predicting essential genes and proteins based on ma-

chine learning and network topological features: a comprehensive review.

Front. Physiol., 7, 75. https://doi.org/10.3389/fphys.2016.00075

Zhang,Z. and Ren,Q. (2015) Why are essential genes essential? - the essential-

ity of saccharomyces genes. Microb. Cell, 2, 280–287. https://doi.org/10.

15698/mic2015.08.218

Impact of genetic disruptions and interactions 4099

https://doi.org/10.1126/science.aaf1420
https://doi.org/10.1126/science.aaf1420
https://doi.org/10.1016/j.cell.2019.01.033
https://doi.org/10.1016/j.cell.2019.01.033
https://doi.org/10.1186/1752-0509-1183-1102
https://doi.org/10.1186/1752-0509-1183-1102
https://doi.org/10.1038/415141a
https://doi.org/10.1038/415141a
https://doi.org/10.4161/fly.3806
https://doi.org/10.4161/fly.3806
https://doi.org/10.1038/nrg1291
https://doi.org/10.1038/415180a
https://doi.org/10.1016/j.humimm.2021.02.012
https://doi.org/10.1074/jbc.C800147200
https://doi.org/10.1038/nrg794
https://doi.org/10.1038/nrg794
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/nbt.1628
https://doi.org/10.1126/science.aao1729
https://doi.org/10.1186/1752-0509-6-15
https://doi.org/10.1371/journal.pone.0131418
https://doi.org/10.1504/ijdmb.2015.069654
https://doi.org/10.3389/fbioe.2015.00172
https://doi.org/10.3389/fbioe.2015.00172
https://doi.org/10.1371/journal.pone.0187091
https://doi.org/10.1093/nar/gky1079
https://doi.org/10.1186/1471-2105-9-426
https://doi.org/10.1186/1471-2105-9-426
https://doi.org/10.1074/jbc.M116.753624
https://doi.org/10.1074/jbc.M116.753624
https://doi.org/10.1242/jcs.01123
https://doi.org/10.1038/nmeth1098
https://doi.org/10.1101/pdb.top079905
https://doi.org/10.1016/j.molcel.2012.05.028
https://doi.org/10.1016/j.molcel.2012.05.028
https://doi.org/10.1126/science.1247005
https://doi.org/10.1016/j.molcel.2016.06.022
https://doi.org/10.1016/j.molcel.2016.06.022
https://doi.org/10.1038/nrg751
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/gky1003
https://doi.org/10.1093/nar/gky1003
https://doi.org/10.1016/j.molcel.2011.01.015
https://doi.org/10.7554/eLife.36333
https://doi.org/10.1002/cpmb.111
https://doi.org/10.1126/science.aac7041
https://doi.org/10.1126/science.aac7041
https://doi.org/10.1091/mbc.E08-08-0879
https://doi.org/10.1073/pnas.0406614101
https://doi.org/10.1073/pnas.0406614101
https://doi.org/10.4137/CIN.S14026
https://doi.org/10.1534/g3.116.035915
https://doi.org/10.1534/g3.116.035915
https://doi.org/10.1016/j.cels.2016.02.003
https://doi.org/10.1016/j.cels.2016.02.003
https://doi.org/10.3389/fphys.2016.00075
https://doi.org/10.15698/mic2015.08.218
https://doi.org/10.15698/mic2015.08.218

