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Duck Tembusu virus (DTMUV), the causative agent of egg-drop syndrome, has caused

substantial economic losses to duck industry. DTMUV infection leads to profound

changes of host cells, including transcriptome and proteome. However, the lncRNA

expression profile and the biological function of lncRNA have not been revealed.

Therefore, DTMUV was used to inoculate duck embryo fibroblast cells (DEFs) for

high-throughput RNA-sequencing (RNA-Seq). The results showed that 34 and 339

differently expressed lncRNAs were, respectively, identified at 12 and 24 h post-infection

(hpi). To analyze their biological functions, target genes in cis were searched and

the regulatory network was formed. Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis revealed that the target genes were strongly associated

with immune system, signaling molecular and interaction, endocrine system, and

signal transduction. The differently expressed lncRNAs were selected and verified by

quantitative real-time polymerase chain reaction (RT-qPCR). Our study, for the first time,

analyzed a comprehensive lncRNA expression profile in DEFs following DTMUV infection.

The analysis provided a view on the important roles of lncRNAs in gene regulation and

DTMUV infection.
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INTRODUCTION

In 2010, a novel disease characterized by a significant decline in egg-drop production broke out in
many duck farms across Chain (1). The disease, diagnosed as duck hemorrhagic ovaritis, was finally
proven to be caused by DTMUV (2–4). DTMUV, similar to other flaviviruses, is a single-stranded,
positive-sense RNA virus with an approximately 11 kb genome. It can infect not only ducks but
also geese (5), chickens (6), sparrows (5), pigeons (7), and mice (6). Interestingly, a wide spectrum
of mammalian cells, including A549, BHK21, Hela, Vero, and SH-SY5Y, exhibit obvious cytopathic
effects (CPEs) after DTMUV infection (8). Our previous study showed that CPEs were appeared on
HEK293 when the cells were infected with DTMUV, which implies that the virus with the possibility
to infect human can potentially threaten human health (9).
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LncRNAs, more than 200 nucleotides in length, were
recognized as pseudo-transcriptions due to the lack of protein-
coding capacity (10). In recent years, they were implicated
in complex biological processes through diverse mechanisms
such as in gene regulation by titration of transcription factors,
splicing alteration, sponging of microRNAs, and recruitment
of chromatin modifying enzymes (11–14). Besides, they could
function in cis to regulate expression of neighboring gene and
in trans to impact gene expression across chromosomes (15).
And emerging evidence uncovered that lncRNAs, induced by
various viruses, were considered to regulate host innate immune
response (16).

RNA-Seq, promising simultaneous transcript discovery
and abundance estimation, is more powerful for revelation
of transcriptome complexity and for identification of non-
coding RNAs, new transcription units, and alternative
splicing (17, 18). Recently, it has been widely used to
reveal the expression levels of RNA transcripts in specific
tissues or cells in different physiological states and cellular
environments (19). Unquestionable, it provides important
insights into the interaction mechanism between pathogen and
host (20–22).

Up to now, extensive and in-depth researches about pathogen
(5, 23, 24), pathogenicity (6, 25, 26), epidemiology (5, 27),
rapid diagnosis (28–30), and vaccine (31) were carried out to

FIGURE 1 | Cytopathic effects of duck embryo fibroblast cells following DTMUV infection at 12, 24, and 48 h post-infection. Each sample had three biological

replicates. The yellow scale bar represents 100µm. (A) The status of mock-infected DEFs at 12 hpi. (B) The status of mock-infected DEFs at 24 hpi. (C) The status of

mock-infected DEFs at 48 hpi. (D) The status of TMUV-infected DEFs at 12 hpi. (E) The status of TMUV-infected DEFs at 24 hpi. (F) The status of TMUV-infected

DEFs at 48 hpi.

prevent and control DTMUV infection. Recently, we revealed
the expression profile and biological function of mRNAs
in DTMUV-infected DEFs (8). However, the expression and

FIGURE 2 | The DTMUV replication in duck embryo fibroblast cells following

infection at 12, 24, and 48 h post-infection. Each sample had three biological

replicates.
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function of lncRNAs in response to DTMUV infection remain
superficial. Therefore, we analyzed a comprehensive lncRNA
expression profile in DEFs following DTMUV infection. Besides,
the cis target genes of differentially expressed lncRNAs were
identified and then used for Gene Ontology (GO) and KEGG

enrichment analyses to elucidate their biological processes
and associated pathways. Our findings contribute to further
understanding of the regulatory mechanism of lncRNAs. In
addition, the analysis provides a new perspective for DTMUV-
host interaction.

FIGURE 3 | (A) The Venn diagrams showing the number of lncRNAs filtered by the three methods. (B) lncRNA length distribution. (C) lncRNA density distribution.
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MATERIALS AND METHODS

Cell Culture and Virus Infection
Freshly isolated DEFs were obtained from 10-day-old specific
pathogen free (SPF) duck embryos (purchased from Harbin
Veterinary Research Institute, Harbin, China). DEFs were
cultured in Dulbecco’s modified Eagle’s medium (DMEM/F-
121:1) (01-172-1ACS, BI, Kibbutz, Beit Haemek, Israel)
supplemented with 10% fetal bovine serum (FBS) (04-001-1ACS,
BI, Kibbutz, Beit Haemek, Israel), 100 µ/mL penicillin, and
100µg/mL streptomycin (P1400, Solarbio Science & Technology
Co., Ltd., Beijing, China) at 37◦C with 5% CO2. When reaching
80–90% confluency, DEFs were mock-infected or infected with
DTMUV (SDSM strain, GenBank Accession No. KC333867.1,
which was obtained from our laboratory, the Poultry Disease
Lab of Shandong Agricultural University) at a multiplicity of
infection (MOI) of 3. After viral adsorption for 1.5 h at 37◦C with
5% CO2, the inoculum was replaced with maintenance medium
(DMEM/F-12 with 2% FBS) for further maintaining. The virus
replication was detected at 12, 24, and 48 hpi. Each sample had
three biological replicates.

This study was approved by the Committee on the Ethics of
Animal of Shandong (permit number 20,156,681). All subjects
gave informed consent for their participation in the study.

RNA Isolation and RNA-Seq
The total RNA was extracted using TRIzol reagent (Vazyme
Biotech Company, China) according to the manufacturer’s
instructions. The concentration of total RNA was determined
using a Nanodrop instrument (Thermo Fisher Scientific). RNA
quality was assessed by the detection of the A260/A280 ratio, with
a value of 1.8–2.0 indicating high quality. Ribo-zero-magnetic-
kit (Epicenter, USA) was used to remove ribosomal RNA from

the samples. RNA libraries were prepared using TruSeq RNA
LT Sample Prep Kit v2 (Illumina, San Diego, CA, USA). Library
sequencing was performed on an Illumina Hiseq3000 platform
by the Shanghai Personal Biotechnology (Shanghai, China).

Bioinformatic Analyses
Clean data were obtained by removing adaptors, poly-N
sequences, and poor-quality using Cutadapt software (http://
cutadapt.readthedocs.io/en/stable/). Quality control analysis was
performed on clean data using FastQC software (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc). The filtered
reads were then mapped to the Peking duck reference genome
(duckbase.refseq.v4.fa, http://www.duckbase.org/Download)
using TopHat2 software (http://tophat.cbcb.umd.edu/) (32, 33).
The transcripts were assembled with the mapped reads using
StringTie software (http://ccb.jhu.edu/software/stringtie/) (34).

Coding Potential Analyses and Differential
Expression Analyses
The coding ability of lncRNAs was predicted using three
tools, including Coding-Non-Coding-Index (CNCI) (https://
github.com/www-bioinfo-org/CNCI) (35), Coding Potential
Calculator (CPC) (http://cpc.cbi.pku.edu.cn/) (36), and Pfam-
scan (http://www.ebi.ac.uk/Tools/pfa/pfamscan/help/) (37).
The intersecting no-coding transcripts of the three tools were
designated as credible lncRNAs. The DESeq software (http://
www.bioconductor.org/packages/release/bioc/html/DESeq.
html) (38) was used to perform differential expression analyses.
A p < 0.05 and |fold change| ≥ 2 were set as the threshold for
significantly differential expression.

FIGURE 4 | (A) Volcano chart of differently expressed lncRNAs at 12 hpi. (B) Volcano chart of differently expressed lncRNAs at 24 hpi. The x-axis shows the Log2
(fold change) and y-axis shows the –log10 (p-value). Red points represent the upregulated lncRNAs and green points represent the downregulated lncRNAs. The

vertical line in the figure is a two-fold difference threshold, and the horizontal line is a p < 0.05 threshold.
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Target Gene Prediction and Function
Analyses
In order to explore the role of differently expressed lncRNAs
in regulating gene expression, cis analyses were implemented
to predict the target genes. The known protein-encoding genes
located within a 100-kb window upstream or downstream of
lncRNAs were identified as cis target genes. To assess biological
function of target genes, GO enrichment analysis basing on
GO database (the date of the update of the database is January
1st, 2018) was performed using the topGO software (http://
www.bioconductor.org/packages/release/bioc/html/RamiGO.
html) (39). In this analysis, biological function was mainly
classified into molecular function, biological process, and cellular
component. Only categories with a p < 0.05 were considered
significantly enriched. In addition, the associated pathways of cis
target genes were predicted by KEGG database (the date of the
update of the database is January 1st, 2018). The signal pathway
terms with a p < 0.05 were considered significantly enriched.

RT-qPCR Analysis
The duck glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
gene served as the endogenous reference gene. All the primers,
synthesized by TSINGKE Biological Technology (China), are
listed in Table S1. RT-qPCR was carried out on a Light Cycler
480II instrument (Roche, Basel, Switzerland) using One Step
TB Green PrimeScriptTM RT-PCR Kit (TaKaRa, Dalian, China)
according to the manufacturer’s instructions, and melting curves
were obtained. The relative expression levels of DTMUV and
differentially expressed lncRNAswere calculated through 2−11Ct

method (40). Each sample had three biological replicates.
Statistical analyses were performed using Student’s t-tests. We
performed correlation analysis between RNA-Seq and RT-qPCR
with GraphPad Prism software, Version 7.0.

RESULTS

Confirmation of DTMUV Infection in DEFs
DEFs were infected with DTMUV at a MOI of 3. The successful
infection was verified by observation of CPE and determination
of virus replication monitored by RT-qPCR at 12, 24, and 48
hpi. As is showed in Figure 1, no CPE was observed in mock-
infected DEFs (Figures 1A–C), and CPE on DTMUV-infected
DEFs at 12 hpi was not visible (Figure 1D). However, the
pathological cellular state (the cells were shrinking and rounded)
could be recognized at 24 hpi as early as possible (Figure 1E),
and the pathological condition was more visible (the cells were
shrinking, cracking, and suspending) at 48 hpi (Figure 1F). The
result of virus replication was showed in Figure 2. The viral
replication gradually increased at 12, 24, and 48 hpi, indicating
the development of persistent infection. The DEFs at 12 and 24
hpi were harvested for RNA-Seq.

The Code Capacity, Length Distribution,
and Density Distribution of lncRNAs
RNA-Seq was performed to determine the expression levels
of lncRNAs in DEFs infected or uninfected with DTMUV.
After removing adaptor and low-quality sequences, the ability
of transcripts to encode protein was determined. The result

showed that 1457 lncRNAs were filtrated by the three
methods in common (Figure 3A). The details of the results
are included in Table S2. The length and density distribution
revealed that lncRNAs, 3,000–4,000 nucleotides in length and
medium-expressed, occupy a dominant position in samples
(Figures 3B,C).

Differential Expression Analysis and Target
Prediction
As is shown in Figure 4, 357 differently expressed lncRNAs
were identified in DTMUV-infected DEFs compared with mock-
infected DEFs, among which 34 lncRNAs were identified at 12
hpi with 21 up-regulated and 13 down-regulated (Figure 4A).
Respectively, 339 lncRNAs were identified at 24 hpi with 317
up-regulated and 22 down-regulated (Figure 4B). The details
of the information are included in Tables S3, S4. Notably, 16

FIGURE 5 | (A) Venn diagrams showing the numbers of differently expressed

lncRNAs at 12 and 24 hpi. (B) The heat map showing the hierarchical

clustering of altered lncRNAs. Red represents upregulation, and green

represent downregulation.
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lncRNAs expressed differently at both time points (Figure 5A).
The differently expressed lncRNAs were then applied to a
systematic cluster analysis. Obviously, lncRNA expression levels
were significantly altered at 24 hpi, while the expression profile
did not differ importantly at 12 hpi (Figure 5B). To better explore
the regulatory function of differently expressed lncRNAs, cis
target genes have been searched through location. The regulatory
network is shown in Figure 6. The details of the information are
included in Table S5.

GO and KEGG Enrichment Analysis
To better understand the roles of differentially expressed
lncRNAs in DTMUV-infected DEFs, GO and KEGG analyses
were performed to explore the biological function. As is shown
in Figure 7, the target genes were mainly related to biological
regulation, cellular processes, single-organism processes, cell, cell
part, and membrane at 12 hpi (Figure 7A). And organelle and

binding were additionally enriched in at 24 hpi (Figure 7B).
The details of the GO terms are included in Tables S6, S7.
Besides, target genes were closely referred to the signal pathway
categories of signal transduction, endocrine system, and cellular
community at 12 hpi (Figure 8A). Additionally, immune system
and signaling molecules and interaction were enriched in at 24
hpi (Figure 8B). The details of the KEGG terms are included in
Tables S8, S9. The significantly enriched pathways are presented
in Figure 9A at 12 hpi and Figure 9B at 24 hpi.

Validation of Differentially Expressed
lncRNAs by RT-qPCR
RT-qPCR was performed to further detect the expression
changes of lncRNAs in RNA-Seq data. 4 and 11 lncRNAs
at 12 and 24 hpi were validated by RT-qPCR. The results
showed that expression changes confirmed by RT-qPCR were
consistent with the RNA-Seq data (Figure 10). The details of

FIGURE 6 | The regulatory network of differently expressed lncRNAs and cis target genes. The blue dots represent differently expressed lncRNAs, and yellow dots

represent target genes.
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FIGURE 7 | (A) GO enrichment analysis at 12 hpi. (B) GO enrichment analysis at 24 hpi. Each color represents a different biological process. The x-axis indicates the

description and the y-axis indicates the –log10 (p-value).

FIGURE 8 | (A) KEGG pathway analysis at 12 hpi. (B) KEGG pathway analysis at 24 hpi. Each color represents a kind of signal pathway.

the information are included in Table S10. Furthermore, the
correlation analysis revealed that changes in lncRNA expression
level were comparable between RNA-Seq and RT-qPCR, with the
correlation coefficients of 0.8769 (P < 0.0001) (Figure 11). The
results confirmed that the RNA-Seq data were relatively reliable
and accurate.

DISCUSSION

DTMUV, an emerging member of flavivirus family, can cause
acute anorexia, retarded growth, neurological dysfunction, and
severe egg production drop, which results in large economic
losses (41). To understand DTMUV infection deeply, the
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FIGURE 9 | (A) The significantly enriched pathways at 12 hpi. (B) The significantly enriched pathways at 24 hpi. The x-axis and y-axis represent enrichment and

pathway names, respectively. Point size represents the number of target genes.

FIGURE 10 | (A) Validation of differentially expressed lncRNAs by RT-qPCR at 12 hpi. (B) Validation of differentially expressed lncRNAs by RT-qPCR at 24 hpi. Each

sample had three biological replicates.
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transcriptome and proteome in DTMUV-infected DEFs have
been uncovered (8, 42, 43). However, little is known for
lncRNA differential expression and the biological effect on gene
regulation during DTMUV infection. In this study, expression
changes of lncRNAs were investigated, potential regulatory
network was formed, and biological function was predicted. The
study provides significant insights into the deep exploration of
pathogenic mechanism.

Accumulated studies demonstrated that viral infection can
alter lncRNA expression profile of host (44), including infectious
bronchitis virus infection of primary dendritic cells (45),
H5N1 influenza viruses infection of ducks (46), and Porcine
reproductive and respiratory syndrome virus infection of
endometrial epithelial cells (47). In our study, the change of
lncRNA expression profile was also observed in DEFs in response
to DTMUV infection. To the best of our knowledge, this is the
first report in which a complete lncRNA profile was provided
in DTMUV-infected DEFs. The lncRNA profile showed that the
expression levels of lncRNAs were specifically upregulated or
downregulated in response to DTMUV infection.

Recent study showed that lncRNAs were able to cooperate
with neighboring genes to perform cis regulatory function
(48). For example, to control the lifespan of neutrophils,
eosinophils and classical monocytes, lncRNA-Morrbid regulates
the transcription of the neighboring pro-apoptotic gene, named
Bcl2l11, by promoting the enrichment of the PRC2 complex at
the Bcl2l11 promoter to maintain the gene in a poised state (49).
Besides, LincRNA-p21, as a key modulator of gene expression
in the p53 pathway, performs its cis control of p21 expression
to influence the activation and chromatin state of hundreds of
downstream genes (50). In our study, the cis target genes were
searched and the cis regulatory network was formed.

Here, we performed GO and KEGG enrichment analysis
to predict the biological function. Notably, many cis target
genes were strongly associated with metabolism, such as lipid
metabolism, glycan biosynthesis and metabolism, garbohydrate
metabolism, and amino acid metabolism. To date, several studies
have suggested that viruses regulate host metabolism to facilitate
replication (51, 52). DTMUV also induced profound metabolic
alterations in DEFs (8, 43). Emerging report showed that lncRNA
regulates metabolic enzymes to regulate virus replication. The
lncRNA ACOD1, induced in cells infected with various viruses,
binds the metabolic enzyme glutamic-oxaloacetic transaminase
and increases its catalytic activity to facilitate the production of
metabolites that promote viral propagation (53). The findings
suggested that differently expressed lncRNAs may regulate
metabolism to affect the pathogenicity of DTMUV.

In addition to metabolism, the signal pathway categories
of immune system were enriched in, such as RIG-I-like
receptor signaling pathway. The genome-wide transcriptome
analyses of DTMUV-infected macrophages revealed that the
inductions of alpha interferon and beta interferon were blocked
on transcription and translation levels in response to viral
infection, despite the activation of major pattern recognition
receptor signaling (54). Deep study showed that DTMUV
non-structural protein 1 interacts with the adaptor protein
mitochondrial antiviral signaling to inhibit the mitochondrial
antiviral signaling pathway, resulting in the impaired induction

FIGURE 11 | The correlation analyses of changes in lncRNA expression

between RT-qPCR and RNA-Seq. The x-axis shows the Log2 (fold change) by

RT-qPCR, and the y-axis is the Log2 (fold change) by RNA-Seq.

of beta interferon (55). In addition, the non-structural protein
2B cleaves STING to inhibit interferon signaling (56). Recently,
an increasing number of lncRNAs have been reported to play
negative roles in innate immune response to virus infections. For
example, lnc-Lsm3b, a mouse specific type I interferon-induced
lncRNA, competes to bind RIG-I monomers with viral RNAs to
prevent conformational changes of RIG-I and activation of its
downstream signaling (57). NRAV, a down-regulated lncRNA in
human epithelial cells upon influenza A virus infection, promotes
virus replication by negatively regulating the transcription of
multiple interferon-stimulated genes (58). Therefore, lncRNAs
may participate in the invasion and infection of DTMUV through
affecting the innate immunity.

CONCLUSIONS

In summary, we were the first to perform a comprehensive
analysis of lncRNA expression profile in DEFs following
DTMUV infection using RNA-Seq. We screened out numerous
differently expressed lncRNAs, formed cis regulatory network,
and conducted biological function analysis. Our results suggested
that lncRNAs may participate in DTMUV-induced pathogenesis
through affecting the metabolism and innate immunity of host
cells, which provides a deeper insight into the pathogenic
mechanism of DTMUV. Future investigations will be required
to discover specific pathogenic mechanism and to identify novel
and efficient strategies for DTMUV infection.
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