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Life emerged on Earth within the first quintile of its habitable
window, but a technological civilization did not blossom until
its last. Efforts to infer the rate of abiogenesis, based on its
early emergence, are frustrated by the selection effect that if
the evolution of intelligence is a slow process, then life’s early
start may simply be a prerequisite to our existence, rather than
useful evidence for optimism. In this work, we interpret the
chronology of these two events in a Bayesian framework, extend-
ing upon previous work by considering that the evolutionary
timescale is itself an unknown that needs to be jointly inferred,
rather than fiducially set. We further adopt an objective Bayesian
approach, such that our results would be agreed upon even by
those using wildly different priors for the rates of abiogenesis
and evolution—common points of contention for this problem.
It is then shown that the earliest microfossil evidence for life
indicates that the rate of abiogenesis is at least 2.8 times more
likely to be a typically rapid process, rather than a slow one.
This modest limiting Bayes factor rises to 8.7 if we accept the
more disputed evidence of 13C-depleted zircon deposits [E. A. Bell,
P. Boehnke, T. M. Harrison, W. L. Mao, Proc. Natl. Acad. Sci. U.S.A.
112, 14518–14521 (2015)]. For intelligence evolution, it is found
that a rare-intelligence scenario is slightly favored at 3:2 bet-
ting odds. Thus, if we reran Earth’s clock, one should statistically
favor life to frequently reemerge, but intelligence may not be
as inevitable.
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A fundamental question to modern science concerns the
prevalence of life, and intelligence, within the Universe. At

the time of writing, searches for nonterrestrial life within the
Solar System have not yielded any direct evidence for life (1–3),
and the remote detection of chemical biomarkers on extrasolar
planets remains years ahead of present observational capabilities
(4–7). The search for intelligence, through the signatures of their
technology, may be detectable under certain assumptions (8–11)
and limited observational campaigns have been attempted (12).
However, the underlying assumptions make it challenging to use
these null results to directly constrain the prevalence of life or
intelligence at this time.

Despite having no observational data concerning nonterres-
trial life, we are in possession of stronger constraints when
it comes to life on Earth. Until this situation changes, infer-
ences concerning the existence of life elsewhere in the Uni-
verse must unfortunately rely heavily on this single data point
(13). While a single data point is not ideal, it is certainly
not devoid of information either (14). This is even true when
strong selection biases are in play, such as the fact that our
existence is predicated on at least one previously successful
abiogenesis event.

Problems such as these lend themselves to Bayesian analysis,
where the biases can be encoded into the inference framework.
The 2012 seminal paper of Spiegel and Turner (13) applied this
to the question of abiogenesis. In that work, the authors treat
abiogenesis as a Poisson process, which holds for systems with
a discrete number of successes in a finite interval. This is used
to define a likelihood function that accounts for the possibility

of multiple successes and the selection effect that a success is
demanded for us to observe ourselves. Spiegel and Turner (13)
conclude that the priors ultimately dominate their posteriors and
that even choosing between three reasonable and diffuse priors
leads to greatly different answers. Accordingly, it is very difficult
to use the model to say anything definitive about how difficult or
easy abiogenesis really is.

Intuitively, the possibility that life typically emerges slowly
seems highly improbable given its relativity quick start on Earth
(15–18). Indeed, some commentators have remarked that this
fact implies that “life is not a fussy, reluctant and unlikely thing”
(ref. 19, p. 501). The plausibility of the slow start scenario can
be understood to be a consequence of the selection effect, which
requires that life emerges fast enough for us to have sufficient
time to evolve into complex (“intelligent”) organisms capable
of observing ourselves. The early emergence of life on Earth
then becomes consistent with a low abiogenesis rate, since worlds
where life does not emerge quickly never evolve to the point of
an intelligent observer.

This reveals the important role that the evolutionary timescale
plays in the inference problem, since it strongly shapes the
selection bias effect. In the Bayesian analysis of ref. 13, the evo-
lutionary timescale is not known a priori and thus is set to three
different fiducial values (1, 2, and 3.1 Gy) to test the sensitivity
of their results to this parameter.

In this work, we extend the model to allow the evolution-
ary timescale to itself now become an inferred parameter.
Rather than assume several fiducial values, this parameter can
be learned by conditioning upon the time it took for observers to
evolve. This enables a joint posterior distribution between the
rate of abiogenesis and the rate of intelligence evolution that
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encodes the covariance between the two. This not only yields a
more robust estimate for the abiogenesis rate by marginalizing
over the uncertainty in the evolutionary timescale, but also infers
the evolutionary timescale.

The Joint Likelihood Function
Distribution of Success Times. Following earlier work (13, 20–22),
we describe abiogenesis as a uniform rate (i.e., Poisson) pro-
cess, defined by a rate parameter λL. As with ref. 13, we caution
that this does not imply that abiogenesis is a truly single-step,
instantaneous event. Rather, we interpret the process to be a
model which “integrates out” the likely complex and multistep
chemistry which culminates in life. Indeed, it may be that a
variety of pathways can lead to abiogenesis, but this ensemble
is grouped into a single process where any of them succeed-
ing counts as a success for the ensemble. Further, it is not
necessary to strictly define what is meant by “life” here, only
that the success of this Poisson process ultimately led to the
geological evidence for life and that without it said evidence
would not exist.

The assumption of a uniform-rate process over some time
interval can at first seem problematic when one considers the
stark changes to Earth’s environment over its history. However,
much of this change is due to life affecting its environment and
thus is a consequence of a success. The abiogenesis rate may
indeed be different after life begins, but it is also irrelevant since
our model cares only about the first success.

With these points in mind, we can now write that in a time
interval tL, the probability of obtaining at least one successful
abiogenesis event (XL> 0) will be

Pr(XL> 0;λL, tL)=1−Pr(XL =0;λL, tL),

=1− e−λLtL . [1]

The time interval between successes for a Poisson process follows
an exponential distribution. This can be demonstrated by noting
that Eq. 1 corresponds to the probability of obtaining at least one
success over the interval of time tL and thus can be understood as
the cumulative probability distribution for the achievement of at
least one success by that time. Accordingly, the probability den-
sity function of the first success with respect to tL must be given
by the derivative of Eq. 1 with respect to time, yielding

Pr(tL|λL)=λLe
−λLtL . [2]

We now deviate from the approach of ref. 13 by considering a
second process, labeled “I” for “intelligence,” which can proceed
only once the previous process (“L”) is successful. The inverse
of this process’s rate parameter, λI , describes the characteristic
timescale it takes for evolution to develop from the earliest forms
of life, to an “intelligent observer” which is carefully defined in
Accounting for Observational Constraints. We truncate the times,
such that both processes have to occur within a finite time T .
Since process I can proceed only once process L has occurred,
then this requires tL + tI <T . The joint distribution of times tL
and tI is therefore given by

Pr(tL, tI |λL,λI )∝

{
λLλI e

−λLtL−λI tI if tL + tI <T ,

0 otherwise .
[3]

Imposing the condition of tL + tI <T serves to truncate the
joint distribution and thus the above is formally a proportion-
ality because it is not yet normalized. After normalization, the
expression becomes

Pr(tL, tI |λL,λI )=

{
λLλI (λL−λI )e

−λLtL−λI tI

λL(1−e−λI T )−λI (1−e−λLT )
if tL + tI <T ,

0 otherwise.
[4]

Accounting for Observational Constraints. Before we discuss how
Eq. 4 can be updated to include observational constraints, it is
first useful to define exactly what we mean by intelligence in
this work. We adopt a functional view of this term and consider
that a successful event from process I is defined as some kind
of transition—which occurs after abiogenesis—which is funda-
mentally necessary for analyses such as the one presented here
to be possible. In other words, this type of analysis is possi-
ble only because process I succeeded and would be impossible
if it failed.

Expounding upon this, we can consider that process I results
in an observer/entity/society capable of 1) obtaining and dat-
ing geological evidence pertaining to the early emergence of
life, 2) the ability to model the future climatic conditions of the
world such that the habitability window can be estimated, and
3) interpreting the ramifications of this information regarding
the underlying rates of abiogenesis and evolution. For the sake
of brevity we refer to such outcomes as intelligent observers in
what follows. Formally, these three conditions are not equiv-
alent to a technological civilization, but we argue that it is
difficult to imagine how these feats would be possible in the
absence of one.

In what follows, we attribute process I to correspond to the
emergence of human civilization and thus further assume that
no previous Earth-dwelling entities/observers/societies have had
the capacity to satisfy the three conditions discussed above. This
assumption would be invalidated if the “Silurian hypothesis” of
ref. 23 were confirmed, which considers the possible existence
of industrial civilizations predating humanity (24), in which case
we would certainly advocate revisiting the calculations that are
described in this paper.

The emergence of human civilization could be defined in a
variety of ways. Some possible defining “moments” could be
the appearance of hominids, the evolution of Homo sapiens,
complex language, the Neolithic revolution, or the first radio
transmissions into space. Whatever we use, this shifts tI around
only by several million years at most. Since tI is of order of
several gigayears, these disagreements have negligible impact
on our final results and thus tI will be treated as a fixed
quantity.

This is not true for the first transition, since it seems to have
occurred relatively quickly and the uncertainty associated with
it is comparable to the actual timing. Further, it is not possi-
ble to accurately date the emergence of life, since any life could
(and indeed must) have begun prior to its appearance in the geo-
logical record. Accordingly, the true date for the emergence of
life, tL, must predate the actual observation, t ′L; i.e., tL< t ′L. The
probability of this can be calculated through integration:

Pr(tL< t ′L, tI |λL,λI )=

∫ t′L

tL=0

Pr(tL, tI |λL,λI )dtL. [5]

Since tI is defined as the time since tL, then one cannot directly
measure this value either. However, we can state that its value
is somewhere between t ′I and t ′I + t ′L, where t ′I is the observed
time difference between the emergence of intelligence and the
first evidence for life. This allows us to write our final likelihood
function as

L=Pr(tL< t ′L, t
′
I < tI < t ′I + t ′L|λL,λI )

=

∫ t′I+t′L

tI=t′I

Pr(tL< t ′L, tI |λL,λI )dtI . [6]
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Evaluating the above yields a piecewise closed-form likelihood
function which is given in SI Appendix. The function has two sub-
domains, one which applies to the interval T > 2t ′L + t ′I and one
which applies to T < 2t ′L + t ′I . As shown later, the former case
is applicable when t ′L< 0.904 Gy and we plot this function in
Fig. 1 against λL and λI , along with the limiting behaviors (SI
Appendix).

It is interesting to note that the likelihood function is not
monotonic and has a global maximum which can be solved for
numerically. For example, using the “optimistic” data defined in
Adopted Values for the Observational Data, it occurs at λ̂I → 0

and λ̂L =21.8 Gy−1 (the full behavior is shown in SI Appendix).
However, along the λI → 0 axis, the likelihood is almost flat
beyond this peak. For example, with the same data, the likeli-
hood is 52.7% of the peak when one sets λL = λ̂L/10, but only
99.4% of the peak when one sets λL =10λ̂L. While maximum-
likelihood parameters are instructive, we turn to Bayesian infer-
ence to determine the posterior distributions and rigorously
compare different model scenarios.

Adopted Values for the Observational Data. To perform any infer-
ence with our likelihood function, one first needs to assign values
to the observables t ′L and t ′I , as well as T . All three times are
relative to some initial time when conditions on Earth became
suitable for life to emerge, and so let us first discuss how to define
this initial time.

There is of course uncertainty about the conditions on the
early Earth and when they became suitable for life (25–27).
Earth is generally thought to have been impacted by a Mars-
sized body, dubbed “Theia,” 4.51 Gy ago in a cataclysmic event
that formed the Moon (28). Such an impact would have been
a globally sterilizing event and indeed may have been accom-
panied by another sterilizing impactor, “Moneta,” 40 My later
(29). Mineralogical evidence from zircons indicates that both an

Fig. 1. The joint-likelihood function for the rate of abiogenesis, λL, and
the rate of intelligence emergence, λI (for cases where T > 2t′L + t′I ). Con-
tours relative to the maximum-likelihood position (gray circle) are depicted
by gray lines, where one can see a preference against low λL values. The
limiting behaviors of the likelihood function are shown along Top, Bottom,
Left, and Right edges.

atmosphere and liquid water must have been present on Earth’s
surface (4.404± 0.008) Gy ago (30). In this work, we consider
these to be the necessary basic requirements for abiogenesis to
take place and thus adopt T =4.408 Gy throughout. As noted
by ref. 13, a step-function–like transition from uninhabitable to
habitable is surely too simplistic, but our ignorance of Earth’s
early history and indeed the conditions necessary for life mean
that we do not at present have a well-motivated complex model
to impose in its place.

The earliest evidence for life arrives soon after this time,
in the form of 13C-depleted carbon inclusions within 4.1-Gy-
old zircon deposits (17). The source of this depletion remains
controversial but this would yield an optimistic estimate of
t ′L =0.304 Gy. The earliest direct and undisputed evidence for
life comes from microfossils discovered in 3.465-Gy-old rocks
in western Australia (15, 16, 18), yielding t ′L =0.939 Gy. We
highlight that, in both the optimistic and the conservative case,
t ′L is much larger than the 76-My uncertainty as to when
Earth became habitable and thus is not a dominant source
of uncertainty.

For t ′I , for reasons discussed in Accounting for Observational
Constraints we can simply attribute this time to be the modern
era. We therefore adopt intelligent observing as arriving “now”
such that t ′I =4.404Gy− t ′L in what follows.

Finally, we turn to T , which defines the interval over which
Earth is expected to persist as habitable. It is important that
we refine this definition to be habitable for intelligent beings,
such as ourselves. If Earth evolves into a state where only sim-
ple microbial life is possible, then a success can no longer occur
for process I. As the Sun evolves, its luminosity will increase,
which in turn increases the rate of weathering of silicate rocks on
Earth (31). This increased weathering draws down carbon from
the atmosphere, thus gradually depleting the atmospheric con-
tent of carbon dioxide. Once levels drop below ∼10 ppm, plant
C4 photosynthesis will no longer be viable (32), leading to their
imminent demise. It is also possible that higher temperatures and
the progressive loss of Earth’s oceans could trigger an earlier
die-off (33).

The end of plant life leads to a collapse in both the food chain
and Earth’s oxygen productivity, upon which animal life is criti-
cally dependent. Large endotherms, such as mammals and birds,
will be the first to become extinct as a result of their higher oxy-
gen requirements (31, 34). Thus, one can reasonably consider
that the habitable window for intelligence decidedly ends once
the reign of plant life comes to a close. The timing for this is pre-
dicted to be 0.9 Gy by ref. 33, a value which is adopted in what
follows to give T =5.304 Gy.

In summary, we set T =5.304 Gy but consider two val-
ues for t ′L of t ′L =0.304 Gy (“optimistic”) and t ′L =0.939 Gy
(“conservative”). This in turn gives two values of t ′I of t ′I =
4.404Gy− t ′L.

The Nonobjective λ Power-Law Prior
The Role of the Prior. Equipped with a likelihood function, one
may infer the a posteriori distribution of λL and λI using Bayes’
theorem:

Pr(λL,λI |t ′L, t ′I )=
Pr(t ′L, t

′
I |λL,λI )Pr(λL,λI )∫∫

Pr(t ′L, t
′
I |λL,λI )Pr(λL,λI ) dλL dλI

.

[7]

In any Bayesian inference problem, the posterior is a product
of the likelihood and the prior and thus is affected by both.
In cases where one possesses little or no information about
the target parameters in advance, such as here, the ideal prior
should be minimally informative (“diffuse”) such that it does not
strongly influence the result (35). In objective Bayesianism, the
resulting posterior should be expected to be universally agreed
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upon by everyone (36)—whereas a subjective Bayesian would
argue that probability corresponds to the degree of personal
belief (37).

When equipped with strongly constraining data, even those
using different diffuse priors will generally find convergent solu-
tions, since the likelihood overwhelms the prior, thus naturally
leading to objective Bayesianism. This is certainly not the case
for our problem, since it has already been established that the
posterior for λL is very sensitive to the priors (13). In such a
case, one should tread carefully and seek a prior which can be
objectively defined, such that other parties could agree upon the
choice of prior and thus the resulting posterior.

We therefore proceed by considering how to define a prior dis-
tribution which is minimally informative and also not dependent
upon subjective choices of the prior distribution parameters.
However, we will later show that several important inference
statements can be made independent of the prior.

Power Law in λ. In previous work (13, 22), the a priori distri-
bution for λL was assumed to be of the form λn

L—a power
law. In extending the likelihood to include λI , one may sim-
ilarly extend this power-law prior to encompass λI by writing
that Pr(λL,λI )=Pr(λL)Pr(λI ) (i.e., assuming independence),
where

Pr(λ)=


λ−1

log(λmax)−log(λmin)
if n =−1,

(n+1)λn

λn+1
max−λ

n+1
min

otherwise.
[8]

For n =0, this returns a uniform in λ prior, for n =−1 a uniform
in log λ prior, and for n =−2 a uniform in λ−1 prior: the three
priors considered by ref. 13. In adopting a prior of this form, one
must choose values for three shape parameters: the index, n and
the prior bounds λmin and λmax.

Assigning the Prior Shape Parameters. In ref. 13, the favored
index was n =−1 on the basis that a log-uniform prior exhibits
scale-invariance ignorance for λ. For a real-valued parame-
ter constrained only by a minimum and a maximum thresh-
old, n =−1 also corresponds to the Jeffreys prior—a standard
approach to defining objective priors (35). However, in this case,
the n =−1 power law is not actually objective since one can-
not objectively define a minimum and a maximum threshold.
Because a power-law prior does not have semiinfinite sup-
port from λ=0 to λ=∞, then these prior bounds have to be
subjectively chosen.

For these bounds, ref. 13 set λmax =103 Gy−1 somewhat
arbitrarily and a range of plausible values were offered for
λmin. While useful as an exercise to test the sensitivity of
the posterior to the prior, this approach does not enable an
objectively defined solution. In an effort to objectively assign
a power-law prior, we consider here imposing the condition
that the prior should be fair and unbiased, which we define in
what follows.

As currently stated, the prior in Eq. 8 appears reasonably dif-
fuse for n =0, −1, and −2, and the bounds could essentially be
anything. However, it is worth recalling that the Poisson model is
used as a vehicle to describe the Bernoulli probability of one or
more successful events occurring. Accordingly, a natural alterna-
tive parameterization for this problem is to consider the fraction
of experiments in which the Poisson processes culminate in at
least one success, fL and fI . Although these terms are similar
to the fractions defined in the Drake equation (38), here an
“experiment” really refers to rerunning Earth’s history back and
observing how the stochastic processes play out each time (rather
than some other world). Since f =1− e−λT , then the power-law
prior in λ is transformed into f space as

Pr(f )=
n +1

1− f

(− log(1− f ))n

(− log(1− fmax))n+1− (− log(1− fmin))n+1
.

[9]

Recall that we seek to define a prior which is both fair and unbi-
ased. For a Bernoulli process, such as a coin toss, a “fair” prior
can be defined as one for which the chance of a positively loaded
coin is no more or less likely than that of a negatively loaded one.
Accordingly, in our problem, we define a fair prior as one which
does not a priori favor either an optimistic (f > 1/2) or a pes-
simistic (f < 1/2) worldview. This can be quantified by defining
the prior odds ratio between the two scenarios using F:

F≡

∫ fmax

f=1/2
Pr(f )df∫ 1/2

f=fmin
Pr(f )df

. [10]

Setting F=1, one may solve for fmax (which corresponds to
λmax) as a function of fmin (corresponding to λmin):

lim
F→1

λmax =


(log 2)2

T2λmin
if n =−1,

((2 log 2)n+1−(λminT)n+1)1/(n+1)

T
otherwise.

[11]

Although this ensures a fair prior (subject to our definition), it
does not necessarily ensure an unbiased one. An unbiased prior
is defined here as one for which the a priori expectation value of
f , given by E[f ]≡

∫ fmax

fmin
f Pr(f )df , equals one-half. After impos-

ing the F=1 constraint enabled by Eq. 11, we evaluate E [f ] in
the limit of fmin→ 0 as a function of n . This reveals for n =−1
that the expectation value converges to one-half, as desired for
an unbiased prior (SI Appendix). The only other value of n in
the range −1<n < 2 that yields a fair and unbiased distribution
is n =−0.709 . . ., but this is shown in SI Appendix to require an
overly restrictive prior bound limit and thus is not used.

Using these two constraints, our fair and unbiased prior for λ
takes the form λ−1, with bounds following the relationship given
by Eq. 11. Unfortunately, our two constraints applied to three
parameters are insufficient to uniquely define the prior—it is still
necessary to choose λmin subjectively. The posterior could still be
argued to be objective if it were found to be broadly insensitive
to the choice of λmin—however, this unfortunately turns out to
be false, as shown in what follows.

Resulting Posteriors
To compute marginalized posteriors, we initially tried sampling
using Markov chain Monte Carlo and nested sampling tech-
niques, but found that the resulting posteriors were too poorly
sampled in the tails. Instead, we directly integrate the posterior
density in each parameter. For example, for the λL marginal-
ized posterior, we slide along in a fine grid of λL values and
numerically integrate (using the Gauss–Kronrod rule) the joint
posterior density over the limits λI =λmin to λI =λmax.

The resulting marginalized posteriors are shown in Fig. 2 for
two arbitrary choices of λmin: 10−3 Gy−1 and 10−6 Gy−1. As
can be seen from Fig. 2, and perhaps not surprisingly, the result-
ing distributions are certainly sensitive to the choice of λmin. In
conclusion, we argue here that a λ power-law prior is simply
unacceptable as an objective prior for this problem.

The Objective Bernoulli Prior
Fair and Unbiased Priors with Semiinfinite Support. Since we have
no way of objectively choosing λmin, then a fair and unbiased
(subject to our definitions) power-law prior in λ does not provide
a viable path to defining an objective posterior.

Rather than prescribing a prior in λ space and then evaluating
its fairness and bias in f space, we consider here simply writing
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Fig. 2. Marginalized posterior distribution (solid lines) for λL (Left), λI (Center Left), fL (Center Right), and fI (Right) using the log-uniform λ prior (dashed
lines) and the optimistic data. Top row assumes λmin = 10−3 Gy−1 and Bottom row assumes λmin = 10−6 Gy−1. The y-axis scale is chosen to highlight the
dynamic range.

down a fair and unbiased prior in f space directly. Since f repre-
sents a fraction, it can be interpreted as the Bernoulli probability
of a success over the interval T . For a Bernoulli process, a so-
called Haldane prior (39) of the form∝ (f (1− f ))−1 was argued
by the objective Bayesian Jaynes (36) to represent the least infor-
mative prior. Such a prior is fair and unbiased by construction
and places extreme weight on the solutions f =1 and f =0 at
the expense of intermediate values. The intuition behind this
is that either a very small fraction of planets will be success-
ful or almost all of them will be, but it is unlikely the laws of
nature are tuned such that approximately half of the planets
are successful.

Using the Fisher information matrix, one can define the
Jeffreys prior for a Bernouilli distribution. The solution is
not the Haldane prior, but rather a softer variant of the
form ∝ (f (1− f ))−1/2. This translates to a prior in λ space
given by

Pr(λ)=
T

π
√
eλT − 1

. [12]

Both the Haldane and Jeffreys priors are fair and unbiased
with respect to f and indeed any prior of the more general
form ∝ (f (1− f ))n satisfies these conditions. However, the n =
−1 case, corresponding to the Haldane prior, is improper and
indeed leads to an improper posterior too, but for all other
n >−1 the prior can be normalized to a finite quantity. Accord-
ingly, the Jeffreys prior is fair, unbiased, objectively defined,
and proper over the interval f = [0, 1]. Since f =0 corresponds
to λ=0 and f =1 corresponds to λ=∞, this naturally yields
a proper prior with semiinfinite support in λ, something which
was not possible with the power-law case discussed earlier.
Together, these properties make the distribution well suited for
our problem and we argue it solves the dilemma faced in earlier
work (13).

Although we consider the Jeffreys prior to be the ideal objec-
tive prior for our problem, it is instructive to consider posteriors

with n =0 (a uniform prior in f ) as well, which has a λ-space
form of

Pr(λ)=Te−λT . [13]

Bayes Factors Independent of the λ Prior. Equipped with our like-
lihood function and prior, one may now sample/integrate the
posterior probability distribution to compute marginalized dis-
tributions. Marginalization irreversibly bakes the prior into the
resulting collapsed posteriors, but specific probabilistic state-
ments can be made in a Bayesian framework without marginaliz-
ing. In particular, we consider here an exercise in Bayesian model
comparison, where we seek to compare four models, M, defined
as the unique corners of the parameters volume:

•M00: λL� 1/t ′L and λI � 1/t ′I
•M01: λL� 1/t ′L and λI � 1/t ′I
•M10: λL� 1/t ′L and λI � 1/t ′I
•M11: λL� 1/t ′L and λI � 1/t ′I .

Binarizing the parameter volume into these four camps may
at first seem arbitrary—What about intermediate values? How-
ever, this partitioning is consistent with objective Bayesianism.
The objective Bernoulli prior treats life/intelligence as being
either very rare or very common, but unlikely to be finely tuned
such that it approaches the intermediate value of one-half—thus
motivating the models above.

Conditioned upon some available data, D, one may express
the odds ratio between two models as Pr(M1|D)/Pr(M2|D)=
[Pr(D|M1)/Pr(D|M2)][Pr(M1)/Pr(M2)]. The terms inside
the first square bracket are known as the Bayes factor, which
equals the odds factor under the simple assumption that no
model is a priori preferred over any other. The Bayes factor is
the ratio of two “evidences” given by Z ≡Pr(D|M), and for the
four models defined above, Z can be expressed analytically and
independent of the prior π(λL,λI ). This can be seen by noting
that, for example with modelM00:
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Z00=Pr(

D︷ ︸︸ ︷
t ′L, t

′
I |

M00︷ ︸︸ ︷
λL� 1/t ′L,λI � 1/t ′I )

= lim
λL�1/t′L

lim
λI�1/t′I

Pr(t ′L, t
′
I |λL,λI )︸ ︷︷ ︸
=L

. [14]

Thus, the evidences of these four corner models are indepen-
dent of the prior of π(λL,λI ), meaning that even those adopting
different priors would consistently agree on the Bayes factors.
We note that ref. 13 used a similar strategy and we provide an
alternative explanation of this prior-free model comparison in SI
Appendix, in terms of the Savage–Dickey ratio (40).

In practice, Bayes factors for the two corners with rapid intel-
ligence emergence (λI � 1/t ′I ) tend to zero, since this is the
behavior of the likelihood function (SI Appendix). This can be
understood by the fact that if the rate of intelligence emergence

were extremely fast, then it would be incompatible with taking as
long as it did here on Earth. In contrast, life could emerge much
faster than t ′L because t ′L represents only the first appearance of
life in the geological record, not the actual date of abiogenesis.

Since these two corners are zero, we instead compare mod-
els M10 to M00. This represents the Bayes factor between a
scenario where abiogenesis is a fast versus a slow process con-
ditional upon the premise that intelligence emergence is itself a
slow process. In this case, we find

Z10

Z00
=

{ T
2t′L

if T > 2t ′L + tI ,
Tt′L

4(T−t′I )t
′
L−2t′L−(T−t′I )

2 if T < 2t ′L + tI ,
[15]

which evaluates to (Z10/Z00)= 8.73 and 2.83 for the opti-
mistic and conservative data inputs, respectively. The above also

A

B

Fig. 3. (A) Bayes factor for a model where life emerges rapidly (λL� 1/t′L) versus slowly (λL� 1/t′L) on Earth. (A) A quick start is favored by at least a factor
of 3 conditioned upon early microfossil evidence, independent of our assumptions regarding the evolutionary timescale of intelligent observers and priors
on the abiogenesis rate. (B) Bayes factor of a scenario where intelligent observers typically emerge on a much longer timescale than occurred on Earth,
versus the ensemble of possibilities. There is a weak preference for a rare intelligence scenario.
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reveals the dependency on T is nearly linear; if T is revised
significantly up, then optimism for life would also increase.
We highlight that Z10<Z00 if t ′L> 3.72 Gy—i.e., if the ear-
liest evidence for life were from no earlier than 680 My
ago, we would conclude that abiogenesis was an improbable
event.

If we relax the assumption that λI � 1/t ′I and let intel-
ligence become faster, then the Bayes factor monotonically
rises, as shown in Fig. 3. This therefore means that the
Bayes factor of a quick versus slow abiogenesis scenario
must be greater than the limiting case of Z10/Z00, irrespec-
tive of whatever value λI takes (or indeed whatever the
prior is).

On this basis, we can conclude that even with the most
conservative date for the emergence of life, a scenario where
abiogenesis occurs rapidly is at least three times more likely
than a slow emergence, independent of the priors and even
the timescale it takes for intelligence to emerge. If the more
ambiguous evidence for an earlier start to life is confirmed
(17), then this would increase the odds to a factor of 9,
representing relatively strong preference for a model where
life would consistently emerge rapidly on Earth, if time were
replayed.

Bayes Factors after Marginalization. Thus far we have avoided
using the marginalized posteriors, which has the benefit of
enabling model comparison independent of the prior π(λL,λI ).
However, it also has the disadvantage that we can compare only
conditional scenarios. For example, our result for (Z10/Z00)
is a Bayes factor conditional upon the assumption of a slow
intelligence emergence. While it turns out this can be inter-
preted as a lower limit on a fast versus slow abiogenesis scenario,
marginalization allows for a calculation which integrates over the
uncertainty in λI . For example, one may write that the evidence
for a model where λL� 1/t ′L (slow abiogenesis) marginalized
over λI is given by

ZL−slow =

∫ ∞
λI=0

(
lim

λL�1/t′L

L

)
π(λI )dλI . [16]

We numerically evaluated the evidences for ZL−slow using the
above, ZL−slow (λL� 1/t ′L) as well as ZI−slow (λI � 1/t ′I ) and
the ensemble evidence over all possibilities,Zensemble. As before,
the fast intelligence emergence scenario has zero evidence since
the likelihood tends to zero in this regime, for reasons discussed
earlier. The resulting Bayes factors for (ZL−fast/ZL−slow) are
shown in Fig. 3A by the solid (Jeffreys prior) and open (uniform
prior) circles.

The two sets of points are almost indistinguishable and
consistently lie above our previously derived lower limit on the
Bayes factor, as expected. Using the optimistic data, we find
that (ZL−fast/ZL−slow)= 9.538 and (ZL−fast/ZL−slow)= 9.648
for the Jeffreys and uniform priors, respectively, both of
which satisfy (ZL−fast/ZL−slow)> (Z10/Z00)= 8.73. For the
conservative data, these numbers become (ZL−fast/ZL−slow)=
3.110 and (ZL−fast/ZL−slow)= 3.137, again satisfying
(ZL−fast/ZL−slow)> (Z10/Z00)= 2.83.

Further understanding of these Bayes factors can be gained
by evaluating the marginalized posteriors. We numerically
marginalize the posteriors in the case of the optimistic data and
show the resulting distributions in Fig. 4. From these, one can see
that the fL→ 0 limit drops below the prior, whereas the fL→ 1
limit rises above it. Together, these results paint a consistent pic-
ture that the timing of life’s emergence and that of intelligent
observers favor the hypothesis that life would likely reemerge
rapidly on Earth were the clock to be rerun.

And What of Intelligence? Thus far, we have calculated Bayes fac-
tors concerning fast versus slow abiogenesis rates. For the rate of
emergence of intelligent observers, Bayes factors against a fast
emergence scenario tend to infinity, since limλI�1/t′I

L→ 0 (as
shown in SI Appendix). Instead, it is more useful to compare the
slow intelligence scenario (λI � 1/t ′I ) against the ensemble of

Fig. 4. (Top row) Marginalized posteriors (solid lines) for λL (Left), λI (Center Left), fL (Center Right), and fI (Right) using the objective Bernoulli prior
(dashed lines), using the optimistic data. (Bottom row) Same as Top row but using the uniform prior in f for comparison. The y-axis scale is chosen to
highlight the dynamic range.
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models where λI can take any value, for which the Bayes
factor is

ZI−slow

Zensemble
=

∫∞
λL=0

(
limλI�1/t′I

L(λL,λI )
)
π(λL)dλL∫∞

λL=0

∫∞
λI=0

L(λL,λI )π(λL)π(λI )dλIdλL
. [17]

We evaluated the above numerically using optimistic data to
yield 1.638 and 1.474 using the Jeffreys and uniform priors,
respectively. Switching to the conservative data points barely
affects these numbers with 1.572 and 1.416 (the full range of
possibilities is depicted in Fig. 3B). This suggests a slight pref-
erence, 3:2 betting odds, that intelligent observers would rarely
reemerge—a value which is broadly robust against the two priors
considered and the range of possible t ′L values.

Conclusions
In this work, we have attempted to build upon the seminal paper
of ref. 13 which devised a Bayesian formalism for interpreting
life’s early emergence on Earth. Unlike that work, we do not
treat the timescale for life to develop into intelligent observers
as a fixed quantity, but rather infer it jointly as a free parameter.
This important difference feeds into an overall theme of the anal-
ysis presented here—to present an objective Bayesian analysis
of life’s early emergence on Earth and our relatively late arrival
within the context of Earth’s habitable window.

In this vein, we have demonstrated that the commonly used
power-law prior for this problem is not objective as the results
strongly depend on arbitrary choices on the prior’s domain. We
show that priors on the Bernoulli probability of life/intelligence
emerging naturally provide semiinfinite support and yield distri-
bution which can be seen to be fair and unbiased for this prob-
lem. Even so, it is possible to derive numerous model comparison
results which are fully independent of these priors—meaning
that even those using wildly different priors would consistently
agree on the results.

The early emergence of life on Earth is naively interpreted
as meaning that if we reran the tape, life would generally reap-
pear quickly. But if the timescale for intelligence evolution is
long, then a quick start to life is simply a necessary byproduct of
our existence—not evidence for a general rapid abiogenesis rate.
Using our objective Bayesian framework, we show that the Bayes
factor between a fast versus a slow abiogenesis scenario is at least
a factor of 3—irrespective of the prior or the timescale for intel-
ligence evolution. This factor is boosted to 9 when we replace the

earliest microfossil evidence (15, 16, 18) with the more disputed
13C-depleted zircon deposits reported by ref. 17. These results
are also supported by marginalizing over our objective priors.
An additional objective result concerning abiogenesis is that the
maximum-likelihood timescale for life to first appear is 190 My
after conditions became habitable (4.21 Gy ago) using the micro-
fossil evidence or even just 46 My using the more disputed data.
It is emphasized that these results are conditioned solely upon
the chronology data concerning life.

We find that the rate at which intelligent observers evolve
is less well constrained. Certainly, the possibility that the rate
of intelligence emergence is rapid (much less than gigayears)
is strongly excluded, which is not surprising given that it took
several gigayears here on Earth. But the possibility that intelli-
gence is extremely rare and Earth “lucked out” remains quite
viable. Overall, we find a weak preference, 3:2 betting odds, that
intelligence rarely emerges given our late arrival.

It is tempting to apply these numbers to potentially habit-
able exoplanets being discovered. However, we caution that our
analysis purely concerns the Earth, treating abiogenesis as a
stochastic process against a backdrop of events and conditions
which might be plausibly unique to Earth. If conditions suffi-
ciently similar to the early conditions exist and sustain on other
worlds for 1 Gy or more, then our analysis would then favor the
hypothesis that life is common, by a factor of K > 3. However,
the alternative is clearly not discounted and our Bayes factor
does not cross the threshold to which it would be conventionally
described as “strong” (K > 10) or “decisive” (K > 100) evidence
(41). Yet, future revision regarding the earliest evidence for life
could plausibly trigger this.

Overall, our work supports an optimistic outlook for future
searches for biosignatures (4–7). The slight preference for a
rare intelligence scenario is consistent with a straightforward
resolution to the Fermi paradox. However, our work says noth-
ing about the lifetime of civilizations, and indeed the weight
of evidence in favor of this scenario is sufficiently weak that
searches for technosignatures should certainly be a compo-
nent in observational campaigns seeking to resolve this grand
mystery.

Data Availability. All data used in this work are fully stated in the
text of this paper.
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