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Abstract 

Background: 

Aneurysmal subarachnoid hemorrhage (aSAH) causes systemic changes that contribute to 

delayed cerebral ischemia (DCI) and morbidity. Circulating metabolites reflecting underlying 

pathophysiological mechanisms warrant investigation as biomarker candidates. 

Methods: 

Blood samples, prospectively collected within 24 hours (T1) of admission and 7-days (T2) post 

ictus, from patients with acute aSAH from two tertiary care centers were retrospectively 

analyzed. Samples from healthy subjects and patients with non-neurologic critical illness served 

as controls. A validated external analysis platform was used to perform untargeted metabolomics. 

Bioinformatics analyses were conducted to identify metabolomic profiles defining each group 

and delineate metabolic pathways altered in each group. Machine learning (ML) models were 

developed incorporating key metabolites to improve DCI prediction. 

Results: 

Among 70 aSAH, 30 healthy control, and 17 sick control subjects, a total of 1,117 metabolites 

were detected. Groups were matched among key clinical variables. DCI occurred in 36% of 

aSAH subjects, and poor functional outcome was observed in 70% at discharge. Metabolomic 

profiles readily discriminated the groups. aSAH subjects demonstrated a robust mobilization of 

lipid metabolites, with increased levels of free fatty acids (FFAs), mono- and diacylglycerols 

(MAG, DAG) compared with both control groups. aSAH subjects also had decreased circulating 

amino acid derived metabolites, consistent with increased catabolism. DCI was associated with 

increased sphingolipids (sphingosine and sphinganine) and decreased acylcarnitines and S-

adenosylhomocysteine at T1. Decreased lysophospholipids and acylcarnitines were associated 

with poor outcomes. Incorporating metabolites into ML models improved prediction of DCI 

compared with clinical variables alone.  

Conclusions: 

Profound metabolic shifts occur after aSAH with characteristic increases in lipid and decreases 

in amino acid metabolites. Key lipid metabolites associated with outcomes (sphingolipids, 

lysophospholipids, and acylcarnitines) provide insight into systemic changes driving secondary 

complications. These metabolites may also prove to be useful biomarkers to improve 

prognostication and personalize aSAH care. 
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Introduction  

Subarachnoid hemorrhage occurring due to the rupture of an intracranial aneurysm (aSAH) 

affects approximately 50,000 people per year in the United States
1
. Although the incidence of 

aSAH is considerably lower than other forms of stroke, those affected are typically younger 

(average 40-60 years of age), with the resultant high morbidity and mortality leading to a 

disproportionate number of productive years of life lost
2
.  

In addition to early brain injury occurring within the first few days after aneurysm rupture, 30% 

of aSAH patients develop delayed cerebral ischemia (DCI)
3
. DCI often results in new 

neurological deficits and contributes to worse clinical outcome
4
. Although early detection of 

delayed complications such as DCI is of critical importance, prediction remains difficult, with 

clinical and radiographic scores being of limited use
5,6

. There is a lack of validated biomarkers 

able to predict delayed complications and outcomes after aSAH
7
. 

Metabolites may provide key insights into the pathophysiological changes contributing to DCI 

after aSAH. We have previously demonstrated that tricarboxylic acid (TCA) cycle metabolites 

are associated with systemic inflammation and outcomes after aSAH
8
. However, lipid 

metabolites likely play key roles in the pathophysiology leading to DCI and poor functional 

outcomes after aSAH. Lipid metabolites such as sphingosine-1-phosphate (S1P) and 

lysophosphatidic acid (LPA) are vasoactive and may contribute to the development of vasospasm 

and DCI
9–11. The only genome-wide association study (GWAS) considering outcomes after 

aSAH found a significant association with a variant in SPNS2 (rs12949158), an S1P transporter 

that can potentially influence the local concentrations of S1P in the central nervous system
12

.
 
 

We hypothesized that circulating metabolites, especially lipids, would provide insight into 

pathophysiological changes occurring after aSAH and be able to predict DCI and functional 
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outcomes. We performed untargeted metabolomics using plasma samples from patients with 

aSAH as well as controls in order to identify metabolites that may serve as clinically relevant 

biomarkers.  

 

Methods 

Subjects. Patients were included from two sites: 1) the University of Texas Health Science 

Center (UTHSC), Memorial Hermann Hospital (MHH)-Texas Medical Center, and 2) the 

University of Maryland School of Medicine (UMSOM). Patients admitted to the neurocritical 

care unit at MHH were prospectively enrolled in a biobank between July 2019 and August 2022. 

Patients admitted at UMSOM were selected from those enrolled in the INSPIRE phase 2 

randomized controlled trial (NCT03201094) who had available plasma samples
13

. Detailed 

methods are available in the published trial results
13. Inclusion criteria included: age 18 years or 

older, spontaneous aSAH admitted within 24h of ictus, and confirmed aneurysmal source on 

either computed tomography angiogram (CTA) or digital subtraction angiogram (DSA). 

Exclusion criteria included subarachnoid hemorrhage from a non-aneurysmal etiology (e.g. 

trauma, arteriovenous malformations, or mycotic aneurysms) and comorbidities affecting 

baseline inflammation and circulating metabolites (e.g. autoimmune disorders and active 

malignancy). Two types of control subjects were included: 1) healthy controls recruited at the 

University of Texas Physician Cardiology Clinic during their routine follow-up and 2) critically 

ill patients admitted to the ICU at MHH but without neurological injury.  

Ethical approval. Institutional review boards (IRB) at both institutions reviewed and approved 

this study. IRB approvals were as follows: UTHSC-MHH (HSC-MS-12-0637) and UMSOM 
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(HP-00074174). All methods were performed in accordance with the Declaration of Helsinki. 

Prior to enrollment, informed consent was obtained from all patients or their legal guardians. 

Clinical data. For each subject, data were prospectively collected including demographic and 

clinical data including age, sex, ethnicity, and clinical severity determined by the Hunt-Hess 

Scale (HHS) score. DCI was defined as clinical deterioration [new focal neurological deficit or 

decrease of at least two points on the Glasgow Coma Scale (GCS)] not otherwise explained or a 

new infarct seen on neurological imaging
14

. Adjudication for DCI required the consensus of at 

least two neurointensivists. Functional outcomes were assessed using the modified Rankin Scale 

(mRS) at discharge as assessed by the attending on service with trained research personnel 

performing follow-up phone calls at 3-months and administering standardized questionnaires. 

Good functional outcomes were defined as mRS 0-3 and poor functional outcomes were defined 

as 4-6. 

Biosamples. Blood samples were collected from subjects in ethylenediaminetetraacetic acid 

(EDTA) containing tubes. Samples were centrifuged at 4C and stored at -80C until analysis. 

Two time points were used for metabolomics analyses: within 24-hours of admission while 

subjects remained nil per oral for interventional procedures (T1) and at post-bleed day 7 (T2).  

Metabolomics. Plasma samples (200 L) were sent to Metabolon (Morrisville, NC, USA) for 

untargeted metabolomics analysis in a single batch. Detailed descriptions of the metabolomics 

platform, which consists of four independent ultra-high-performance liquid chromatography-

tandem mass spectrometry (UPLC-MS/MS) instruments and methods have been published 

elsewhere
15–17

. Median and standard deviation of internal standards were used to assess 

instrument variability. Identification of each metabolite was accomplished by automated 

comparison of each ion to a standard library. Areas under the curve (AUC) were calculated for 
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each peak. Raw AUC values were normalized by correcting for between-day variation in 

instrument calibration using internal standards and median values for each run day. Missing 

values were imputed using k-nearest neighbors with 10 neighbors used for each imputation. All 

results were subsequently logarithmically transformed.  

Bioinformatics. Fold changes (FC) were calculated for each metabolite considering different 

comparisons: 1) aSAH vs healthy controls, 2) aSAH vs. sick controls, 3) aSAH with vs. without 

DCI, and 4) aSAH with good vs poor functional outcomes at discharge. Changes in metabolites 

were considered to be significantly increased if FC > 2 and decreased if FC < 0.5 with false 

discovered rate (FDR) corrected p-values < 0.05. FCs and corresponding p-values were 

calculated using the R package MetaboAnalyst 5.0 (https://www.metaboanalyst.ca)
18 

Next, 

sparse partial least squared discriminant analysis (sPLS-DA, a supervised learning technique) 

from the mixOmics library in R (http://mixomics.org) was used to identify metabolites that 

distinguish among different groups. Variable importance in Projection (VIP) scores were 

calculated for the metabolites to visualize their relative importance in group discrimination. Gene 

ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analysis 

were used to analyze the differences in biological pathways
19

. Agglomerative hierarchical 

clustering, a form of unsupervised learning, using the Euclidean distance as a similarity measure 

and Ward’s linkage as a clustering algorithm was performed to identify patterns of metabolites 

distinguishing groups 
22

. 

Machine learning (ML) models. ML-based prediction models can learn from high-dimensional 

data to find hidden features that improve predictions
20

. We tested the additive predictive value of 

the identified metabolites for DCI and poor functional outcomes at discharge. Two sets of 

variables were used. The baseline variables contained age and HHS, and the extended set 
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included the metabolites significant for each outcome in addition to the baseline variables. The 

models based on elastic net logistic regression with equal L1 and L2 regularization (ELR) 
21

 and 

Extreme Gradient Boosting models (XGB)
22

 were utilized. The two models were chosen to 

employ regularization to limit overfitting and examine both linear and non-linear associations 

between the predictors and outcomes. To reliably assess each model’s performance, five-fold 

cross-validation was used, and the area under the receiver operating characteristic (AUROC) 

curve for all folds were combined to derive the 95% confidence interval (CI) for the AUROC for 

each model. For XGB models, feature importances were analyzed with mean decrease in 

impurity (MDI) and Shapley additive explanation (SHAP) values
23

. While the former allowed 

relative quantification of each feature’s global impact on the trained model, the latter allowed 

analysis of more granular aspects of each feature’s influence on the prediction.  ML models were 

developed and evaluated using Python (v3.11) using the ‘sci-kitlearn’ toolbox.  

Statistics. Patient characteristics were compared using the Wilcoxon rank sum test for continuous 

variables and Chi-square test and Fisher’s exact test for categorical variables as necessary. For 

the statistical tests, two-tailed p-values were calculated, and a p-value of 0.05 was used as the 

threshold for statistical significance. Bioinformatics and statistical analyses were performed with 

R 4.3.1 (R Core Team, 2023).  

 

Results 

Patient population. Among 117 patients finally included in the study, 46 aSAH patients, 15 

healthy controls, and 17 hospitalized controls were recruited from UTHSC, and 24 aSAH 

patients and 15 healthy controls were recruited from UMSOM. The median ages for aSAH 

patients, hospitalized controls, and healthy controls were 56, 58, and 57, respectively (p = 0.44); 
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59%, 41%, and 50% were females, respectively (p = 0.31). Among aSAH patients, the median 

Hunt-Hess scale (HHS) was 3 [Inter Quartile Range (IQR): 3-4]. 36% DCI occurred in 36% of 

patients, and poor outcomes were observed in 70% at discharge but only 24% by 3-months after 

aSAH (Table 1). 8 (17%) aSAH patients recruited from UTHSC had a history of diabetes 

mellitus. For the hospitalized controls, the major reasons for their admission to the intensive care 

unit were respiratory failure due to acute exacerbation of chronic obstructive lung diseases 

(COPD) (35%) and pneumonia (24%). Other reasons included acute decompensated heart failure 

and septic shock. In comparison, none of aSAH patients recruited from UTHSC had a history of 

COPD.  

Metabolites. A total of 1,383 metabolites were detected from plasma samples. 268 metabolites 

were either unidentified metabolites or medications and were removed from further analysis, 

resulting in 1117 metabolites. Metabolites consisted of 485 lipids, 215 amino acids, 39 cofactors 

and vitamins, 35 nucleotides, 33 peptides, 23 carbohydrates, 15 energy-related pathways 

(glycolysis, gluconeogenesis, and the TCA cycle), as well as partially characterized molecules. 

Supervised approach in finding discriminative metabolites. Based on the samples collected at T1, 

sPLS-DA was utilized to identify metabolites distinguishing aSAH from sick or healthy controls. 

Five-fold cross-validation was used, resulting in an R2Y value of 0.96, Q2 values of 0.89, and an 

overall accuracy of 0.99. The scores plot demonstrates that the top 15 metabolites readily 

distinguished aSAH subjects from healthy controls, while there was more overlap between sick 

controls and aSAH subjects (Figure 1A). The top 15 metabolites distinguishing the three groups 

as well as their direction of change are shown in the corresponding loading plot (Figure 1B). 

Enrichment analysis was conducted to identify pathways that are altered comparing aSAH and 

healthy control subjects (Figure 1C) or aSAH and sick control subjects (Figure 1D). aSAH 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 7, 2025. ; https://doi.org/10.1101/2025.01.06.25320083doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320083
http://creativecommons.org/licenses/by-nc-nd/4.0/


subjects demonstrated increases in catabolic pathways involving protein breakdown and amino 

acid metabolism as well as fatty acid biosynthesis. Changes in individual metabolites are shown 

in volcano plots comparing FC for aSAH vs healthy controls (Figure 1E) and aSAH vs sick 

controls (Figure 1F). A total of 90 metabolites were significantly increased, while 63 were 

significantly decreased comparing aSAH and healthy controls (Figure 1E, Table S1). A total of 

68 metabolites were significantly increased, while 71 were significantly decreased comparing 

aSAH and sick controls (Figure 1F, Table S2). aSAH subjects demonstrated notable increases in 

several classes of lipid metabolites, while amino acid metabolites were prominently decreased 

compared with controls. TCA cycle metabolites were also decreased in aSAH compared with 

controls. 

An unsupervised approach to confirm the discriminative metabolites. Given the differences in 

lipid metabolites noted in Figure 1, agglomerative HC was used to confirm the ability of lipid 

metabolites to distinguish aSAH from healthy and sick controls. aSAH patients were readily 

differentiated from healthy controls (Figure 2A) and sick controls (Figure 2B) based on levels of 

lipid metabolites. In particular, free fatty acids (FFAs) (long-chain, poly-, and mono-unsaturated) 

as well as mono- and diacylglycerol were higher in aSAH patients compared to healthy and sick 

controls. Functional analysis of the fatty acids and acyl glycerols with significant changes in 

their expression levels revealed they were involved in multiple pathways including regulation of 

lipolysis, ferroptosis, bile secretion, PI3K-Akt signaling pathway, and steroid hormone 

biosynthesis (Figure S1).   

Metabolites associated with aSAH outcomes. Within aSAH subjects, volcano plots were 

generated to assess differential levels of metabolites considering DCI (Figure 3A) and discharge 

mRS (Figure 3B). Subjects with DCI had higher levels of sphingosine and sphinganine and 
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lower levels of S-adenosylhomocysteine, undecanedioate, and octanoylcarnitine compared to 

subjects without DCI (Figure 3A, Table S3). Subjects with poor functional outcome at discharge 

had higher levels of N-acetylglutamate, and lower levels of linoleoyl glycerophosphate, linoleoyl 

glycerophosphocholine, and three acylcarnitines (dihomo-linoleoylcarnitine, eicosenoylcarnitine, 

and nervonoylcarnitine) compared to subjects with good functional outcome at discharge (Figure 

3B, Table S4). These metabolites did not reach significance according to FDR p-value thresholds 

and were therefore ranked according to raw p-values (Tables S3 and S4).  

Levels of each metabolite found to be associated with outcomes (Figure 3) were depicted as bar 

plots for all aSAH subjects (N=70), subjects from the UTHSC (N=46), and subjects from the 

UMSOM (N=24). Considering DCI, levels of each metabolite at T1 were significantly different 

among subjects with or without DCI when including all subjects (Figure S2A). Considering only 

subjects from UTHSC, sphingosine (p=0.012) and sphinganine (p=0.023) were significantly 

higher, while octanoylcarnitine (p= 0.047) was significantly lower among subjects with DCI 

(Figure S2B). Considering only subjects from UMSOM, octanoylcarnitine (p=0.043) and 

undecanedioate (p=0.039) were significantly lower among subjects with DCI (Figure S2C). 

Considering discharge outcomes, among only UTHSC subjects, all six metabolites identified in 

Figure 3B were significantly different: 1-linoleoyl-GPC (18:2) (p=2.08x10
-4

), 1-linoleoyl-GPA 

(18:2) (p=0.014), nervonoylarnitine (p=0.011), eicosenoylcarnitine (p=0.003), dihomo-

linoleoylcarnitine (p=4.59x10
-4

), and N-acetylglutamate (p=0.005) (Figure S2B). Among 

UMSOM subjects, nervonoylcarnitine (p=0.019) and dihomo-linoleoylcarnitine (p=0.018) were 

significantly lower at T1 among subjects with poor outcomes (Figure S2C).  

Changes in the metabolites at early vs late stages of aSAH. Paired comparisons were made 

considering metabolites early (within 24h of aneurysmal rupture, T1) and late (7 days, T2) after 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 7, 2025. ; https://doi.org/10.1101/2025.01.06.25320083doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320083
http://creativecommons.org/licenses/by-nc-nd/4.0/


aneurysmal rupture. Changes in individual metabolites are shown in the volcano plot with paired 

fold changes comparing each metabolite and the late vs early timepoint (Figure 4A). A total of 

41 metabolites were significantly increased, while 46 were significantly decreased comparing T2 

to T1 (Table S5). Among the metabolites that showed significant changes in levels, 77% were 

lipids. Most of the others were amino acids. Steroid hormones (androgenic steroids, 

corticosteroids, pregnenolone steroids, and progestin steroids) decreased from T1 to T2, whereas 

lipids involved in bile acid metabolism, monoacylglycerols, and diacylglycerols increased. 

Among metabolites found to be associated with outcomes, subjects with poor outcomes showed 

significant increases in sphingosine from T1 to T2 (p= 0.0056) and a trend toward increased 

sphingainine (p=0.075) (Figure 4B). Although higher acylcarnitines at T1 were associated with 

better outcomes (Figure 3), subjects with good functional outcomes showed significant decreases 

in four acylcarnitines from T1 to T2 (Figure 4C): nervonoylcarnitine (p=0.039), erucoylcarnitine 

(p=0.0037), docosahaxaenoylcarnitine (p=0.0067), adrenoylcarnitine (p=0.034).  

Multivariable logistic regression models. Multivariable logistic regression models were 

developed for metabolites associated with outcomes. Metabolite data were included from T1. 

After correction for age, clinical severity (HHS), sex, and race, increased sphingosine [OR 9.95 

(95%CI 2.42, 59.4)] and sphinganine [OR 4.47 (95%CI 1.54, 20.7)] were associated with the 

occurrence of DCI (Table 2). Conversely, decreased octanoylcarnitine was associated with the 

occurrence of DCI [OR 0.20 (95%CI 0.04, 0.65)]. Both age and clinical severity were associated 

with discharge functional outcome (mRS 0-3: good; mRS 4-6: poor) (Table 2). When controlling 

for age, clinical severity, sex, and race, decreased 1-linoleoyl-GPC (18:2) [OR 0.17 (95%CI 0.03, 

0.76)], dihomo-linoleoylcarnitine [OR 0.20 (95%CI 0.04, 0.77)], and eicosenoylcarnitine [OR 

0.19 (95%CI 0.04, 0.76)] were associated with poor functional outcome (Table 2).  
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Machine learning (ML) models. ML models were developed to test the ability of clinical 

variables with or without the addition of metabolites to predict DCI. Prediction models based on 

ELR using baseline clinical variables showed AUROC ranging from 0.34 to 0.69 with an 

average AUROC of 0.51 (95% CI: 0.38-0.64) (Figure 5A). Models based on XGB showed 

similar performance with AUROC ranging from 0.34 to 0.81 with an average AUROC of 0.58 

(95% CI: 0.43-0.73) (Figure 5B). Models were also developed including both baseline clinical 

variables and five metabolites associated with DCI (S-adenosyl homocysteine, undecanedioate, 

octanoylcarnitine, sphinganine, and sphingosine). Models based on ELR showed AUROC 

ranging from 0.34 to 0.81 with an average AUROC of 0.79 (95% CI: 0.70-0.88) (Figure 5C), and 

models based on XGB showed AUROC ranging from 0.69 to 0.97 with an average AUROC of 

0.84 (95% CI: 0.72-0.96) (Figure 5D). Including metabolites resulted in significant 

improvements in AUROC: ELR, p < 0.01
 
(Figure 5A vs5C) and XGB, p = 0.016 (Figure 5B vs 

5D).  

For the prediction of DCI, metabolites consistently showed higher importance than age and HHS 

score. When MDI for different features were compared, all metabolites showed higher feature 

importance than age and HHS. S-adenosylhomocysteine and undecanedioate showed particularly 

high importance with MDI of 0.35 and 0.19, respectively, suggesting more than half of the 

important decision leaf nodes in predicting DCI consisted of these two metabolites (Figure 6). 

Comparison based on SHAP values also supported the importance of metabolites in predicting 

DCI. The mean magnitudes of SHAP values for undecanedioate, S-adenosylhomocysteine and 

sphinganine were higher than the clinical variables, and their influence was consistent 

throughout their respective ranges of values (Figure 6).  

Discussion 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 7, 2025. ; https://doi.org/10.1101/2025.01.06.25320083doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320083
http://creativecommons.org/licenses/by-nc-nd/4.0/


This study took an untargeted metabolomic approach to comprehensively identify circulating 

metabolites that are specific to aSAH and able to predict outcomes.  We included subjects from 

two tertiary medical centers and analyzed samples collected both early after aneurysm rupture 

and after 7 days. Lipid and amino acid metabolites were critical in distinguishing aSAH from 

control subjects. Circulating FFAs were markedly increased after aSAH, even when compared 

with critically ill control subjects without neurological injury. Early changes in several 

metabolites also showed associations with clinical outcomes. Although DCI is notoriously 

difficult to predict, including metabolites in ML models significantly improved predictive ability.  

Although studies have assessed metabolites occurring in the CSF compartment after aSAH
24

, 

relatively less attention has been given to the circulating metabolome. CSF metabolites may be 

more reflective of processes occurring in the central nervous system, but they do not provide 

insight into metabolic factors contributing to the robust systemic inflammatory response 

occurring after aSAH
25

. We previously demonstrated that TCA cycle metabolites were 

associated with functional outcomes as well as levels of inflammatory cytokines
8
.  These 

changes occurred before peak cytokine levels
26

, suggesting that circulating metabolites may 

precede and promote the systemic inflammatory response. A recent study employing lipidomics 

from plasma samples after acute brain injury (ABI) included 30 aSAH subjects and demonstrated 

that several lipid metabolites were predictive of outcomes
27

. Plasma metabolites may therefore 

be excellent biomarkers of outcomes after aSAH and provide insight into the pathophysiological 

changes contributing to complications such as DCI after aneurysm rupture.  

We demonstrated marked shifts in lipid metabolites after aSAH with dramatic increases in FFAs. 

Alterations in lipid metabolism are not unique to aSAH and occur in other causes of critical 

illness. For instance, in sepsis, catecholamines activate enzymes such as hormone sensitive lipase 
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(HSL) and adipose triglyceride lipase (ATGL) resulting in increased lipolysis and release of 

FFAs into the circulation
28

. Although increased CSF lipids have been demonstrated after aSAH
29

, 

our study is the first to demonstrate the extent of circulating lipid changes occurring after aSAH 

relative to healthy and critically ill controls. Pathway analysis (Figure S1) revealed that altered 

lipid metabolites are involved in processes such as ferroptosis, PI3K-Akt signaling, and steroid 

hormone biosynthesis – all of which have been implicated in aSAH pathophysiology
30,31

. 

Recently, elevated FFAs have been associated with poor outcomes after ABI
27

. 

In addition to changes in lipid metabolites, our results reveal decreases in circulating amino acids 

in aSAH compared with control subjects. This is consistent with previous results demonstrating a 

catabolic state occurring after aSAH due to increased catecholamine release and cytokine 

production
32

. This study included a subset of patients from the UMSOM who were enrolled in 

the INSPIRE clinical trial, which tested the ability of a high protein diet (HPRO) and 

neuromuscular electrical stimulation (NMES) to preserve muscle mass after aSAH
13

. All samples 

from the early time point included in the present study were prior to randomization before any 

subject had received the intervention. We previously demonstrated that the HPRO+NMES 

intervention resulted in an increase in amino acid metabolites, with several having significant 

associations with preserved quadricep and temporalis muscle mass
33

. While these findings are 

likely not specific to aSAH, aSAH subjects exhibited elevated amino acid metabolism relative to 

critically ill controls. 

Among the metabolites associated with functional outcomes and DCI, acylcarnitines (AC) were 

particularly notable. Increased ACs were found among both patients with good outcomes and 

those without DCI. Importantly, these findings were replicated in subjects from two separate 

institutions – UTHSC and UMSOM (Figure S2, S3).  ACs serve as the primary form in which 
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fatty acids are transported into mitochondria for fatty acid β-oxidation (FAO)
34

. In ischemic 

stroke, increased circulating ACs at presentation were found to be associated with stroke 

recurrence
35

. Similarly, in patients with TBI, circulating ACs were correlated with increased 

mortality and poor functional outcomes 
36

. However, production of circulating ACs may also 

reflect metabolic flexibility and a swift toward FAO. Indeed, temporary increases during fasting 

or exercise may reflect beneficial metabolic processes
37

. A recent animal study showed that 

supplementation with carnitine reduced vasospasm after aSAH
38

. Our results demonstrate larger 

decreases in ACs from T1 to T2 among patients with good outcomes, suggesting increased fatty 

acid utilization for energy generation via FAO.  

Our results reveal a relationship between increased lysophospholipids (LPLs) and improved 

functional outcomes after aSAH. Similar results have been shown after traumatic brain injury 

(TBI) of various severity
39,40

, however, this is the first report to link LPLs to functional outcomes 

after aSAH. Primarily synthesized as breakdown products of plasma membrane phospholipid, 

LPLs have been hypothesized to be critical in restoring cellular membranes after neuronal injury 

through conversion into phospholipids necessary for membrane repair by lysophospholipid 

acyltransferase
41

. However, LPLs can also serve an opposing role as a substrate for 

proinflammatory LPA production by autotaxin (ATX)
42

. LPA may contribute to both blood brain 

barrier dysfunction and homing of activated inflammatory cells
43

. It is therefore conceivable that 

increased LPLs among patients with better outcomes may reflect the diversion of LPLs into 

reparative pathways rather than LPA production by ATX.  

In comparison with functional outcomes, increased sphingolipids (SL) (sphingosine and 

sphinganine) were found to be associated with the occurrence of DCI. Sphingosine kinase (SK) 

phosphorylates sphingosine to produce the more bioactive molecule S1P. In aSAH, S1P has been 
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hypothesized to have pathophysiological effects within the brain parenchyma and CSF, with the 

general belief that CSF S1P contributes to vasospasm
44

. However, the circulating lipid 

metabolites identified herein may contribute to DCI through their interaction with peripheral 

inflammatory cells. Circulating monocytes have been shown to traffic to the CNS and contribute 

to DCI 
45

, and lipid metabolites are pivotal for monocyte activation and migration. LPA is 

involved in monocyte transformation into macrophages
46

 and acts as a signal for monocyte 

migration
47

. LPA upregulates monocyte expression of programmed cell death ligand 1 (PD-L1), 

a key signaling molecule for monocyte trafficking to the CNS after aSAH
47

.  

Our results are consistent with previous reports showing that standard models have poor 

predictive ability for DCI 
48

. Incorporating clinical variables into ML models has been shown to 

improve the prediction of DCI and vasospasm
48,49

. We demonstrated that incorporating 

metabolites detected in plasma samples collected early after aSAH into ML models can 

significantly improve the prediction of DCI. However, these results require verification in larger, 

independent cohorts of aSAH patients. Although we included subjects from two tertiary care 

centers (UTHSC and UMSOM), we were unable to develop training and validation cohorts from 

separate sites due to insufficient sample sizes. Compared with a recent study using lipid 

metabolites in ML models for the prediction of functional outcomes
27

, our models were specific 

for the detection of DCI rather than functional outcomes after aSAH and incorporated unique 

metabolites. Functional outcomes, especially longer term, and heavily influenced by clinical 

variables such as age and aSAH clinical severity, and we believe that metabolites may play a 

more important role in the prediction of DCI. Indeed, feature importance for DCI prediction 

showed that metabolites had an outsized impact on outcomes prediction, in particular S-

adenosylhomocysteine. This may suggest imbalances in methylation or redox status
50

.  
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Our study has important limitations. Firstly, the large number of metabolites detected resulted in 

a risk of false discovery. Although we employed FDR-corrected p-values for comparisons 

between aSAH and control subjects, FDR-corrected p-values for metabolites identifying DCI and 

functional outcomes did not reach the prespecified threshold for statistical significance. Instead, 

we ranked metabolites based on their uncorrected p-values. These metabolites are therefore 

especially susceptible to type I error. Second, our analysis did not extensively consider comorbid 

conditions and medication histories. Metabolites associated with cellular energy metabolism are 

affected by metabolic diseases and medications that alter metabolism. We were also unable to 

account for medications and nutritional status during hospitalization. However, no patients were 

yet taking an oral diet at the time of first sample collection after hospital admission. Third, we 

have not analyzed the associations between metabolomic profiles and longer-term outcomes. We 

suspect that the initial metabolomic profile after aSAH is more predictive of early complications 

with factors such as age, comorbidities, and amount of physical rehabilitation received being 

more relevant to longer-term outcomes. However, whether relationships exist between specific 

metabolites and longer-term outcomes will require further studies. Lastly, the untargeted 

metabolic approach that we took in this study only provides a snapshot of the level of each 

metabolite identified and provides limited mechanistic insight. Future studies incorporating 

transcriptomic and proteomic experiments will be required to understand upstream and 

downstream changes affecting the metabolites we identified in this report.   

Conclusions 

aSAH triggers a systemic response that exacerbates early brain injury and causes delayed 

complications, including DCI and poor functional outcomes. Herein, we performed untargeted 

metabolomics using plasma samples from aSAH patients and demonstrated significant shifts in 
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lipid and amino acid metabolites compared with controls. Lipid metabolites (LPLs, SLs, and 

ACs) were predictive of DCI and functional outcomes and improved the performance of ML 

models. While these metabolites require verification, we believe that they provide important 

insights into pathophysiological changes occurring after aSAH and may serve as clinically useful 

biomarkers for risk stratification.  
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Tables 

Table 1. Baseline characteristics  

 

 
Healthy 

Controls 

Hospitalized  

Controls 

aSAH P-Value
*
 

N 30 17 70  

Age [median 

(IQR)] 

57 (52-70) 58 (41-70) 56 (47-65) 0.44 

Sex [Female (%)] 15 (50%) 7 (41%) 42 (59%) 0.31 

Race [N (%)]  

  Black 9 (30%) 7 (41%) 18 (26%) 0.64 

  White 20 (67%) 9 (53%) 49 (70%) 

Asian 1 (3%) 1 (6%) 3 (4%) 

Ethnicity [N (%)]  

Hispanic 6 (20%) 4 (24%) 27 (39%) 0.14 

HHS [median 

(IQR)] 

 3 (3-4)  

DCI [N (%)] 25 (36%) 

mRS discharge 0-3  

[N (%)] 

49 (70%) 

mRS 3-months 0-3 

[N (%)] 

17 (24%) 

*P-Values reflect comparisons between the three groups. Abbreviations: IQR (Interquartile 

range), HHS (Hunt Hess Scale), mRS (modified Rankin Scale)  
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Table 2. Multivariate Logistic Regression Models for DCI and Discharge Outcome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

DCI 

 Sphingosine Sphinganine Octanoylcarnitine 

Variable 
OR 
(CI) 

p 
OR 
(CI) 

p 
OR 
(CI) 

p 

Metabolite 
9.95  

(2.42, 59.4) 
0.005 4.47  

(1.54, 20.7) 
0.029 0.20  

(0.04, 0.65) 
0.018 

Age 
1.01 

(0.96, 1.06) 
0.82 1.00  

(0.95, 1.05) 
0.91 1.01 

(0.96, 1.06) 
0.80 

HHS 
2.34 

(0.75, 7.81) 
0.15 1.73 

(0.58, 5.26) 
0.33 1.29  

(0.44, 3.79) 
0.64 

Sex 
2.05  

(0.67, 6.84) 
0.22 2.01  

(0.67, 6.53) 
0.23 0.94 

(0.31, 2.85) 
0.92 

Race 
1.09 

(0.42, 2.92) 
0.86 1.11  

(0.45, 2.87) 
0.82 1.28 

(0.52, 3.28) 
0.59 

Discharge Outcome 

 1-linoleoyl-GPC 
(18:2) 

Dihomo-
linoleoylcarnitine 

Eicosenoylcarnitine 

Variable 
OR 
(CI) 

p 
OR 
(CI) 

p 
OR 
(CI) 

p 

Metabolite 

0.17 
(0.03, 0.76) 

0.027 0.20 
(0.04, 0.77) 

0.029 0.19 
(0.04, 0.76) 

0.025 

Age 

1.07 
(1.01, 1.13) 

0.028 1.06 
(0.997, 
1.12) 

0.071 1.07 
(1.01, 1.14) 

0.018 

HHS 

7.89 
(2.10, 37.3) 

0.004 6.79 
(1.81, 31.8) 

0.008 8.22 
(2.16, 32.8) 

0.004 

Sex 

0.81 
(0.23, 2.90) 

0.75 0.52 
(0.14, 1.81) 

0.32 0.70 
(0.20, 2.43) 

0.58 

Race 

0.92 
(0.28, 3.37) 

0.90 1.63 
(0.47, 6.51) 

0.46 1.12 
(0.34, 4.05) 

0.85 

Abbreviations: OR (odds ratio), CI (confidence interval), HHS (Hunt Hess Scale score) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 7, 2025. ; https://doi.org/10.1101/2025.01.06.25320083doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320083
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Legends 

 

Figure 1: Changes in metabolites comparing controls and aSAH. Metabolomic profiles 

effectively discriminate aSAH, sick control, and healthy subjects using sparse partial least 

squared discriminant analysis (sPLS-DA) (A). VIP scores plot identifies the 15 most important 

metabolites in the classification (B).  Enrichment analysis results showing significantly altered 

metabolic pathways in aSAH subjects compared with (C) healthy control (C) and sick control (D) 

subjects. Volcano plots are shown demonstrating changes in each individual comparing aSAH 

with healthy controls (E) and sick controls (F). Metabolites are color-coded according to 

category. Vertical dashed lines denote fold changes of 2 and 0.5 (log2 transformed 1 and -1). The 

horizontal dashed line denotes an FDR-corrected p-value of 0.05.  

Figure 2: Heatmaps demonstrating changes in lipid metabolites comparing aSAH and 

controls. Unsupervised clustering of aSAH vs healthy control (A) and sick control (B) subjects 

was performed according to levels of several classes of lipid metabolites to generate heatmaps. 

Lower relative values are blue while higher relative values are red. Among the lipid metabolites, 

long-chain fatty acids, poly-, and mono-unsaturated fatty acids, mono- and diacylglycerol were 

particularly higher in aSAH subjects in comparison to controls. Abbreviations: LCSFA (Long-

chain saturated fatty acids), PUFA (poly-unsaturated fatty acids), MUFA (mono-unsaturated 

fatty acids), MAG (monoacylglycerol), DAG (diacylglycerol), AC (acylcarnitines), CM 

(ceramides), Lyso (Lysophopholipids), FAS (metabolites involved in fatty acid synthesis), TCA 

(Tricarboxylic Acid cycle metabolites).  

Figure 3: Metabolites showing significant changes in delayed cerebral ischemia and poor 

functional outcome. Volcano plots demonstrating metabolites with significant changes 

considering DCI (A) or functional outcome (B). Metabolites are plotted against their raw p-

values. Metabolites in red are increased among subjects with DCI (A) and poor outcomes (B), 

while those in blue are decreased among subjects with DCI and poor outcomes. Vertical dashed 

lines denote fold changes of 2 and 0.5 (log2 transformed 1 and -1). Horizontal dashed lines 

denote raw p-values of 0.0082 (A) and 0.0032 (B). Poor functional outcomes are defined as mRS 

4-5, while good functional outcomes are defined as mRS 0-3 at discharge. Abbreviations: DCI 

(delayed cerebral ischemia), mRS (modified Rankin Scale) GPC (glycerophosphorylcholine), 

GPA (glycerophosphate).  

Figure 4: Metabolites showing significant temporal changes after aSAH. Metabolomic 

profiles were compared between two time points: within 24 hours post ictus (T1) and at 7 days 

(T2). Volcano plots demonstrate changes in individual metabolites from T1 to T2 (A).  

Metabolites are color-coded according to category. Vertical dashed lines denote fold changes of 

2 and 0.5 (log2 transformed 1 and -1). The horizontal dashed line denotes an FDR-corrected p-

value of 0.05. Changes in key metabolites from T1 to T2 are shown as bar plots for selected 

sphingolipids (B) and acylcarnitines (C). Subjects are categorized according to discharge 

outcome: good (blue, mRS 0-3) and poor (red, mRS 4-6). Error bars represent the standard error 

of the mean (SEM). Paired t-tests were used to compare subjects with good or poor outcomes for 

changes in each metabolite with significance denoted as: *p<0.05, 
†
p<0.01. Abbreviations: mRS 

(modified Rankin Scale), FDR (false discovery rate). 

Figure 5: Performance of machine learning models with and without metabolites for 

prediction of DCI. ELR and XBG machine learning models were developed to predict DCI 

using clinical variables alone or a combination of clinical variables and metabolites. Compared 
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to the ELR prediction models solely based on clinical variables (A), addition of metabolites to 

the predictors significantly improves the model’s performance (C) (p < 0.01). A similar 

improvement was observed when comparing XGB models based on clinical variables (B) vs. 

clinical variables and the metabolites (D) (p < 0.05). Abbreviations: DCI (Delayed Cerebral 

Ischemia), ROC (Receiver Operating Characteristic) curve, AUC (Area Under the Curve), ELR 

(elastic net Linear Regression), XGB (Extreme Gradient Boosting) 

Figure 6: Feature importance in the XGB prediction model for DCI. Feature importances of 

clinical variables and metabolites in predicting DCI were compared using a mean decrease in 

impurity (A) and Shapley additive explanation (SHAP) values (B). Both analyses suggest that 

the metabolites are generally more important than clinical variables in predicting DCI. 

Abbreviations: DCI (delayed cerebral ischemia), XGB (Extreme Gradient Boosting), HH (Hun 

Hess) grade,  
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