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Plastic deformation in crystalline materials occurs
through dislocation slip and strengthening is achieved
with obstacles that hinder the motion of dislocations.
At relatively low temperatures, dislocations bypass
the particles by Orowan looping, particle shearing,
cross-slip or a combination of these mechanisms. At
elevated temperatures, atomic diffusivity becomes
appreciable, so that dislocations can bypass the
particles by climb processes. Climb plays a crucial
role in the long-term durability or creep resistance of
many structural materials, particularly under extreme
conditions of load, temperature and radiation.
Here we systematically examine dislocation-particle
interaction mechanisms. The analysis is based on
three-dimensional discrete dislocation dynamics
simulations incorporating impenetrable particles,
elastic interactions, dislocation self-climb, cross-slip
and glide. The core diffusion dominated dislocation
self-climb process is modelled based on a variational
principle for the evolution of microstructures, and
is coupled with dislocation glide and cross-slip by
an adaptive time-stepping scheme to bridge the
time scale separation. The stress field caused by
particles is implemented based on the particle–matrix
mismatch. This model is helpful for understanding
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the fundamental particle bypass mechanisms and clarifying the effects of dislocation glide,
climb and cross-slip on creep deformation.

1. Introduction
As a reliable, low-emitting and cost-competitive source of electricity, nuclear energy has become
the second-largest source of low-carbon electricity production globally, which is playing an
expanded role in creating a sustainable future energy system. In nuclear power plants, materials
experience increasingly demanding environments of higher temperatures and radiation-induced
damage, where permanent creep deformation occurs as a result of long-term exposure to stresses
even below the material yield strength. This time-dependent creep deformation has long been
a concern for engineers. Current time-dependent deformation is mainly evaluated based on
empirical equations extracted from tests under standard conditions, with little connection to the
underlying microstructural mechanisms, particularly for particle-strengthened alloys.

Microscopically, inelastic deformation occurs by the collective motion of crystal dislocations
(line defects within a perfect crystal) [1]. These can glide on what are known as slip planes,
leading to planes of atoms sliding over each other (glide motion), or climb out of the slip plane
(climb motion) to overcome obstacles in their path. At low temperature (less than Tm/3, where
Tm is the absolute melting temperature), the deformation is dominated by dislocation glide. The
rate of deformation due to dislocation glide is proportional to the mobile dislocation density and
velocity of the dislocations (the Orowan equation) which is controlled by a variety of internal
resistance forces, including the intrinsic resistance caused by the crystal lattice (the Peierls stress),
the interaction with impurity (solute) atoms or particles and interactions with other dislocations.
In a complete description, the strain rate depends on how quickly the dislocations overcome the
barriers to their glide and how quickly they move from one barrier to the next, such that the
strain rate can be adequately described in terms of the waiting time spent at barriers. While at
elevated temperature, a dislocation that has been brought to a halt by an obstacle can overcome
the obstacle and start moving again by a process called dislocation climb. For dislocation climb to
occur, atomic diffusion has to be able to take place, either in the lattice, known as lattice diffusion,
leading to a non-conservative climb motion, or along the dislocation core region, where atoms
are loose-packed and highly disordered [2,3], allowing rapid matter transport even at lower
temperatures. We refer to this latter process as core diffusion, and it results in a self-climb motion
[4]. As with all diffusion processes, the climb motion is highly dependent on the temperature. At
high temperatures, there is sufficient mobility of point defects or atoms to allow appreciable climb
as well as glide motion, which facilitates the annihilation of dislocations [5] and the recovery of
dislocation structures as the material creeps. Deformation is, therefore, possible at a much lower
stress than would be required for glide alone. For this reason, many particle-hardened materials
become significantly weaker at high temperatures [6,7]. Exploiting the hardening potential of
particles in alloys then requires first understanding the interaction between dislocations and
particles.

For particle strengthening, mobile dislocations are arrested or slowed down at the particles
and extensive deformation can only occur when a threshold stress is exceeded. The dislocation
can then escape from the pinning particles by one or a combination of the following bypass
mechanisms: (1) particle cutting [8,9], either by fracture of incoherent particles or by the glide
of dislocation pairs through coherent particles; (2) Orowan bowing between particles [10], where
the dislocation is extended in the glide plane between particles by an applied stress until the
dislocation is released, leaving shear loops around the particles; (3) cross-slip around the particles
[11–13], where screw dislocation segments surmount a particle via the formation of prismatic
dislocation loops; (4) climb over particles [7] where segments of the dislocation are extended
normal to the original slip plane by diffusion of atoms towards or away from the climbing
dislocations. Mechanisms (1)–(3) depend weakly on temperature, while mechanism (4) involves
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mass diffusion and thus is intrinsically slower than the others. Therefore, when either mechanism
(1), (2) or (3) can occur it will dominate, particularly at high stresses and/or low temperatures.
There is general agreement that at high temperatures and relatively lower stresses, when the
athermal mechanisms are inhibited, both shearable or non-shearable particles are bypassed by
climb.

Two extreme models for dislocation climb over individual particles have been proposed,
the ‘local climb’ model and the ‘general climb’ model, where the threshold bypass stress is
energetically determined according to the increase in dislocation line length as the dislocation
bypasses a particle. The ‘local climb’ model, developed by Brown & Ham [14] and Shewfelt &
Brown [15], postulates that the climbing dislocation segment profiles the particle, and the
dislocation between the particles remains in its slip plane. As a significant amount of new
dislocation line has to be created in the course of ‘local climb’, extra energy must be supplied,
resulting in a relatively large threshold stress. Although this gives an appropriate order-of-
magnitude estimate for creep thresholds measured in particle-strengthened materials, it can be
argued [16] that ‘local climb’ represents an extremely unstable process; in practice, the sharp
change in profile of the dislocation could be rapidly relaxed by diffusion, leading to a more
‘general climb’ profile. In the ‘general climb’ model, the dislocation gradually changes its profile
between particles to minimize the curvature. This leads to an unrealistically small threshold stress
[17]. It also requires much longer range diffusion than local climb and therefore resulting in a
strain rate many orders of magnitude slower, especially for a low volume fraction of particles.
Besides the energetics of the climb process itself, a detachment mechanism [18,19] is proposed
at the particle–dislocation interface, in which an attractive particle–dislocation interaction is
assumed at high temperature, to explain the experimental observations of dislocation pinning
in crept oxide-dispersion strengthened alloys [20,21]. As demonstrated by Srolovitz et al. [18],
an attractive interaction can result due to the dislocation at the interface relaxing part of its
strain field. Arzt & Wilkinson [19] have further demonstrated that this attractive interaction
provides a stronger barrier for dislocation bypass than the climb motion itself, thus increasing
the stress required to bypass the particle. However, despite extensive studies of the particle
bypass mechanisms where climb is significant, available models make a number of simplifying
assumptions, for example, only the interaction between long straight dislocations and individual
particles is considered [22]; dislocation climb is treated using a glide-like phenomenological
mobility law [23], rather than as a physical diffusion-controlled process; or only lattice diffusion
is accounted for in the climb motion, with core-diffusion controlled self-climb motion usually
neglected. In fact, in a real alloy, interactions between a complicated dislocation network
and a large number of particles is a rather complex process controlled by several competing
mechanisms, which involve the coupling between glide and local climb [5] of edge segments
and the cross-slip of screw segments. It is the collective microstructural behaviour that governs
the deformation process at high temperature; systematic studies of which, to our knowledge, still
remain scarce.

As in many physical problems involving the interactions of a large number of particles,
the main difficulty in explaining the formation of complicated dislocation structures and the
resulting deformation behaviour lies in understanding the collective dynamic behaviour of a large
group of dislocations. A powerful approach, which can simultaneously retain key microstructural
features of the dislocation network in terms of a manageable number of degrees of freedom, is
provided by the numerical treatment of discrete dislocations. Over the years, extensive studies
have been carried out to advance the state of knowledge and applicability of discrete dislocation
dynamics (DDD) since it was proposed in the late 1980s [24], such as finite boundary value
problems [25], the displacement field of a complex dislocation network [26], dislocation cross-
slip [27], improvement in the computational efficiency in calculating the long-range stress and
the numerical integrators [28,29], interaction with point-defects, particles or hydrogen atoms
[30–32], creep and dislocation climb at elevated temperature [4,33–36]. However, microstructural
evolution processes during the creep of particle-strengthened materials span a wide range of
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length and time scales, which exceed the capacity of the existing discrete dislocation (DD) method.
Remaining challenges involve (i) how to bridge the huge time scale separation (greater than 106)
between dislocation slip and climb, to couple dislocation glide, climb and cross-slip in a unified
framework; and (ii) extend the existing DD model to involve particles and point defects, to keep
track of all the interactions between dislocations and various defects, to embrace the complex
nature of real engineering alloys.

Recently, we have developed a new method which incorporates atomic diffusion into
the nodal-based DD method and bridges the time scale separation between dislocation
glide and self-climb [4,35]. This method acts as a steppingstone for the modelling of
a new class of physical problems. With this new method and our GPU accelerated
three-dimensional DDD model [29], the current work aims to extend the range of
the current DD framework [4,35] from the ‘plasticity’ domain to the ‘creep’ domain,
with emphasis on high-temperature dislocation behaviour in the presence of particles.
The significance of undertaking this task is threefold: (i) developing a framework that
captures the salient features of collective dislocation behaviour in the presence of particles;
(ii) enabling a systematic analysis of the particle bypass mechanisms; and (iii) providing
‘bottom-up’ insights into the intrinsic mechanism of creep deformation.

The paper is organized as follows. We describe the methodology in §2 before presenting its
validation of climb and cross-slip in §3. Then, results concerning creep processes during the
compression of micropillars are discussed in §4, demonstrating the relevance of our model and
bringing new insights. The conclusion is provided in §5.

2. Methodology
In this section, we develop a DD model that includes elastic interactions, dislocation glide,
climb and cross-slip mechanisms, to provide a systematic interpretation of how dislocations
interact with particles. In a conventional nodal-based DD framework, given the dislocation
network, the stress field σ (x) can be computed on the basis of continuum linear elasticity theory.
The stress field then produces driving forces F on the nodes, and the nodes respond to these
forces by making discrete movements according to a specified mobility function M that is
characteristic of the dislocation type and the specific material being simulated. Key inputs for
a DD simulation, therefore, include (1) the driving force F on the dislocation segments, including
the externally applied stress, dislocation line tension, the long-range dislocation interactions,
and the short-range dislocation–particle interactions; (2) the dominated dislocation mobility
laws M at specified loading conditions, temperatures and materials. In the current section, we
develop precise expressions for the dislocation driving force F and physical mobility law M for
particle-strengthened BCC materials at elevated temperature.

(a) Driving force for dislocation motion
In the nodal-based DD framework, the non-singular continuum theory of dislocations is adopted
[37]. Here, we follow the convention that the nodal values are denoted in uppercase and
numbered by subscript. Consider a dislocation segment adjacent to a spherical particle of R, as
shown in figure 1. The full force on a dislocation node i, Fi, in a particle-strengthened material,
consists of five parts

Fi = F̃i + Fself
i + Fcore

i + Fapp
i + Fpt

i , (2.1)

where F̃i refers to elastic interaction between the ij segments connected to node i with every other
segment mn (mn �= ij), Fself

i denotes the elastic self force on node i, due to segments ij connected
to node i, Fcore

i is the dislocation core force on node i, Fapp
i accounts for the externally applied

stresses, and Fpt
i is the nodal force caused by the particles. Details about F̃i, Fself

i , Fcore
i and Fapp

i
are provided in our previous work [4]. We, thus, limit our attention, in the current subsection,
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Figure 1. Schematic diagramof a systemof interactions betweenaparticle anddislocation segments. (Online version in colour.)

to implementing the continuum misfit stress field of the particles into the nodal-based three-
dimensional DDD framework to calculate the driving force on the dislocation segments caused
by the particles.

(i) Stress field of an impenetrable particle

Consider an impenetrable and non-deformable spherical particle, centred at C, with a radius of
R, as shown in figure 1, made up of an elastic medium that is located in an infinite medium or
matrix such that the radial misfit is δ. The misfit is described by the difference between the particle
radius R and the matrix it replaces in the absence of the particle. As described by Eshelby [38,39],
the stress in spherical coordinates generated in the matrix as a result of the misfit is given by

σrr = −4GM
r3 and σθθ = σψψ = 2GM

r3 . (2.2)

In the above equation, M = δV/4π ((1 + ν)/3(1 − ν)), where δV indicates the misfit volume
between the particle and the hole, ν is Poisson’s ratio. For a small misfit, δV = 4πR2δ = 4πR3ε,
with ε= δ/R denoting the dilatational misfit strain. G is the shear modulus, r is the distance from
the field point (r, θ ,ψ) to the centre of the particle C. Here, we assume the same elastic properties
for the particle and the matrix, so that there are no image forces at the interface between the matrix
and the particle.

Equation (2.2) can be rewritten as

σrr = −4GεR3

r3
1 + ν

3(1 − ν)
and σθθ = σψψ = 2GεR3

r3
1 + ν

3(1 − ν)
. (2.3)

As demonstrated in equation (2.3), the misfit stress is short-range ( → 1/r3).

(ii) Implementation into the three-dimensional DDD framework

To implement equation (2.3) into the DD framework, we need to transform the stresses
from spherical coordinates to global Cartesian coordinates. According to second rank tensor
transformation rules, the misfit stress field σ pt(x, y, z) at a point (x, y, z) in a Cartesian coordinate
system can be written as

[σ pt] = 2GεR3

r5
1 + ν

3(1 − ν)

⎡
⎢⎣r2 − 3x2 −3xy −3xz

−3xy r2 − 3y2 −3yz
−3xz −3yz r2 − 3z2

⎤
⎥⎦ . (2.4)

Note that the above particle stress solution is for an isotropic particle in an isotropic matrix, which
is consistent with the isotropic elasticity assumption used in the DD code. The stress field at any
point in the simulation cell is the result of the superposition of the stress fields of the particles
within the cell (plus contributions from the dislocation and the applied stress). Particle–particle
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interaction is not considered in the present work, which is an appropriate assumption for the
dilute particle concentrations considered here, since the misfit stress decays quickly with distance
from the particles.

The general situation analysed in the present work is schematically shown in figure 1. An
arbitrarily shaped dislocation line is located near a spherical particle centred at C. Here, we only
consider the situation of non-deformable and impenetrable particles; such that only the stress field
outside of the particles needs to be accounted for. We will see in the following discussion that it
proves convenient to isolate a dislocation segment, for example, segment ij bounded by nodes
i and j, as demonstrated in figure 1. Xi and Xj are the coordinates of node i and j, respectively.
R is the radius of the particle. To standardize the following computation, a local coordinate s is
defined. The origin of s is located at the mid-point O of the segment, and the positive direction
points from node i → j. s is normalized by half of the segment length lij, s = 2x/lij, such that s = −1
at the start node i, s = 1 at the end node j.

We define the coordinate of any point s along segment ij using shape functions (also known as
interpolation functions) as follows:

xij(s) = [Ni Nj]

[
Xi
Xj

]
,

where s ∈ [−1, 1], [N] = [Ni Nj] is the one-dimensional linear shape function matrix

[N] = [Ni Nj] =
[

1 − s
2

1 + s
2

]
.

For dislocation lines located around the particles, the dislocation segment ij experiences a force
per unit length that is proportional to the local misfit stress through the Peach–Koehler formula

f pt
ij (xij) = [

σ pt(x) · bij
] × l̂ij, (2.5)

where σ pt(x) is the local stress at point x on the segment ij, bij is the Burgers vector of segment ij,

and l̂ij is the local tangent vector of segment ij. Therefore, the contribution to the force on node i
due to node j is

Fij
i =

∫ lij

0
Nif

pt
ij (x)dx = lij

2

∫ 1

−1
Nif

pt
ij (s)ds (2.6)

with dx = (lij/2) ds. In a simulation cell with multiple particles, the nodal force on node i caused
by the misfit stresses is given by

Fpt
i =

∑
I

∑
j

Fij
i , (2.7)

where the inner summation is performed over all segments connected to node i, and the outer
summation is over all particles in the simulation cell. To improve the computational efficiency,
a 3-point Gaussian quadrature approach is used for the integration of equation (2.6), which
was found to be precise and efficient when compared to evaluating the integral analytically. By
substituting equation (2.7) into equation (2.1), we can construct the full nodal force Fi that drives
the dislocation motion.

(b) Dislocation mobility law
Dislocation mobility is a fundamental property of crystals that determines most of the
characteristics of their plastic deformation. It is usually modelled by a phenomenological law
which prescribes the dependence of the steady-state velocity of a dislocation on local parameters,
such as the stress, temperature, the line character (edge or screw) and the slip system.

(i) Dislocation glide

It is generally believed that, in FCC crystals, the interaction of phonons with dislocations
provides the main mechanism of energy dissipation, so that dislocation glide can be considered
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an ‘automatically smooth’ process, particularly for a non-relativistic small dislocation velocity
compared with the shear wave speed, and follows a linear phonon-drag law [37]. Whereas in BCC
materials, the glide mobility is more complicated due to the non-planar character of the core of
screw dislocations [40]. At stresses lower than the Peierls stress, which is defined as the minimum
applied shear stress needed at 0 K to move a dislocation with infinite length over the periodic
misfit energy barrier of the glide plane, dislocations move by the thermally assisted nucleation of
kink-pairs and their subsequent migration. As the temperature and the applied stress increases,
the Gibbs free energy for kink-pair nucleation vanishes, a dislocation moves as a whole again and
experiences a friction force as a consequence of energy dissipation. In the present work, focus is
limited to the dislocation behaviour at elevated temperature, where the phonon drag regime is
predominant. A linear phonon-drag glide mobility law is therefore adopted here for BCC Fe,

V i =
⎛
⎝1

2

∑
j

lijBij

⎞
⎠

−1

Fi, (2.8)

where V i is the nodal velocity of node i, lij is the length of segment ij, Bij is the drag tensor
determined according to the segment character, details of which are given in [4]. The sum is over
all nodes j connected to node i, Fi is the nodal mechanical driving force given in equation (2.1).
Note that, in [4], following [37], a pure screw segment is assigned with an isotropic mobility
in all directions perpendicular to the line, known as ‘pencil-glide’ behaviour. Such a treatment
may exaggerate the cross-slip of screw dislocations, so that a more sophisticated cross-slip law is
required.

(ii) Dislocation cross-slip

Cross-slip of screw dislocations is important in dynamic recovery of metals, which allows a
dislocation to dissipate the maximum amount of plastic work from the system by allowing the
dislocation to move on the glide plane that maximizes the area swept by its motion [41]. As with
dislocation climb, the cross slip activity allows dislocations to move out of their original slip plane,
which tends to make the substructure morphology appear cellular instead of planar. The cross slip
process is more prolific in BCC materials owing to the availability of many secondary slip systems.
It is therefore of significant importance to introduce a reasonable model to precisely describe the
cross slip behaviour of screw dislocations. Pioneering studies have shown that the activation of
cross slip depends critically on both the local stress state [42] and the dislocation line length [43].
Generally, the critical shear stress for cross-slip to occur increases with decreasing line length of
the screw segment [43].

In the present work, dislocations gliding on {110}〈111〉 slip systems are considered, and cross
slipping between these slip planes is allowed to occur when (i) the length of the screw segment
exceeds a critical length lc, corresponding to the condition for stacking fault ribbon constriction
[25]; (ii) the resolved shear stress on the cross-slip plane exceeds that on the current glide plane.
We assume the same dislocation mobility on all the planes following [41,44].

(iii) Dislocation self-climb

At relatively lower temperatures dislocation cores can provide short circuit diffusion paths for
atoms, which could accelerate the diffusion by more than three orders of magnitude compared to
lattice diffusion. This allows dislocation motion perpendicular to the original slip system, known
as dislocation self-climb, and is of particular importance in the low-temperature creep process
and/or when the characteristic diffusion distance (such as the particle size in the current context)
is small. Thus, in the present work emphasis is on the core-diffusion controlled self-climb motion
in the single crystal.

In our recent work [4], a finite-element-based analysis of the dislocation core diffusion process
is presented; based on a variational principle for the evolution of microstructure. The self climb
model was then developed by implementing this core diffusion formulation into the nodal based
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three-dimensional DDD framework, the computational efficiency of which was further improved
by implementing a paired-linear element based finite element discretization method [35]. In the
improved self-climb model [35], dislocations are discretized into a series of straight segments
(one-dimensional linear elements). The climb velocity is defined at each node and varies linearly
along the segment, and the diffusive flux is also defined at each node. A series of Lagrange
multiplier are introduced to enforce the flux continuity at triple or quadruple junction nodes
(dislocation nodes connected with more than two arms). A set of linear simultaneous equations
is then derived as the kinetic equations for self-climb,[

[K] [Cs]T

[Cs] [0]

] [
[Vc]
[λ]

]
=

[
[Fc]
[0]

]
, (2.9)

where [K] is the global viscosity matrix for core diffusion, [Cs] is a constraint matrix, [0] is a
N × N null matrix, where N is the number of junction nodes. [Vc] is the vector of unknowns,
including the nodal climb velocities and fluxes, [λ] is the vector of Lagrange multipliers, [Fc] is
the vector of generalized nodal forces. The nodal climb velocity can then be derived by solving
equation (2.9). To bridge the large time scale separation between glide and climb motion, as stated
in the Introduction, an adaptive time scheme [4] is adopted here. In which, dual time increments
are adopted for the glide and climb steps as follows. We apply the stress and initially perform
the simulation using a small time increment of ∼1 ns to resolve glide/cross-slip-related events,
until the plastic strain rate caused by dislocation glide/cross-slip approaches zero. We then stop
the glide/cross-slip motion, and compute the evolution by diffusion by solving equation (2.9) to
derive the climb velocity. At this point, a much larger value of time increment, depending on the
effective core diffusivity and temperature, is used. Once the dislocation climbs to a neighbouring
slip plane and allows further glide/cross-slip, the climb process is stopped and the glide/cross-
slip motion is activated again. For more details about the self-climb model and the adaptive time
scheme, refer to [4,35].

(c) Finite boundary conditions
Simulating micromechanical tests requires modelling a finite domain with complex geometry
and boundary conditions, which can be generally achieved by coupling with a finite-element
method (FEM). The coupling procedures are mainly divided into two categories: the discrete-
continuous method [45], in which the plastic strain generated by dislocation motion is used in
the elastic FE code to solve the total stress; and the superposition method [46], which uses the
superposition principle of [47] to enforce the desired traction and displacement boundary values.
In the present work, the superposition method is adopted. In this method, a finite-element mesh
is constructed firstly, corresponding to the desired finite domain. Field quantities in this finite
domain are partitioned as

σ = σ̃ + σ̂ , ε = ε̃ + ε̂, u = ũ + û (2.10)

where σ , ε and u are the total stress field, strain field and displacement field, respectively. The
tilde (˜) denotes the infinite-body fields calculated from the superposition of the infinite analytical
fields of all dislocations in the domain, and the hat ( ˆ ) fields are smooth complementary fields
that enforce the boundary conditions for a specified problem. As in any mechanical finite-element
problem, with specified traction T or U applied on the surface, every FE surface node is in parts
of the boundary over which tractions T or displacements U are applied. At each time increment,
the tractions, T̃, and the displacements Ũ, arising from the dislocation network in an infinite
medium are evaluated analytically at the surface FE nodes, respectively. Modified tractions and
displacement boundary conditions T̂ = T − T̃, Û = U − Ũ are then used in an elastic FE code to
derive the corrective fields σ̂ , û and ε̂. The corrective stress field, σ̂ , is then used to calculate the
dislocation nodal force shown in equation (2.1) in a finite volume. It is worth mentioning that, in
the present work, a newly developed method [48] for accurately calculating the displacement field
produced by an arbitrary dislocation network on the surface of a finite domain, is adopted, which
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Table 1. Parameters forα-iron.

parameters magnitude

shear modulus G = 83 GPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poisson’s ratio ν = 0.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lattice parameter a= 0.2856 nm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Burgers vector b= √
(3)a/2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dislocation core radius rc = 5b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pre-exponential for core diffusion acoreD0core = 1 × 10−23 m4 s−1 [53]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

has been proved to be readily compatible with DDD codes and allows for easy parallelization
[29].

Before closing this section, we would like to comment on a subtle issue about the
calculation of displacement field in an infinite volume (ũ) when considering dislocation glide,
climb and cross-slip altogether. There is a concern about this issue in the literature that the
simple superposition of analytical displacement fields of dislocations cannot properly treat the
displacement discontinuities caused by the out-of-plane climb motion [49,50]. Thus, it is believed
that in a combined glide and climb process, information about the dislocation slip area history has
to be recorded and stored at each time increment to calculate the displacement field accurately.
However, in the method proposed in [48], an adapted Barnett solution [26] is developed, to
calculate the displacement contribution of a single finite straight dislocation segment, which can
be easily implemented into a three-dimensional dislocation dynamics code without the need to
store any history information. Thus, the average surface displacement Ũ in a uniaxial specimen
caused by the overall internal dislocation motion can be calculated directly from the total area
swept by the dislocations, and it does not matter where in the volume that slip or climb occurs.
This may seem counterintuitive because the plasticity caused by dislocation motion should be
path-dependent. The paradox does not really exist here, as we only need to find the average
displacement on the surface.

To clarify this point, a relatively straightforward analysis of the surface displacement caused
by internal plastic deformation as a result of dislocation motion is given in appendix A. From
which, we can see that, the surface displacement is determined only by the amount of slipped
area (swept out by the dislocations) and not to the current position of the dislocations—we only
need to know the amount of glide and climb, not the route followed to get there.

3. Dislocation–particle interactions
The addition of a particle dispersion to metals is a common strategy adopted to strengthen
alloys. When a gliding dislocation approaches an obstacle intersecting its glide plane, it becomes
pinned and bows around the obstacle. At a critical unpinning stress, the dislocations are able
to loop around the obstacles and pinch off, continuing their motion whilst leaving behind
dislocation shear loops encircling the particles, as demonstrated originally by Orowan [10]. At
applied stresses below the Orowan stress, pinned dislocation can still unpin from the obstacles
by thermally activated mechanisms, such as dislocation climb and cross-slip. These unpinning
processes represent typical microstructural features mediating plastic deformation, particularly
during loading at elevated temperature. In this section, we simulate two typical particle bypass
mechanisms based on the new method developed in §2. The examples described in the following
subsections are chosen to illustrate the proposed method, and to demonstrate that it produces
accurate results by comparison with analytical results [12], available numerical simulations
[22,41,51] and experimental observations [52]. Parameters for bcc Fe used in the following
simulations are shown in table 1.
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Figure 2. Snapshots during the punching out of an interstitial-type prismatic dislocation loop (PDL) near a spherical particle
in a bcc lattice. Two views are given at each stage: the upper sequence, (a–d), provides a profile of the PDL as it peels off from
the particle’s surface; the lower sequence, (e–h), is viewed normal to the dislocation’s Burgers vector, b= [11̄1]/2, providing a
view of the whole loop. (Online version in colour.)

(a) Punching out prismatic dislocation loops
Elastic accommodation and punching of prismatic dislocation loops (PDLs) have been
experimentally observed around sub-micrometre-sized particles [52], which are assumed to
form through a dislocation cross-slip mechanism. The classical model for PDL generation
around misfit particles was proposed by Ashby & Johnson [12], and later confirmed by means
of nonlinear elastic/phase-field simulations [51], atomistic simulations [54] and dislocation
dynamics simulations [55]. As illustrated in Ashby & Johnson’s model, when the misfit in the
particle–matrix interface exceeds a critical value, a dislocation segment bulges from the interface
on a slip plane where the shear stress is greatest. The maximum shear stress has been proved to
be created at the particle–matrix interface on the {111} plane intersecting the spherical particle at
a height of R/

√
2 [54] in FCC aluminium. Here we explore the availability of cross-slip planes on

PDL generation in a BCC lattice. The family of bcc slip systems considered is {110}〈111〉.
In the present work, attention is confined to the formation of a PDL from a shear loop

by cross-slip; nucleation of the shear loop at the interface is therefore not considered and the
simulation begins with a given incipient dislocation shear loop. In figure 2a and e, we show the
initial dislocation shear loop placed on the BCC (110)[11̄1] slip system from two views, and the
habit plane of the loop is placed at a height of R/

√
2 near the particle. Radius of the particle

is R = 20 nm and the side of the initial square shear loop is set as L = 10 nm. Other parameters
needed are shown in table 1. In the absence of an applied stress, this incipient shear loop is then
allowed to evolve under the misfit stress field. Snapshots of major stages during the evolution
are demonstrated in figure 2. Following [41], two views are provided at each stage. The upper
sequence, figure 2(a)–(d), gives the view of two PDLs formed at the particle; while the lower
sequence, (e)–(f), provides the projection normal to the Burgers vector b = [11̄1]/2. A movie is
available in electronic supplementary material, Movie S1.

As illustrated in figure 2, the shear loop expands to increase the length of screw segments,
creating a highly probable situation for the dislocation to cross slip to another highly stressed slip
plane. The screw dislocations are then driven around the particle by multiple cross-slip, to meet
dislocations of opposite line directions, resulting in pinch-off on the (110) slip plane, so that two
PDLs are formed: one vacancy-type prismatic loop surrounding the particle and one interstitial-
type loop punched out from the particle; the former is attracted to the particle, reducing the misfit
strain, while the latter is repelled. This series of events is consistent with the theoretical prediction
from [12] and the numerical simulation results from [41,51].
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In fact, the competition between cross-slip of a screw segment and glide of the edge segment
determines whether a PDL or a helical dislocation would form: a PDL forms when the cross-
slipped segments meet their partners of opposite sign and pinch off, which is promoted by the
symmetry in the misfit stress field and the initial dislocation configuration; a helical dislocation is
formed if the cross-slipped screw segments miss each other when the symmetry is broken, which
give rise to a long spiral to produce a continuous emission of PDLs, as observed in indentation
[56] and precipitation [52] experiments.

(b) Particle bypass by self-climb mechanism
Dislocation self-climb plays a significant role in dislocation creep behaviour of particle
strengthening materials. In this subsection, we examine the dislocation self-climb mechanism by
which dislocations surmount particles. We simulate the motion of an initially straight pure edge
Frank–Read source (FRs), i.e. a straight edge dislocation pinned at two ends, moving towards a
spherical impenetrable particle under an applied stress lower than the Orowan shear stress τc,
so that dislocations cannot bypass the particle without climb or cross-slip. A general situation
considered here is depicted in figure 3. The size of the simulation box is set as 600 nm × 600 nm ×
600 nm, to make sure the surfaces are far from the internal configuration, so that surface effects are
negligible. The length of the initial FRs is L = 490 nm with a line vector along L = [121̄]/

√
6. The

normal of the slip plane where the FRs lies is n = [101]/
√

2, and the Burgers vector is b = [11̄1̄]/2.
The particle intersects the slip plane with a radius R = 40 nm. The applied shear stress is set to
be 0.6τc. Dislocations will then evolve as a result of the competition between the applied stress,
the line tension and the misfit stress. Two key variables that determine the bypass mechanism are
considered here, the dilatational misfit strain ε and the distance from the centre of the particle
to the slip plane containing the dislocation line h. Three typical cases are discussed here: in case
I, the dilatational misfit strain ε is set to zero, ε= 0, and the initial FRs intersects the particle at
h = 3R/4

√
2; in case II, we increase the misfit stress by setting ε= 0.001, while retaining the relative

position between the particle and the dislocation, i.e. h = 3R/4
√

2; in case III, we keep the misfit
strain at ε= 0.001, and decrease the distance between the particle centre and the intersecting plan
to h = R/2

√
2, i.e. the dislocation lies on a slip plane closer to the equator of the particle. For all

cases, the applied stress remains the same. Temperature T = 800 K, at which the diffusion process
is dominated by core diffusion rather than lattice diffusion [57].

(i) No misfit stress

In case I, there is no misfit strain, ε= 0, so that the dislocation moves towards the impenetrable
particle under the applied shear stress. Simulation results are presented in figure 4, in which
typical snapshots during the evolution are demonstrated from three lines of sight. View (n), view
(L) and view(b) are the lines of sight according to the plane normal n, initial dislocation line vector
L and Burgers vector b, respectively, as illustrated in figure 3. The particle in figure 4 is set as
translucent to show the dislocation structures beyond it. Initially, the edge dislocation is straight,
lying in the slip plane below the equator of the particle at h = 3R/4

√
2. The dislocation approaches

the particle and then bends around it by gliding on its original slip plane. Rather than Orowan
looping, the curved dislocation is then trapped by the particle, as shown in figure 4b, because the
applied stress is not high enough to drive the dislocation further to complete the Orowan process.
Following the adaptive time scheme [4] adopted in the current simulation, the climb motion is
activated once the glide process stops. The curved dislocation segments around the particle then
move by ‘local climb’, normal to the original slip plane, to an adjacent slip plane and leave the
particle surface. This climb motion gives rise to fluctuations of the dislocation line in order to
conserve mass. Compared to a pure edge segment, a mixed dislocation segment climbs a larger
distance when consuming the same volume of material. As a result, as the mixed dislocation
segments which profile the particle climb downwards, the near-edge segments at the sides climb
upwards by a smaller amount. This allows the climbed segments to glide again to profile the
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Figure 3. Adislocation interactswith a particle by the glide plus climbmechanisms.n, L andb are the plane normal, dislocation
line vector and Burgers vector, which are the line-of-sight vectors for the camera views of View (n), View (L) and View (b),
respectively. (Online version in colour.)

particle surface. This process then repeats, until the dislocation climbs under the particle and
does not leave a dislocation loop behind, as shown in figure 4c–e. A movie is available in
electronic supplementary material, movie S2. Note that, in this process, the core diffusion distance
is relatively short, with atoms only transported local to the particle, so that other segments far
from the particle remain in their original slip plane. This particle bypass mechanism is believed
to play a significant role in plastic recovery by facilitating the annihilation of Orowan loops at the
particle interface [5]. A similar climb process is observed in [22]. Note that the cross-slip process is
excluded since the dislocation is mainly edge/mixed character, so that for this situation the glide
plus self-climb mechanism dominates during the bypass process.

(ii) With misfit stress

In case II, we consider particle bypass when there is a misfit strain between the particle and matrix.
The misfit strain is ε= 0.001, other parameters remain the same as in case I. Simulation results
are presented in figure 5. We can see that, initially, the dislocation glides towards the particle
under the applied stress. As the dislocation approaches the particle, the misfit stress increases
rapidly to become dominant and eventually repels the dislocation, so that the glide velocity
decreases and the dislocation stands off from the particle as it begins to bend around it, as shown
in figure 5b. Climb is activated once the applied stress is balanced by the misfit stress and the
glide motion stops. The dislocation segments around the particle then climb, driven by the misfit
stress perpendicular to the slip plane. As demonstrated in figure 5c,d, the edge segments climb
upwards while approaching the particle surface, whereas the mixed segments climb downwards.
Note that, although the misfit stress repels the dislocation as it moves towards the particle, it
attracts the segments once the dislocation bows out on the other side of the particle, owing to
the symmetry of the misfit stress as stated in §2(i) (resulting in the Peach–Koehler force on the
segments caused by the misfit stress changing sign). We can see from the movie provided in
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Figure 4. Snapshots during case I: ε= 0, h= 3R/4
√
2. The dislocation climbs under the bottom of the particle by a glide

plus self-climb mechanism. (Online version in colour.)
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Figure 5. Snapshots during case II: ε= 0.001, h= 3R/4
√
2. The dislocation bypasses the particle and a shear loop is left

around the particle.

electronic supplementary material, movie S3, once the dislocation bows out to the other half of
the particle, it loops around the surface of the particle very quickly due to the attraction from the
misfit stress. When the total stress acting on the dislocation line is high enough to balance the
line tension caused by the bow-out, the dislocation keeps bowing and pinches off to bypass the
particle, leaving an inclined shear loop. This shear loop will annihilate by the self-climb plus glide
process as illustrated in case I when repelled by an incoming dislocation.

(iii) With/without cross-slip

We now turn to case III, when the initial FRs lies in a slip plane closer to the equator of the particle
with h = R/2

√
(2), so that a higher stress is needed to drive the dislocation to bow-out and bypass

the particle. Other parameters remain the same as in case II. At first, the edge dislocation moves
towards the particle by gliding on its slip plane and is repelled by the misfit stress as it approaches
the particle surface; climb is then activated when the glide motion is stopped. This evolution
process is similar to case II. However, unlike case II, as the dislocation moves around the particle
to the other side, the total stress (composed of the applied stress, the misfit stress and the line
tension) acting on the dislocation is not high enough to facilitate bowing out to form a shear
loop. Dislocations will then be trapped by the particle. Two situations are considered here, and
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Figure 6. Snapshots during case III: ε= 0.001, h= R/2
√
2. (a) when the cross-slip mechanism is disabled, dislocation is

trapped by the particle; (b) when cross-slip is enabled, dislocation bypass the particle and a semi-prismatic loop is left around
the particle. (Online version in colour.)

the corresponding results are demonstrated in figure 6a,b. When cross-slip of screw dislocation
segments is disabled, edge segments around the particle will climb until they are trapped at the
equator of the particle, where the component of the nodal force in the climb direction is zero. As
shown in figure 6a 1–3, the mixed dislocation keeps moving downwards by the glide plus climb
process until it pinches off at the bottom of the particle, while adjacent segments move in the
opposite direction to conserve mass. This leads to the formation of a dislocation loop composed
of a semi-circular prismatic loop and semi-shear loop around the particle. The other half of the
prismatic loop is attracted to the surface of the particle and pinned at the leaving side due to
the misfit stress, which is consistent with the theoretical analysis in [19]. This dislocation–particle
interaction is essentially different from the particle bypass processes shown in cases I and II. A
movie is provided in electronic supplementary material, movie S4. While, if cross-slip is enabled,
as the dislocation bows out and increases the length of the screw segments, the misfit stress drives
the screw segments of the bowed dislocation to cross-slip on the sides of the particle, as illustrated
in figure 6b 1–3. The cross-slipped dislocation segments then pinch-off near the surface of the
particle and glide away from the particle, leaving a semi-hexagonal prismatic loop around the
particle. A movie is provided in electronic supplementary material, movie S5. Similarly, if a higher
shear stress is applied, the dislocation could bypass the particle more quickly by a glide plus
cross-slip mechanism, as shown in electronic supplementary material, movie S6.

The bypass processes presented above indicates that the particle bypass mechanism is sensitive
to the position where the dislocation intersects the particle, and the evolution process is strongly
influenced by the misfit stress. The symmetry and strength of the misfit stress are responsible
for many of the new mechanisms observed during the interaction between the dislocation and
the particle, which are significantly different from those seen in the classical bypass processes
for non-misfitting particles, leading to either a decrease or an increase in the minimum stress
required to bypass the particles. Dislocation self-climb and cross-slip mechanisms are critical
in the particle bypass process when the applied stress is much lower than the Orowan shear
stress. These are essentially independent processes, but the above examples demonstrate how
they can combine to allow dislocation to bypass particles. At low stresses self-climb dominates.
A feature of this mechanism is that no dislocation structures are left surrounding the particle
after the bypass process. At high stress, cross-slip dominates and prismatic loops are generated
around the particle as it is bypassed. At intermediate stresses, we observe a combination of these
processes—for example, self climb of a dislocation segment can lead to the formation of screw
segments that can subsequently cross-slip, or the climb process can promote glide of another part
of the dislocation to glide into a new configuration that is favourable for cross-slip. We see similar
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Figure 7. (a) Initial simulation set-ups of the compression test. Dislocation segments on different slip panes are assigned
with different colours, and junctions are highlighted with bold line. (b) Schematic illustration of the loading history during
compressive loading. (Online version in colour.)

type of processes during creep of a body that contains multiple particles and dislocations. This
situation is examined in the following section.

4. Creep test during compression of micropillars
In the previous sections, we studied the simple cases of the interaction between a dislocation
and an individual particle by the combination of glide, cross-slip and self-climb mechanisms.
For these cases, we can readily observe how the misfit stress, the coupled glide/cross-slip and
glide/self-climb mechanisms influence the dislocation evolution around an individual particle,
which further validates the model developed in §2. We now move on to simulate the collective
dislocation behaviour in the presence of a cluster of particles, to investigate the emergent
interactions and larger-scale-patterning in BCC iron, based on the local rules discussed above.

(a) Simulation set-ups
The simulations are performed within a α-Fe single crystal micropillar, as shown in figure 7. The
size of the simulation box is 2 µm × 2 µm × 4 µm, with the bottom surface fixed and compression
applied on the top surface along the [001] direction. The four sides are free. Dislocations can exit
freely from all the surfaces except the bottom. Impenetrable and non-deformable particles are
randomly distributed inside of the box. The volume fraction of particles is set as 0.02. Particles are
mono-sized spheres with radius R = 80 nm. The misfit strain is set to be ε= 0.001. Three prismatic
loops are introduced as the initial dislocation configuration, which are dispersed randomly inside
of the simulation cell and assigned with different slip planes. Two sides of each loop are pinned,
as indicated by the black segments shown in figure 7a, so that each prismatic loop provides a
pair of FRs. The initial FRs are located on [110] (blue segments), [101] (purple segments) and
[011] (bluegreen segments) slip planes, respectively. The length of the FRs are set as L = 400 ±
50 nm. Dislocations are allowed to glide or cross-slip on all planes of the {110}〈111〉 slip system at
temperature T = 900 K. Here, α-Fe is approximated to be elastically isotropic, and general material
properties are shown in table 1.

Dislocation behaviour during the creep test under different compression stresses are simulated
here. In each simulation, the applied stress is slowly ramped up from 0 to the specified stress level
σ33, and then held constant, as schematically illustrated in figure 7b, to investigate dislocation
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Figure 8. Simulation results under a compressive stress of 400 MPa: (a) total strain–time curve and dislocation density–time
curve; (b) snapshots of typical dislocation configurations during evolution corresponding to the marked dots in (a), in which
structures in the snapshots as labelled with a box are further magnified. (Online version in colour.)

evolution during the constant-stress creep process. Results under different stresses are presented
and discussed in the following subsection.

(b) Results and discussion
The simulation result for creep of an α-iron micropillar under a constant stress of σ33 = 400 MPa,
is demonstrated in figure 8. Evolution of the total strain and dislocation density over real
time are plotted in figure 8a. Note that the unit of the strain is %. Snapshots of typical
dislocation configurations during the evolution corresponding to the marked points A and
B are shown in figure 8b and representative dislocation structures from the red boxes are
shown magnified adjacent to the micropillar. A movie showing the evolution is provided in
electronic supplementary material, movie S7. From the strain–time and dislocation density–
time curves, we can see that, the strain rate increases rapidly as the mobile dislocation density
increases, which occurs over a time scale of approximately microsecond, indicating that the
dislocation multiplication is driven by glide or cross-slip mechanisms. This is illustrated more
straightforwardly by the dislocation structures corresponding to the marked points A and B,
as shown in figure 8b. Dislocation structures at point A are wavy-like, and the dislocation loop
around the particle in the magnified region is sited on different slip planes, indicating obvious
cross-slip events. As the dislocation density increases to point B, many dislocation loops form
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Figure 9. Simulation results under a compressive stress of 100 MPa: (a) strain–time curve and dislocation density–time curve;
(b) snapshots of typical dislocation configurations during the evolution corresponding to the marked dots in (a), and the
dislocation structures in the boxes in the snapshots are further magnified. (Online version in colour.)

around the particles, lying on different slip planes, as a result of combined glide and cross-slip
mechanisms as a series of gliding dislocations bypass the particles. The interaction between the
loops and mobile dislocations leads to the formation of junctions on the surface of the particles,
as illustrated in the red box in figure 8b(B) (junctions are highlighted in red). The resultant dense
interfacial dislocation network enveloping the particles is believed to resist further plastic flow
and contributes to the hardening of particle-strengthened alloys [58].

In case II, we consider the creep process with a much lower applied stress, σ33 = 100 MPa.
The plastic strain–time curve and dislocation density–time curve are plotted in figure 9a, and
the dislocation structures with respect to the marked points A, B and C on the curves are
demonstrated in figure 9b. A movie is provided in electronic supplementary material, movie S8.
The most remarkable difference is that the deformation occurs over a much longer time-scale,
approximately 200 s, resulting in a strain rate much lower than that at 400 MPa, indicating that the
diffusion-controlled climb mechanism plays a significant role in this process. At first, dislocations
from the initial FRs glide and bow out under the applied stress, leading to a sharp increase in
the plastic strain and the dislocation density. The bowed dislocations are then blocked by the
particles as shown in figure 9b(A). Since the dislocation characters are mainly edge or mixed type,
the blocked dislocations then move by a glide plus self-climb process to bypass the particles,
following the path shown in figure 4. This leads to a decrease in the strain rate since climb
occurs over a much longer time scale than glide. Once a blocked dislocation is released from a
particle, glide becomes dominant and the strain rate increases, until it is blocked again by other
particles, as demonstrated in 9(b).B. The sharp decrease in the dislocation density is caused by the
dislocations exiting from the surface of the pillar. Also, the climb dominated bypass mechanism
does not leave any dislocation around the particles to contribute to the dislocation and obstruct
the motion of subsequent dislocation gliding through the material. As shown in figure 9(b)(C),
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Figure 10. Simulation results under a compressive stress of 180 MPa: (a) plastic strain–time curve anddislocation density–time
curve; (b) snapshots showing typical dislocation configurations during the evolution corresponding to the marked dots in (a).
(Online version in colour.)

dislocations trapped by a particle try to bypass by self-climb and shrink, leading to a gradual
decrease in the dislocation density. We can see that, at a very low stress level, although the plastic
deformation is generated mainly by glide and cross-slip, the overall strain rate is controlled by the
self-climb process required to overcome the particles. When the out-of-plane motion is activated,
dislocations can evolve to a lower energy state by local climb, even when a very low stress is
applied.

We now turn to the intermediate stress level, σ33 = 180 MPa. Simulation results are shown
in figure 10. A movie is provided in electronic supplementary material, movie S9. The plastic
strain rate exhibits a gradual increase as the dislocations overcome the particles and bow out
to increase the dislocation density. These events span over a time scale of approximately 10 s,
which sits in between case I and case II, demonstrating that deformation occurs by a combination
of glide, cross-slip and climb. This is illustrated by the dislocation configurations corresponding
to the marked points A and B as shown in figure 10b(A,B), where the most noticeable feature
is labelled in the zoomed in cyan box. Note that, at low applied stress in case II, dislocations
are pinned by the particles as labelled in the cyan box in figure 9(b)(C). As the applied stress
increases to 180 MPa, the pinned dislocations can bow out, as a dislocation climbs to the top of
the particle, screw segments form and the particle is bypassed by cross-slip, leading to a sharp
increase in the dislocation density and plastic strain rate. As we further increase the applied
stress to 200 MPa, a pinned dislocation can easily bypass the particle by Orowan looping, as
illustrated in the cyan box labelled in figure 11(b)(A), giving rise to a higher rate, due to the shorter
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Figure 11. Simulation results under a compressive stress of 200 MPa: (a) strain–time curve and dislocation density–time curve;
(b) snapshots of typical dislocation configurations during the evolution corresponding to themarked dots in (a). (Online version
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waiting time at bypassing particles. The dislocation density also increases more quickly. The other
important feature in the dislocation configuration is shown in figure 11(b)(B), a prismatic loop is
formed and is punched out from the surface of a particle. Multiple dislocation shear loops are
left around the particle distributed parallel to each other. This is consistent with the evolution
processes prescribed in §3a and b(i), suggesting that, at intermediate stress levels, dislocation
evolution is dominated by a combination of glide, cross-slip and self-climb. As more and more
dislocations overcome the particles, a relatively dense dislocation network develops and the
mobile dislocation density increases, so that there is enough dislocation motion to maintain a
sustainable plastic deformation; glide/cross-slip becomes dominant again and the strain rate
increases rapidly. A movie is provided in electronic supplementary material, movie S10.

5. Conclusion
Creep deformation has long been a concern for engineers—particularly in the power generating
industries. As summarized in the deformation mechanism maps by Frost & Ashby [53], creep
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of a real alloy is a rather complex phenomenon controlled by several competing deformation
mechanisms such as dislocation glide, climb, cross-slip, multiplication through Frank–Read and
other types of sources, and short-range interactions including dislocation annihilation, jog and
junction formation, point defect diffusion and dislocation–particle interactions, bringing great
challenges to the experimental and numerical investigations.

To our knowledge, we present here the first three-dimensional DDD framework for
particle strengthened materials that account for dislocation glide, cross-slip and self-climb
mechanisms. Coupled with a superposition method, it provides an effective model to predict
the creep behaviour of particle-strengthened materials within a finite domain at relatively
high temperature, by revealing the collective dislocation behaviour in the presence of
particles.

The dislocation interaction with individual particles is systematically studied first. Our
simulation results suggest that self-climb plays a decisive role in the particle bypass processes
when the applied shear stress is much lower than the Orowan shear stress. The dislocation
evolution process is strongly influenced by the misfit stress, the symmetry and strength of
which is responsible for many of the new mechanisms observed during the dislocation–particle
interactions, leading to either a decrease or an increase in the minimum stress required to bypass
the particles.

The collective dislocation behaviour in the presence of a cluster of particles are further
simulated to investigate the constant-stress creep deformation of particle-strengthened bcc
micropillars. As mentioned above, creep due to dislocation motion involves a number of
processes, many of which must occur sequentially. As a result, the slowest of these processes
usually controls the overall rate of deformation. Our simulations reveal three typical categories
of plastic deformation: at a relatively high stress level, dislocation evolution is dominated
by dislocation multiplication driven by glide and cross-slip, giving rise to a dense interfacial
dislocation network enveloping the particles. At a much lower stress level, dislocations
are held up by the particles and dislocation climb plays a decisive role in bypassing the
particles, so that the overall strain rate is controlled by the climb process, although the
plastic deformation is mainly generated by the glide/cross-slip processes. The strain rate is,
therefore, much lower than that at high stress levels. At an intermediate stress level, it is
the combination of glide, cross-slip and self-climb mechanisms that dominates the dislocation
evolution. Furthermore, in line with the dislocation interactions with individual particles
described in §3, multiple particles in the micropillar provide more complicated stress fields
for the surrounding dislocations, and give rise to unique dislocation behaviour as a result
of the local evolving driving forces in combination with the different types of dislocation
motion.

Our investigation in the present work enables a systematic interpretation of the particle bypass
mechanisms and provides an in-depth mechanistic understanding of the collective dislocation
behaviour at relatively high temperature, extending our knowledge of creep deformation of
particle-strengthened alloys.
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Figure 12. A schematic illustration of the considered volume.

Appendix A. Surface displacement as a result of internal plastic deformation
Consider a body of volume V, which experiences plastic strain internally, εp

ij, under load, i.e.
surface traction Γi, as schematically shown in figure 12a, the stress field is

σij = σ̂ij + ρij, (A 1)

where σ̂ij is the stress field in equilibrium with Γi given by an elastic analysis and ρij is a residual
stress field that gives rise to additional elastic strain ε̃ij, such that

ε̃ij = C−1
ijklρkl, (A 2)

where C−1
ijkl is the elastic compliance matrix. Note the elastic strain field arising from σ̂ij is

ε̂ij = C−1
ijklσ̂kl, (A 3)

where ε̂ij is a compatible strain field, but ε̃ij is generally not. This field is generated to
accommodate the plastic strain εp

ij, such that

εij = ε̂ij + ε
p
ij (A 4)

is compatible.
Here we consider the situation where the body is elastically homogenious, i.e. Cijkl is the same

everywhere.
Now consider a point on the surface of the body. We wish to determine the displacement at

this point. The displacement ui has two components

ui = ûi + up
i , (A 5)

where ûi is the elastic displacement due to Γi and up
i is the displacement arising from the plastic

strain εp
ij and the residual strain ε̃ij.

Note ûi is compatible with ε̂ij and up
i is compatible with εp

ij + ε̃ij. ûi can be readily determined

from an elastic analysis. We want to determine up
i . Note the following analysis can be applied in

either the loaded or unloaded state and εp
ij might be different in these two loading conditions.

To determine ui (or up
i ), we apply a dummy load Γ ∗

i at the location of interest in the direction of
the required displacement, as shown in figure 12b. We can perform an elastic analysis to determine
σ ∗

ij that is in equilibrium with Γ ∗
i and

ε∗ij = C−1
ijklσ

∗
kl. (A 6)

Note in general we would apply a unit dummy load. If we require an average displacement over
a specified area of the surface, we can apply a uniform dummy pressure over this region.
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Now applying the principle of virtual work, where ε̃ij + ε
p
ij/up

i provides a compatible set and
Γ ∗

i /σ ∗
ij an equilibrium set, gives

Γ ∗
i uΓi =

∫
V
σ ∗

ij (ε̃ij + ε
p
ij) dV (A 7)

=
∫

V

[
ε∗ijCijklC

−1
klmnρmn + ε

p
ijσ

∗
ij

]
dV (A 8)

=
∫

V
ε∗ijρij dV +

∫
V
ε

p
ijσ

∗
ij dV. (A 9)

The first term is zero since ε∗ij is a compatible strain field and ρij is in equilibrium with zero applied
load.

Now taking the magnitude of the dummy load as unity, equation (A 7) becomes

uΓ =
∫

V
ε

p
ijσ

∗
ij dV, (A 10)

where uΓ is the component of uΓi in the direction of Γ ∗
i .

If instead of continuum plasticity, plastic deformation occurs by slip on discrete slip planes,
equation (A 10) becomes

uΓ =
∫

As

bσ ∗
ij nisj dA (A 11)

note σ ∗
ij nisj = τ is the resolved shear stress on the slip plane from the application of the dummy

load, where sj is the unit vector in the direction of slip, b is the unit of slip, i.e. the magnitude of
Burgers vector, ni is the normal of the slip plane and As is the area of the body (total area of slip
planes) over which slip has occurred.

Note the displacement uΓ is independent of ε̃ij and ρij, which is the strain field generated
by the dislocations when plastic deformation occurs by slip. The surface displacement is
determined only by the amount of slip (area swept out by the dislocation) and not on the current
position of the dislocations, i.e. it is the difference between the current and initial positions
that determines the surface placement. Additionally, the elastic deformation ε̃ij is important to
maintain compatibility, but its main purpose is to transmit the effect of the internal inelastic strain
to the surface.

For the micropillar considered in §4, application of a unit dummy pressure at the top of a
micropillar results in a uniform stress σ ∗

33 throughout the pillar. The surface displacement, and
average strain in the pillar, is then independent of the location of the slipped areas within the
pillar.
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