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Abstract

The complexity of neural dynamics stems in part from the complexity of the underlying anatomy. 

Yet how white matter structure constrains how the brain transitions from one cognitive state to 

another remains unknown. Here we address this question by drawing on recent advances in 

network control theory to model the underlying mechanisms of brain state transitions as elicited by 

the collective control of region sets. We find that previously identified attention and executive 

control systems are poised to affect a broad array of state transitions that cannot easily be 

classified by traditional engineering-based notions of control. This theoretical versatility comes 

with a vulnerability to injury. In patients with mild traumatic brain injury, we observe a loss of 

specificity in putative control processes, suggesting greater susceptibility to neurophysiological 

noise. These results offer fundamental insights into the mechanisms driving brain state transitions 

in healthy cognition and their alteration following injury.
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Introduction

The human brain is a complex dynamical system that transitions smoothly and continuously 

through states that directly support cognitive function (Deco et al., 2011). Intuitively, these 

trajectories can map out the mental states that our brain may pass through as we go about the 

activities of daily living. In a mathematical sense, these transitions can be thought of as 

trajectories through an underlying state space (Shenoy et al., 2011; Freeman, 1994; Gu et al., 

2016). While an understanding of these trajectories is critical for our understanding of 

cognition and its alteration following brain injury, fundamental and therefore generalizable 

mechanisms explaining how the brain moves through states have remained elusive.

One key challenge hampering progress is the complexity of these trajectories, which stems 

in part from the architectural complexity of the underlying anatomy (Hermundstad et al., 

2011, 2013, 2014). Different components (neurons, cortical columns, and brain areas) are 

linked with one another in complex spatial patterns that enable diverse neural functions 

(Rajan et al., 2016; Fiete et al., 2010; Levy et al., 2001). These structural interactions can be 

represented as a graph or network, where component parts form the nodes of the network, 

and where anatomical links form the edges between nodes (Bullmore and Sporns, 2009). 

The architecture of these networks displays heterogenous features that play a role in neural 

function (Medaglia et al., 2015), development (Di Martino et al., 2014), disease (Braun et 

al., 2015), and sensitivity to rehabilitation (Weiss et al., 2011). Despite these recent 

discoveries, how architectural features constrain neural dynamics in any of these phenomena 

is far from understood.

One simple and intuitive way to formulate questions about how neural dynamics are 

constrained by brain network architecture is to define a state of the brain by the 1 ×N vector 

representing magnitudes of neural activity across N brain regions, and to further define brain 

network architecture by the N × N adjacency matrix representing the number of white matter 

streamlines linking brain regions (Gu et al., 2015). Building on these two definitions, we can 

ask how the organization of the white matter architecture constrains the possible states in 

which the brain can or does exist (Durstewitz and Deco, 2008; Hansen et al., 2015). 

Moreover, building on decades of cognitive neuroscience research that have carefully 

delineated the role of regional activation in cognitive functions (Gazzaniga, 2013; Szameitat 

et al., 2011; Alavash et al., 2015), we can then map brain states to cognitive processes, and 

extend our question to: how does the organization of white matter architecture constrain 

cognitive states (Hermundstad et al., 2013, 2014), and the processes that enable us to move 

between those cognitive states (Cocchi et al., 2013)?

To address these questions, we draw on recent advances in network control theory 

(Pasqualetti et al., 2014) to develop a biologically informed mathematical model of brain 

dynamics from which we can infer how the topology of white matter architecture constrains 
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how the brain may affect (or control) transitions between brain states. Within this model, we 

examine finite-time transitions (from initial to target state) that are elicited via the collective 

control of many regions, consistent with the collective dynamics observed to support 

cognition (Salvador et al., 2005; Meunier et al., 2009; Power et al., 2011; Yeo et al., 2011) 

and action (Bassett et al., 2011b, 2013, 2015). A natural choice for an initial state is the 

brain’s well-known baseline condition, a state characterized by high activity in the 

precuneus, posterior cingulate, medial and lateral temporal, and superior frontal cortex 

(Raichle, 2015; Raichle and Snyder, 2007; Raichle et al., 2001). While potential transitions 

from this default mode are myriad, we focus this first study on examining transitions into 

target states of high activity in sensor-imotor cortex: specifically the extended visual, 

auditory, and motor cortices. These states represent the simplest and most fundamental 

targets to transition from the default mode: for example, transitioning from the default mode 

to visual states might represent an immediate response to a surprising stimulus. Similarly, 

the transition from the default mode to motor states might represent the simple transition 

from rest to action. Moreover, these transitions are of particular interest in many clinical 

disorders including stroke (Carter et al., 2012) and traumatic brain injury (Nudo, 2006; Lee 

et al., 2011) where the cognitive functions performed by these target areas are often altered, 

significantly effecting quality of life (Kalpinski et al., 2013).

Using network control theory, we examine the optimal trajectories from an initial state 

(composed of high activity in the default mode system) to target states (composed of high 

activity in sensorimotor systems) with finite time and limited energy. In this optimal control 

context, we investigate the role of white matter connectivity between brain regions in 

constraining dynamic state transitions by asking three interrelated questions. First, we ask 

which brain regions are theoretically predicted to be most energetically efficient in eliciting 

state transitions. Second, we ask whether these state transitions are best elicited by one of 

three well-known control strategies commonly utilized in mechanical systems (Gu et al., 

2015). Third, we ask how specific each region’s role is in these state transitions, and we 

compare this specificity between a group of healthy adults and a group of patients with mild 

traumatic brain injury. In particular, the inclusion of this clinical cohort enables us to 

determine whether widespread injury leads to a decrement in the healthy network control 

profiles, thus requiring greater energy for the same functions, or an enhancement of the 

healthy network control profiles at the cost of a more fragile system, overly sensitive to 

external perturbations. Together, these studies offer initial insights into how structural 

network characteristics constrain transitions between brain states, and predict their alteration 

following brain injury.

To address these questions, we build structural brain networks from diffusion spectrum 

imaging (DSI) data acquired from 48 healthy adults and 11 individuals with mild traumatic 

brain injury (Fig. 1A). We perform diffusion tractography on these images to estimate the 

quantitative anisotropy along the streamlines linking N=234 large-scale cortical and 

subcortical regions extracted from the Lausanne atlas (Cammoun et al., 2012; Daducci et al., 

2012). We summarize these estimates in a weighted adjacency matrix whose entries reflect 

the number of streamlines connecting different regions (Fig. 1B). We then define a model of 

brain state dynamics informed by the weighted adjacency matrix, and we use this model to 

perform a systematic study of the controllability of the system. This construction enables us 
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to examine how structural network differences between brain regions impact their putative 

roles in controlling transitions between cognitive states (Fig. 1C).

Materials and methods

Data acquisition and brain network construction

Diffusion spectrum images (DSI) were acquired from 59 human adults with 72 scans in 

total, among which 61 scans were acquired from 48 healthy subjects (mean age 22.6 ± 5.1 

years, 24 female, 2 left handed) and 11 were acquired from individuals with mild traumatic 

brain injury (Cieslak and Grafton, 2014) (mean age 33.8 ± 13.3 years, 4 female, handedness 

unclear). All participants volunteered with in-formed written consent in accordance with the 

Institutional Review Board/Human Subjects Committee, University of California, Santa 

Barbara. Deterministic fiber tracking using a modified FACT algorithm was performed until 

100,000 streamlines were reconstructed for each individual. Consistent with previous work 

(Bassett et al., 2010, 2011a, Hermundstad et al., 2013, 2014; Klimm et al., 2014; Gu et al., 

2015, Muldoon et al., 2016a,b, Sizemore et al., 2015), we defined structural brain networks 

from the streamlines linking N = 234 large-scale cortical and subcortical regions extracted 

from the Lausanne atlas (Hagmann et al., 2008). We summarize these estimates in a 

weighted adjacency matrix A whose entries Aij reflect the structural connectivity 

(quantitative anisotropy) between region i and region j (Fig. 1A). See SI for further details.

Network control theory

Next, we consider the general question of how the brain moves between different states, 

where a state is defined as a pattern of activity across brain regions or voxels. In particular, 

we are interested in studying how the activity in individual brain regions affects the 

trajectory of the brain as it transitions between states; here, we define a trajectory as a set of 

states ordered in time. To address this question, we follow Gu et al. (2015), Muldoon et al. 

(2016a), and Betzel et al. (2016) by adopting notions from the emerging field of network 
control theory, which offers a theoretical framework for describing the role of network nodes 

in the control of a dynamical networked system.

Network control theory is predicated on the choice of both a structural network 

representation for the system, and a prescribed model of node dynamics. In the context of 

the human brain, a natural choice for the structural network representation is the graph on N 
brain regions whose ijth edge represents the QA between node i and node j. The choice for 

the model of node dynamics is perhaps less constrained, as many models are available to the 

investigator. These models range in complexity from simple linear models of neural 

dynamics with few parameters to nonlinear neural mass models with hundreds of parameters 

(Gu et al., 2015; Muldoon et al., 2016a).

In choosing a model of neural dynamics to employ, we consider multiple factors. First, 

although the evolution of neural activity acts as a collection of nonlinear dynamic processes, 

prior studies have demonstrated the possibility of predicting a significant amount of variance 

in neural dynamics as measured by fMRI through simplified linear models (Galán, 2008; 
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Honey et al., 2009; Gu et al., 2015). On the basis of this literature, we employ a simplified 

noise-free linear continuous-time and time-invariant network model

(1)

where x: ℝ≥0⟶ ℝN describes the state of brain regions over time, and A ∈ ℝN×N is a 

symmetric and weighted adjacency matrix. The diagonal elements of the matrix A satisfy Aii 

=0. The input matrix  identifies the control nodes  in the brain, where 

 and

(2)

and ei denotes the i-th canonical vector of dimension N. The input  denotes 

the control strategy. Intuitively, this model enables us to frame questions related to brain 

state trajectories in formal mathematics. Moreover, it allows us to capitalize on recent 

advances in network control theory (Pasqualetti et al., 2014) to inform our understanding of 

internal cognitive control (Gu et al., 2015; Betzel et al., 2016) and to inform the 

development of optimal external neuromodulation using brain stimulation (Muldoon et al., 

2016b).

Optimal control trajectories

Given the above-defined model of neural dynamics, as well as the structural network 

representation extracted from diffusion imaging data, we can now formally address the 

question of how the activity in individual brain regions affects the trajectory of the brain as it 

transitions between states.

We begin by defining an optimization problem to identify the trajectory between a specified 

pair of brain states that minimizes a given cost function. We define a cost function by the 

weighted sum of the energy cost of the transition and the integrated squared distance 

between the transition states and the target state. We choose this dual-term cost function for 

two reasons. First, theoretically, the energy cost term constrains the range of the time-

dependent control energy u(t). In practice, this means that the brain cannot use an infinite 

amount of energy to perform the task (i.e., elicit the state transition), a constraint that is 

consistent with the natural energetic restrictions implicit in the nature of all biological 

systems but particularly neural systems (Niven and Laughlin, 2008; Laughlin et al., 1998; 

Attwell and Laughlin, 2001; Laughlin, 2001). Second, the integrated distance term provides 

a direct constraint on the trajectory. Mathematically, this constraint penalizes trajectories that 

traverse states that are far away from the target state, based on the intuition that optimal 

transitions between states should possess reasonable lengths rather than being characterized 

by a random walk in state space. Together, these two terms in the cost function enable us to 

define an optimal control model from which we expect to find trajectories (from a given 

initial state to a specified target state) characterized by a balance between energy cost and 

trajectory length.
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In the context of the optimization problem defined above, we wish to determine the 

trajectory from an initial state x0 to a target state xT. To do so, it suffices to solve the 

variational problem with the constraints from Eq. (1) and the boundary conditions for x(t), 
i.e., x(0) is the initial state and x(T) is the target state. Note that here, the variational problem 

does not refer toBayesian variational inference, which tries to approximate an intractable 

posterior distribution. Instead, we use the term in the more traditional sense, and address the 

variational problem to infer a control input function u(t) to minimize the cost functional 

defined in Eq. (4) with the boundary constraints. Mathematically, the variational problem is 

formulated as

(3)

where T is the control horizon, ρ ∈ ℝ > 0, and (xT − x (t)) is the distance between the state at 

time t and the target state.

To compute an optimal control u* that induces a transition from the initial state x0 to the 

target state x0 to the target state xT, we define the Hamiltonian as

(4)

From the Pontryagin minimum principle (Boltyanskii et al., 1960), if u* is an optimal 

solution to the minimization problem with corresponding state trajectory x*, then there 

exists p* such that

(5)

(6)

which reduces to

(7)

Next, we denote
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(8)

(9)

(10)

then Eq. (7) can be written as

(11)

from which we can derive that

(12)

where  is a constant to be fixed from the boundary conditions. Let , 

 and plug in t = 0, T with the corresponding x0 and xT, we have

(13)

(14)

Note that from Eq. (13), we can solve for , where

(15)

Finally, with  on hand from Eq. (14), we can compute p(T), where
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(16)

with which we can finally get , where

(17)

and further u(t) and x(t) from Eq. (12).

Note that the formulae we derive here are the closed form solutions to the optimization 

objective, and therefore a numerical solver is not needed.

Statistics of optimal control trajectories

After calculating the optimal trajectories between initial and final states, we next sought to 

address the question of whether these trajectories differed in their energetic and spatial 

requirements for different choices of control strategies, and between individual’s whose 

brains were healthy and normally functioning, and individuals who had experienced a mild 

traumatic brain injury and had presented with complaints of mild cognitive impairment. To 

address this question, we computed the energy cost of a trajectory, integrated over time T, as

(18)

and the spatial cost of a trajectory, integrated over time T, as

(19)

where  is the associated control input and  is the controlled trajectory with 

the given control set , initial state x0 and the target state xT. We treat this energy as a 

simple statistic that can be compared across trajectories and subject groups, as an indirect 

measure from which we may infer optimality of cognitive function.

Control efficiency

The control efficiency is defined for each region to quantify its efficiency in affecting the 

transition from the default mode state to the three target states. Mathematically, suppose we 

have N randomly chosen control sets, each indexed by , for the target states , j 
= 1, 2, 3, we calculate the corresponding optimal trajectory with respect to  and denote 

the energy cost of the trajectory as . The tiered value of the control set  for 

target  is then defined as
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(20)

where lower energy costs imply higher tiered values. The control efficiency for node i in task 

j is then

(21)

or intuitively, the average of these tiered values.

Network communicability to the target state

For a given weighted network A, the network communicability G quantifies the extent of 

indirect connectivity among nodes. Here we adopt the generalized definition in Crofts and 

Higham (2009) and define the network communicability as G = exp(D−1/2AD−1/2), where D 
is the diagonal matrix with the diagonal element Dii = Σi Aij. For a given target state xT, 

denote the set of active regions as  communicability to the target states (GTi) is then 

defined as the sum of communicability to all of the target regions, i.e., . 

Further, the normalized network communicability to the target regions  is then defined as

(22)

All results reported in this study are based on the normalized network communicability.

Energetic impact of brain regions on control trajectories

To quantify the robustness of controllability of a node when it is removed from the control 

set consisting of all nodes, we iteratively remove nodes from the network and compute the 

energetic impact of each region on the optimal trajectory as the resulting increase in the log 

value of the energy cost. Intuitively, regions with high energetic impact are those whose 

removal from the network causes the greatest increase in the energy required for the state 

transition. Mathematically, denote  as the control set of all nodes and  as the control set 

without node , the energetic impact of node i for target  is defined as

(23)

which intuitively measures robustness controllability.
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Results

To begin, we set the initial state of the brain to be an activation pattern consistent with those 

empirically observed in the brain’s baseline condition. More specifically, we set the initial 

state such that the regions of the default mode network had activity magnitudes equal to 1 

(on), while all other regions had activity magnitudes equal to 0 (off). Furthermore, we 

examined 3 distinct target states such that regions of the (i) auditory, (ii) extended visual, or 

(iii) motor systems had activity magnitudes equal to 1 (on), while all other regions had 

activity magnitudes equal to 0 (off). In this context, we sought to understand characteristics 

of the transitions between initial and target states that could be performed with minimal 

energy, minimal time, and along short trajectories in state space by multiple control regions 

(multi-point control; see Fig. 1C and Methods). We note that mathematically, we measure 

time in arbitrary units, at each of which control energy can be utilized by a brain region. 

Intuitively, we operationalize time as consistent with the temporal scale at which brain 

regions can alter their activity magnitudes to affect state transitions.

Characteristics of optimal control trajectories

We first study the three state transitions from the default mode to (i) auditory, (ii) extended 

visual, and (iii) motor states (Fig. 2A). We take a hypothesis-driven approach and define the 

“control set” to be composed of dorsal and ventral attention (Posner and Petersen, 1989), 

fronto-parietal, and cingulo-opercular cognitive control regions (Gu et al., 2015). That is, 

this set of 87 regions will utilize control energy using a multi-point control strategy, thereby 

changing the time-varying activity magnitudes of all brain regions (Fig. 2B). The optimal 

trajectories display multiple peaks in the distance from the target state as a function of time, 

and are altered very little by whether the target state is the auditory, extended visual, or 

motor system (Fig. 2C). Because the optimal trajectory is determined via a balance of 

control energy and trajectory distance (see Methods), it stands to reason that the time-

dependent energy utilized by the control set is inversely related to the distance between the 

current state and the target state. When little control energy is utilized, the current state can 

drift far from the target state, while when a larger magnitude of control energy is utilized, 

the current state moves closer to the target state (Fig. 2D).

It is important to note that these general characteristics of the optimal control trajectories are 

dependent on our choice of the control set (which here we guide with biologically motivated 

hypotheses), as well as on a penalty on the time required for the transition (ρ in Eq. (3); see 

Methods). In the supplement, we examine the effect of alternative choices for both the 

control set and ρ. First, we find that when the control set includes every node in the network, 

the distance to the target state decreases monotonically to zero along the trajectory (Fig. 

S1A). Second, we consider the effect of the penalty term on control energy, ρ. For the results 

presented here, we fix ρ to be equal to 1. However, in the supplement, we explore a wide 

range of ρ values, and show that when ρ is small, the optimal control trajectory is largely 

driven by a minimization of the integrated squared distance to the target. In contrast, when ρ 
is large, the optimal control trajectory is predominantly driven by the magnitude of the 

utilized energy (Fig. S1B). Importantly, we did not perform a full sweep of ρ from 0 to 

infinity because very small values of ρ cause numeric instabilities in the calculations.
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Structurally driven task preference for control regions

We next ask whether certain brain regions are located at specific points in the structural 

network that make them predisposed to play consistent and important roles in driving 

optimal control trajectories. To answer this question, we choose control sets of the same size 

as the brain’s hypothesized cognitive control set; recall that in the previous section, we 

defined the brain’s cognitive control set to consist of the 87 nodes of the dorsal and ventral 

attention, fronto-parietal, and cingulo-opercular systems following Gu et al. (2015). Here, 

we choose the 87 regions of these new control sets uniformly at random from the set of all 

nodes. Using these “random” control sets, we computed the optimal control trajectory for 

each of the three state transitions and for each subject separately. Then, we rank the random 

control sets in descending order according to the energy cost of the trajectory and we assign 

every region participating in an r-ranked control set with rank-value r. Next, we define the 

control efficiency of a brain region to be the sum of its rank values in all of the random 

control sets it belongs to divided by the total number of sets it belongs to. Intuitively, a 

region with a high control efficiency is one that exerts control with little energy utilization. 

Importantly, it must decrease activation in the initial state, and increase activation in the 

target state, a pair of capabilities that depends on the pattern of connections emanating from 

the region.

In general, we observe that a region’s preference for being an optimal controller (exerting 

control with little energy utilization) is positively correlated with its network 

communicability to the regions of high activity in the target state (Spearman correlation r = 

0.27, p < 4.8 × 10−4; see Fig. 3A). We recall that network communicability is a measurement 

of the strength of a connection from one region to another that accounts for walks of all 

lengths (see Methods). Interestingly, we observed this same correlation between control 

efficiency and network communicability across optimal control trajectories for all three state 

transitions, from the default mode to the auditory (r=0.36, p = 1.4 × 10−8), extended visual 

(r=0.51, p = 1.1 × 10−16), or motor (r=0.42, p = 2.1 × 10−11) systems (Fig. 3B–D). Together, 

these results indicate that regions that are close (in terms of walk lengths) to regions of high 

activity in the target state are efficient controllers for that specific state transition. Note that 

these regions are not purely target areas, likely due to the fact that they must also decrease 

activation in the initial state.

The general role that network proximity to the target state plays for control regions ensures 

that regions that are proximate to all three target states (auditory, extended visual, and 

motor) will be task-general controllers, while regions that are proximate to only one of the 

target states will be task-specific controllers. To better understand the anatomy of efficient 

controllers, we transformed control efficiency values to z-scores and defined an efficient 

control hub to be any region whose associated p-value was less than 0.025. Across all three 

state transitions, we found that the supramarginal gyrus specifically, and the inferior parietal 

lobule more generally, consistently acted as an efficient control hub. The consistent control 

role of these regions is likely due to the fact that these areas are structurally interconnected 

with ventral premotor cortex, a key input to primary sensorimotor areas (Kandel et al., 

2000). The areas that are more specific to the three state transitions include medial parietal 
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cortex (motor transition), orbitofrontal and inferior temporal cortex (visual transition), and 

superior temporal cortex (auditory transition).

Regional roles in control tasks

The analyses outlined above are built on the assumption that the brain uses fronto-parietal, 

cingulo-opercular, and attention systems to affect cognitive control, which we define as the 

ability to move the brain from an initial state (e.g., the default mode system) to a specified 

final state (e.g., activation of extended visual, auditory, or motor cortex). However, one 

might naturally ask whether these regions of the brain could have been predicted a priori to 

be effective controllers based on traditional engineering-based notions of control. In the 

control theory literature, particularly the literature devoted to the subfield of network 
controllability, there exist several controllability notions, including average, modal, and 

boundary control (Pasqualetti et al., 2014). Average controllability identifies brain areas that 

can theoretically steer the system into many different states, or patterns of 

neurophysiological activity magnitudes across brain regions. Modal controll-ability 

identifies brain areas that can theoretically steer the system into difficult-to-reach states. 

Boundary controllability identifies brain areas that can theoretically steer the system into 

states where different cognitive systems are either coupled or decoupled. See the SI for 

mathematical definitions and Gu et al. (2015) for prior studies in human neuroimaging.

We calculated average, modal, and boundary control values for each node in the network. 

We observe that while cognitive control regions cover a broad swath of frontal and parietal 

cortex, including medial frontal cortex and anterior cingulate (Fig. 4A), the number of these 

regions that intersect with the strongest 87 average, modal, or boundary control hubs was on 

average approximately 50 (Fig. 4B). These results suggest that the control capabilities of the 

human brain’s cognitive control regions may not be perfectly aligned with control notions 

previously developed in the field of mechanical engineering, provided that the model 

assumptions and data quality are appropriate (see Methodological Considerations). Instead, 

cognitive control regions in the human brain may have distinct capabilities necessary for the 

specific transitions required by the brain under the constraints imposed by neuroanatomy 

and neurophysiology.

To more directly test this possibility, we examined the average distance (Fig. 4C) and energy 

(Fig. 4D) for transitions from the default mode to the auditory, extended visual, and 

sensorimotor states that are driven by average, modal, and boundary control hubs, or by 

regions of fronto-parietal, cingulo-opercular, and attention systems. We observed that both 

the trajectory cost and the energy cost differ by control strategy and by target state. We 

quantify this observation using a 2-way ANOVA with both the control strategy and the target 

state as categorical factors. Using the trajectory cost as the dependent variable, we observed 

a significant main effect of control strategy (F=78.74, p = 4.65 × 10−41), a significant main 

effect of target state (F=29.24, p = 1.12 × 10−12), and a significant interaction between 

control strategy and target state (F=11.36, p = 7.6 × 10−12). Similarly, using the energy cost 

as the dependent variable, we observed a significant main effect of control strategy 

(F=67.94, p = 2.48 × 10−36), a significant main effect of target state (F=39.18, p = 1.99 × 

10−16), and a significant interaction between control strategy and target state (F=10.93, p = 
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2.18 × 10−11). Collapsing over target states and performing post hoc testing, we observed 

that cognitive control regions displayed a similar average trajectory cost to average control 

hubs, but a lower average trajectory cost than modal and boundary control hubs (p < 0.05 

uncorrected). Furthermore, cognitive control regions possessed a higher average energy cost 

than the average and modal control hubs, but a lower average energy cost than the boundary 

control hubs. These results interestingly suggest that the human’s cognitive control regions, 

as defined by decades of research in cognitive neuroscience, may affect state transitions 

using neither the shortest distances nor the lowest energies possible, provided that the model 

assumptions and data quality are appropriate (see Methodological Considerations). This is 

likely due to the fact that cognitive control regions must affect a broad array of state 

transitions that cannot easily be classified into average, modal, and boundary control 

strategies.

Specificity of control in health and following injury

The unique role of brain regions in affecting control strategies may bring with it 

vulnerability to injury. When a brain network is injured, regional control roles may be 

significantly altered, potentially increasing susceptibility to underlying abnormalities in 

neuronal dynamics. To characterize this vulnerability, we determine the degree to which a 

single brain region impacts putative control processes and we ask whether that specificity is 

maintained or altered following brain injury. We measure specificity by iteratively removing 

nodes from the control set, and we compute the energetic impact of each region on the 

optimal trajectory as the resulting increase in the log value of the energy cost (see Fig. 5A 

and Eq. (23) in Methods). Intuitively, regions with high energetic impact are those whose 

removal from the network causes the greatest increase in the energy required for the state 

transition. Across all subjects and all tasks, we observe that the regions with the highest 

energy impact are the supramarginal gyrus specifically, and the inferior parietal lobule more 

generally, the same regions that emerged as consistent and efficient controllers in Fig. 2A.

Next we determined whether energetic impact – our proxy for regional specificity of control 

roles – is altered in individuals with mild traumatic brain injury (mTBI). Intuitively, if all 

regions of a brain have high energetic impact, this indicates that each region is performing a 

different control role which is destroyed by removal of the node. By contrast, if all regions 

of a brain have low average energetic impact, this indicates that each region is performing a 

similar control role that is not destroyed by removal of a node. We observed that individuals 

with mTBI displayed anatomically similar patterns of energetic impact on control 

trajectories as regions are removed from the network (Fig. 5B). However, the average 

magnitude and variability of the energetic impact differed significantly between the two 

groups, with individuals having experienced mTBI displaying significantly lower values of 

average magnitude of energetic impact (permutation test: p = 5.0 × 10−6) and lower values 

of the average standard deviation of energetic impact (p = 2.0 × 10−6). We note that common 

graph metrics including the degree, path length, clustering coefficient, modularity, local 

efficiency, global efficiency, and density were not significantly different between the two 

groups, suggesting that this effect is specific to control (see Supplement). These results 

indicate that mTBI patients display a loss of specificity in the putative control roles of brain 
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regions, suggesting greater susceptibility to damage-induced noise in neurophysiological 

processes, or to external drivers in the form of stimulation.

Discussion

Here we ask whether structural connectivity forms a fundamental constraint on how the 

brain may move between diverse cognitive states. To address this question, we capitalize on 

recent advances in network control theory to identify and characterize optimal trajectories 

from an initial state (composed of high activity in the default mode system) to target states 

(composed of high activity in sensorimotor systems) with finite time, limited energy, and 

multi-point control. Using structural brain networks estimated from diffusion imaging data 

acquired in a large cohort of 48 healthy individuals and 11 patients with mild traumatic brain 

injury, we show that these optimal control trajectories are characterized by continuous 

changes in regional activity across the brain. We show that the regions critical for eliciting 

these state transitions differ depending on the target state, but that hetero-modal association 

hubs – predominantly in the supramarginal gyrus specifically, and the inferior parietal lobule 

more generally – are consistently recruited for all three transitions. Finally, we study the 

sensitivity of optimal control trajectories to the removal of nodes from the network, and we 

demonstrate that brain networks from individuals with mTBI display maladaptive control 

capabilities suggestive of a limited dynamic range of states available to the system. Together, 

these results offer initial insights into how structural network differences between 

individuals impact their potential to control transitions between cognitive states.

Role of structural connectivity in shaping brain functional patterns

A growing body of literature on the relationship between brain structure and function has 

demonstrated that the brain’s network of anatomical connections constrains the range of 

spontaneous (Deco et al., 2011) and task-related (Hermundstad et al., 2013) fluctuations in 

brain activity. Evidence for such structural underpinnings comes from two distinct lines of 

research. On one hand, empirical studies have demonstrated that structural insults in the 

form of lesions result in acute reorganization of the brain’s pattern of functional coupling 

(Johnston et al., 2008; O’Reilly et al., 2013). These observations are further buttressed by 

simulation studies in which structural connectivity has been used to constrain interactions 

among dynamic elements in biophysical models of brain activity (Honey et al., 2007, 2009; 

Adachi et al., 2011) and models of network communication (Goñi et al., 2014; Abdelnour et 

al., 2014; Mišić et al., 2015). Though this forward modeling approach has proven fruitful in 

predicting observed patterns of functional connectivity, the precise mapping of brain 

structure to function remains unclear.

The present study builds on this body of work, using a dynamical model of how brain 

activity propagates over a network in order to gain insight into what features of that network 

facilitate easy transitions from a baseline (default mode) state to states where the brain’s 

primary sensorimotor systems are activated. In contrast to previous simulation studies that 

have focused on network features that influence the passive spread of activity over time, this 

present study directly engages the question of how those same features enable the state of 

the system to be controlled. We use this model to demonstrate that brain regions are 
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differentially suited for particular control tasks, roles that can be predicted on the basis of 

how well-connected they are to regions in the target state. Regions that are close (in terms of 

walk lengths) to regions of high activity in the target state are efficient controllers for that 

specific state transition. It follows, then, that a brain region’s capacity to dynamically 

influence a network depends not only on its pattern of connectivity, but also on the repertoire 

of states that the system visits. In other words, a region that maintains many connections 

(both direct and indirect), but never to regions that are “active” in target states, may exert 

less influence than a region that maintains few connections, but whose connections are 

distributed among regions that are “active” in many target states. We further demonstrate 

that this mapping of brain structure to specific functions is altered in individuals with mTBI, 

suggesting that injury may alter control profiles of individual brain regions.

Our finding that the inferior parietal lobule forms a consistently effective control region, 

across all three target states, is particularly interesting when considered in the context of 

prior literature on this region’s structural and functional roles. In particular, the inferior 

parietal lobule represents the superior portion of the temporoparietal junction, a multimodal 

area associated with functions as wide ranging as calculation, finger gnosis, left/right 

orientation, and writing (Rusconi et al., 2009). Focal damage to this area leads to wide-

spread cognitive dysfunction (e.g., Gerstmann syndrome) as a consequence of the unique 

confluence of white matter pathways underlying this region (Rushworth et al., 2006). The 

diverse white matter projections emanating from this area may support its putative role in 

effectively controlling brain function. Indeed, recent evidence suggests that the right 

temporoparietal junction links two antagonistic brain networks processing external versus 
internal information: a midcingulate–motor–insular network associated with attention, and a 

parietal net-work associated with social cognition and memory retrieval (Bzdok et al., 2013). 

These data support the notion that the right temporoparietal junction controls our attention to 

salient external events (Corbetta and Shulman, 2002), perhaps with early input from the right 

fronto-insular cortex thought to drive switching between central-executive and default-mode 

networks (Sridharan et al., 2008).

Single versus multipoint control

An important feature of our model lies in the delineation of a control set, a group of brain 

regions that can affect distributed control. The focus on multiple points of control 

throughout the system is one that has important theoretical motivations and empirical 

correlates. Prior computational models demonstrate that while the brain is theoretically 

controllable via input to a single control point, the energy and time required for that control 

is such that the brain is practically uncontrollable (Gu et al., 2015). These data argue for an 

assessment of multi-point control as a better proxy of control strategies that the brain might 

utilize. Indeed, such an argument is consistent with empirical observations that stimulation 

(or even drug manipulations) focused on single brain regions are less effective in treating 

psychiatric disease than interventions that target multiple brain regions (Sommer et al., 

2012; Tortella et al., 2014). A prime empirical example of multi-point control is cognitive 

behavioral therapy, which offers a spatio-temporal pattern of activations that enhances 

cognitive function and decreases psychiatric symptoms across diagnostic categories (Lett et 

al., 2014; Radhu et al., 2012; Cima et al., 2014). Other potential multi-point control 
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mechanisms include grid stimulation across multiple electrodes, suggested in the control of 

medically refractory epilepsy (Ching et al., 2012).

Diversity in human brain control strategies

By studying multi-point control, we were able to directly assess whether the optimal control 

trajectories elicited from fronto-parietal, cingulo-opercular, and attention systems displayed 

similar distance and energy trajectories to those obtained using regions selected for 

engineering-based notions of control (Pasqualetti et al., 2014). Specifically, we compare and 

contrast the performance of human cognitive control regions to average, modal, and 

boundary controllers (Gu et al., 2015). One might naturally ask whether and how each of 

these engineering-based notions of controllers is an appropriate theoretical quantity to 

consider in the context of neurobiology. Average controllers are those theoretically able to 

push the system from any arbitrary initial state to any easily reachable state, nearby on the 

energy landscape. Modal controllers are those that are optimally placed to move the system 

from any arbitrary initial state to any difficult-to-reach state, far away on the energy 

landscape. Boundary controllers are those that are optimally placed to integrate or segregate 

network communities in the system. Common assumptions that underlie each of these 

control strategies are that (i) controllers can be identified independently from the initial and 

final states, and (ii) all states in the energy landscape are accessible to the system. The 

common constraint on each of these strategies is that expended energy must be minimized 

for a region to be referred to as a controller. In the human brain, it is not well-known 

whether these assumptions are met, or whether the energetic constraint is sufficient to 

predict control functions.

Interestingly, we observe that the optimal trajectories elicited by canonically defined 

cognitive control regions do not show similar energy requirements or trajectory distances to 

any of these previously described control types. There are several potential reasons for this 

observation: (i) false negatives in the diffusion imaging data impacting on the observed 

network profiles, (ii) assumptions of the linear model, and (iii) bona fide differences 

between mechanical controllers and biological controllers. Prior work demonstrating 

robustness of controllability profiles across large cohorts and different diffusion imaging 

acquisition protocols provide initial evidence that the first explanation is unlikely to fully 

explain our findings (Gu et al., 2015). Regarding the second explanation – assumptions of 

the linear model – it is interesting to note that recent evidence suggests that the average, 

modal, and boundary controllability profiles identified by the linear model provide excellent 

predictions for the behavior of nonlinear models (Muldoon et al., 2016b). Evidence 

supporting the third interpretation – that these observed differences are bona fide differences 

between mechanical controllers and biological controllers – is provided by the fact that 

cognitive control regions must affect a broad array of state transitions that do not easily fit 

into prior classifications. These transitions include switching behavior (Hansen et al., 2015), 

inter-state competition (Cocchi et al., 2013), distributed rather than centralized control 

(Eisenreich et al., 2016), and push–pull control (Khambhati et al., 2016), which may each 

offer differential advantages for neural computations (Durstewitz and Deco, 2008).
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Maladaptive control in traumatic brain injury

Finally, our assessment of patients with mild traumatic brain injury enabled us to determine 

whether widespread injury leads to a decrement in the healthy network control profiles, thus 

theoretically requiring greater energy for the same functions, or an enhancement of the 

healthy network control profiles at the cost of expected sensitivity to external perturbations. 

Our data provide initial evidence for maladaptive control of the latter sort in patients with 

mild traumatic brain injury. Understanding the impact of brain injury on cognitive processes, 

including the ability to switch between cognitive states, is a major goal in clinical 

neuroscience. Indeed, traumatic brain injury is a common source of brain dysfunction, 

affecting more than 200,000 individuals per year in the United States alone. Injuries – often 

caused by motor vehicle and sports accidents – result in damage to neuronal axons, 

including long-distance white matter fiber bundles (Johnson et al., 2013) as well as u-fibers 

and deep white matter tracks with multiple crossings. The pattern of injury can be multi-

focal and variable across individuals (Kinnunen et al., 2011; Sidaros et al., 2008; Hellyer et 

al., 2013), challenging comprehensive predictors and generalizable interventions.

Recent evidence suggests that injury-induced, widespread damage to white matter tracts 

critically impacts large-scale network organization in the human brain, as measured by 

diffusion imaging tractography (Kinnunen et al., 2011; Fagerholm et al., 2015). Moreover, 

this damage is associated with fundamental changes in cognitive function (Sharp et al., 

2014), including information processing speed, executive function, and associative memory 

(Fagerholm et al., 2015). Each of these cognitive deficits intuitively depends on the ability to 

transition from one cognitive state to another; yet an understanding of structural drivers of 

these transitions and their potential alteration in mTBI has remained elusive. Here we 

demonstrate a loss of specificity in putative control processes in mTBI, suggesting that the 

unique roles of individual brain regions in supporting cognitive state transitions are 

damaged. It is intuitively plausible that this decrement in regional specificity of control leads 

to broad changes in functional dynamics, particularly in the system’s susceptibility to 

damage-induced noise in neurophysiological processes (Garrett et al., 2013). Indeed, the 

observed decrements in energetic impact might further provide a direct structural mechanism 

for the decreased signal variability observed in mTBI using electrophysiological imaging 

(Raja Beharelle et al., 2012; Nenadovic et al., 2008). More generally, these findings 

highlight the fact that the healthy brain might display a degree of controllability that is either 

decremented or enhanced in injury and disease, suggesting the possibility of a U-shaped 

curve reminiscent of similar curves observed in other brain network phenotypes (Collin and 

van den Heuvel, 2013; Cools and D’Esposito, 2011).

Methodological considerations

A few methodological points are worthy of additional consideration. First, in this study we 

examined structural brain networks derived from diffusion imaging data and associated 

tractography algorithms. These algorithms remain in their relative infancy, and can still 

report spurious tracts or fail to report existing tracts (Thomas et al., 2014; Reveley et al., 

2015; Pestilli et al., 2014). Despite the evolving nature of diffusion protocols and 

tractography algorithms, preliminary data provide initial evidence that consistent 

controllability profiles can be robustly observed across large cohorts and different diffusion 
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imaging acquisition protocols (Gu et al., 2015). Formal validation in axonal tracing studies 

in monkeys and other mammals (Jbabdi et al., 2013) remains the gold standard for these 

types of data. However, it is important to note that initial work supports the notion that much 

of the structure present in DSI connectivity matrices recapitulates known projections 

observed in tract tracing studies of the macaque (Hagmann et al., 2008).

Second, following Gu et al. (2015), Betzel et al. (2016), and Muldoon et al. (2016b), we 

employ a linear dynamical model, consistent with prior empirical studies demonstrating 

their ability to predict features of resting state fMRI data (Galán, 2008; Honey et al., 2009). 

This choice is to some degree predicated on the well-developed theoretical and analytical 

results in the engineering and physics literatures examining the relationship between control 

and network topology (Liu et al., 2011; Müller and Schuppert, 2011; Yan et al., 2012). 

Moreover, it is plausible that even these results using simple linear models may offer 

important intuitions for controlling nonlinear models of brain function. Indeed, theoretical 

work over the last several decades has demonstrated the utility of describing non-linear 

systems in terms of a linear approximation in the neighborhood of the system’s equilibrium 

points (Luenberger, 1979). Very recent evidence has extended these intuitions to 

neuroimaging data, demonstrating that the average and modal controllability profiles 

identified by the linear model can be used to predict the behavior of nonlinear models in the 

form of Wilson–Cowan oscillators, which are commonly used to understand the dynamics of 

cortical columns (Muldoon et al., 2016b).

Future directions

An interesting hypothesis generated by the current framework is that control capabilities 

may be altered dimensionally across traditionally separated diagnostic groups that display 

dysconnectivity in network hubs, as measured by regions of high eigenvector centrality. 

Such a hypothesis builds on the now seminal dysconnection hypothesis in schizophrenia 

(Stephan et al., 2009), and expands it to include an explicit dynamical control component. 

Indeed, mounting evidence suggests that the overload or failure of brain network hubs may 

be a common neurophysiological mechanism of a range of neurological disorders including 

Alzheimer’s disease, multiple sclerosis, traumatic brain injury, and epilepsy (Stam, 2014). 

Alterations in these hubs can also be used to predict the progression of psychiatric disorders 

such as schizophrenia (Collin et al., 2016). In both neurological and psychiatric disorders, 

these changes to network hubs may alter the control capabilities of the individual, 

challenging the normal executive functions required for daily living. It is also intuitively 

plausible that normal variation in hub architecture may play a role in individual differences 

in control capabilities in healthy individuals, impacting on the speed with which they 

transition between cognitive states. These topics will form important provender for future 

work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Conceptual schematic. (A) Diffusion imaging data can be used to estimate connectivity from 

one voxel to any other voxel via diffusion tractography algorithms. (B) From the 

tractography, we construct a weighted network in which N=234 brain regions are connected 

by the quantitative anisotropy along the tracts linking them (see Methods). (C) We study the 

optimal control problem in which the brain starts from an initial state (red) at time t=0 and 

uses multi-point control (control of multiple regions; blue) to arrive at a target state (yellow) 

at time t = T.
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Fig. 2. 
Optimal control trajectories. (A) We study 3 distinct types of state transitions in which the 

initial state is characterized by high activity in the default mode system, and the target states 

are characterized by high activity in auditory (blue), extended visual (green), or motor (red) 

systems. (B) The activation profiles of all N=234 brain regions as a function of time along 

the optimal control trajectory, illustrating that activity magnitudes vary by region and by 

time. Activation can be either positive or negative, and the exact range of values will depend 

on the initial state, the target state, and the control set. Regions are listed in the following 

order: initial state, target state, controllers, and others. (C) The average distance from the 

current state x(t) to the target state x(T) as a function of time for the trajectories from the 
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default mode system to the auditory, visual, and motor systems, illustrating behavior in the 

large state space. (D) The average control energy utilized by the control set as a function of 

time for the trajectories from the default mode system to the auditory, visual, and motor 

systems. The similarity of the curves observed in panels (C) and (D) is driven largely by the 

fact that they share the same control set. See Fig. S2(B) for additional information on the 

range of these control energy values along the trajectories. Colors representing target states 

are identical in panels (A), (C), and (D).
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Fig. 3. 
Structurally driven task preference for control regions. (A) Top: Regions with high control 

efficiency (see Eq. (21)) across all 3 state transitions: from the default mode to auditory, 

extended visual, and motor systems. Bottom: Scatterplot of the control efficiency with the 

average network communicability to all 3 target regions (Spearman correlation r = 0.27, p < 

4.8 × 10−4). (B–D) Top: Regions with high control efficiency for the transition from default 

mode to (B) motor, (C) extended visual, and (D) auditory (r=0.36, p = 1.4 × 10−8) targets 

(top). Bottom: Scatter plot of control efficiency versus normalized network communicability 

with regions that are active in the target state: motor (r=0.42, p = 2.1 × 10−11), extended 

visual (r=0.51, p = 1.1 × 10−16), and auditory (r=0.36, p = 1.4 × 10−8). Values of control 

efficiency in all four panels are averaged over subjects.
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Fig. 4. 
Regional roles in control tasks. (A) Cognitive control regions cover a broad swath of frontal 

and parietal cortex, including medial frontal cortex and anterior cingulate, and are defined as 

regions included in fronto-parietal, cingulo-opercular, and attention systems (Gu et al., 

2015). (B) The number of these regions overlapping with the strongest 87 average, modal 

and boundary control hubs is approximately 50. Different choices of control strategies result 

in variation in both (C) trajectory cost and (D) energy cost. Here, HC refers to cognitive 

control regions, AC refers to average control hubs, MC refers to modal control hubs, and BC 

refers to boundary control hubs.
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Fig. 5. 
Specificity of control in health and following injury. (A) Theoretically, the brain is fully 

controllable when every region is a control point, but may not be fully controllable when 

fewer regions are used to affect control. (B) The regions with the highest values of energetic 

impact on control trajectories upon removal from the network, on average across subjects 

and tasks, were the supramarginal gyrus specifically, and the inferior parietal lobule more 

generally. In general, the healthy group and the mTBI group displayed similar anatomical 

patterns of energetic impact. (C) Magnitude and standard deviation of energetic impact 

averaged over regions and tasks; boxplots indicate variation over subjects. Even after 
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removing the single outlier in the healthy group, patients with mTBI displayed significantly 

lower values of average magnitude of energetic impact (permutation test: p = 1.1 × 10−5) 

and lower values of the average standard deviation of energetic impact (p = 2.0 × 10−6) than 

healthy controls.
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