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Insects in confined swine operations carry a large
antibiotic resistant and potentially virulent
enterococcal community
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Abstract

Background: Extensive use of antibiotics as growth promoters in the livestock industry constitutes strong selection
pressure for evolution and selection of antibiotic resistant bacterial strains. Unfortunately, the microbial ecology and
spread of these bacteria in the agricultural, urban, and suburban environments are poorly understood. Insects such
as house flies (Musca domestica) and German cockroaches (Blattella germanica) can move freely between animal
waste and food and may play a significant role in the dissemination of antibiotic resistant bacteria within and
between animal production farms and from farms to residential settings.

Results: Enterococci from the digestive tract of house flies (n = 162), and feces of German cockroaches (n = 83)
and pigs (n = 119), collected from two commercial swine farms were isolated, quantified, identified, and screened
for antibiotic resistance and virulence. The majority of samples (93.7%) were positive for enterococci with
concentrations 4.2 ± 0.7 × 104 CFU/house fly, 5.5 ± 1.1 × 106 CFU/g of cockroach feces, and 3.2 ± 0.8 × 105 CFU/g
of pig feces. Among all the identified isolates (n = 639) Enterococcus faecalis was the most common (55.5%),
followed by E. hirae (24.9%), E. faecium (12.8%), and E. casseliflavus (6.7%). E. faecalis was most prevalent in house
flies and cockroaches, and E. hirae was most common in pig feces. Our data showed that multi-drug (mainly
tetracycline and erythromycin) resistant enterococci were common from all three sources and frequently carried
antibiotic resistance genes including tet(M) and erm(B) and Tn916/1545 transposon family. E. faecalis frequently
harbored virulence factors gelE, esp, and asa1. PFGE analysis of selected E. faecalis and E. faecium isolates
demonstrated that cockroaches and house flies shared some of the same enterococcal clones that were detected
in the swine manure indicating that insects acquired enterococci from swine manure.

Conclusions: This study shows that house flies and German cockroaches in the confined swine production
environment likely serve as vectors and/or reservoirs of antibiotic resistant and potentially virulent enterococci and
consequently may play an important role in animal and public health.

Background
Antibiotic resistance is a serious public-health pro-
blem; reduced effectiveness of antibiotics results in
greater patient mortality rates, prolonged hospitaliza-
tion and increased healthcare costs. The economic
impact of antibiotic resistance has been estimated
between $5 and $24 billion annually in the United
States alone [1]. Extensive use of antibiotics, especially
as growth promoters, in the animal industry has
resulted in strong selective pressure for the emergence

of antibiotic-resistant bacteria in food animals [2-5]. In
turn, animals and animal production environments
have become reservoirs for antibiotic-resistant bacteria
[6]. Many of these feed additive antibiotics are identi-
cal or related to those used in human medicine [7,8].
The largest fraction of medically important antibiotics
as feed additives in the USA is used in hogs (69%),
compared to 19% in broiler chickens and 12% in beef
cattle [9]. Antibiotic resistant bacteria are released into
the environment in animal feces and can then spread
to other ecological habitats, including humans
[6,10,11]. A connection between antibiotic resistance
in bacterial isolates from healthy food animals and
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clinical isolates of human and animal origins has been
suggested; however, this is a controversial issue
because the ecology of these bacteria and their genes
in the agricultural and urban environment is not well
understood [10,12-16].
Insects associated with food animals, especially house

flies (Musca domestica) and German cockroaches
(Blattella germanica) are not only important nuisance
pests but also potential vectors of animal and human
pathogens [17,18]. Organic waste in and around animal
production facilities provide excellent habitats for the
growth and development of these insects. Because of
their habitat preferences, unrestricted movement,
mode of feeding, and attraction to residential areas,
house flies and cockroaches have a great potential to
disseminate fecal bacteria, including human and animal
pathogens and antibiotic resistant strains [17,18]. With
continuing urban expansion in agriculturally zoned
areas in the last two decades, there is an increasing
concern in the medical and public health community
about insect pests directly associated with the spread
of bacterial pathogens and antibiotic resistant microor-
ganisms within animal production systems and to resi-
dential settings.
Enterococci are ubiquitous Gram-positive, lactic acid

bacteria found in various habitats, including the intest-
inal tract of animals, from insects (102 to 104 CFU per
house fly) to humans (104 to 106 CFU per gram of
stool/feces), and environments contaminated by animal
or human fecal material as well as in food and feed pro-
ducts derived from animals [19-25]. While some entero-
cocci are used as probiotics, other Enterococcus species
are important opportunistic and nosocomial pathogens
of humans, causing urinary tract infections, bacteremia,
intra-abdominal and pelvic infections, wound and tissue
infections, and endocarditis [26]. The genus Enterococ-
cus presently comprises over 30 species; however, E. fae-
calis and E. faecium are the two major species of
clinical importance [20]. Enterococci are considered a
reservoir of antibiotic resistance genes to a wide range
of antibiotics (including beta-lactams and high concen-
tration aminoglycosides) frequently used to treat infec-
tions of Gram-positive cocci. Enterococci have been
implicated in dissemination of antibiotic resistance and
virulence genes both intra- and interspecifically because
of their ability to acquire and transfer antibiotic resis-
tance through transfer of plasmids and transposons. In
addition, enterococcal acquisition of vancomycin resis-
tance leaves few options for therapeutic management
[26-31]. Several studies have highlighted the importance
of enterococci as a reservoir of antibiotic resistance
genes in the environment [22,26,27,32,33]. However, lit-
tle information is available about the role of insects in
the ecology and dissemination of antibiotic resistant

enterococci in the animal production environment and
consequently in animal and public health.
The objective of this study was to determine the pre-

valence of antibiotic resistant and potentially virulent
enterococci in house flies and German cockroaches col-
lected from two commercial swine farms and to com-
pare these to enterococci isolated from swine feces. This
is the first comprehensive analysis of antibiotic resis-
tance and virulence of enterococci associated with insect
pests in swine farms, and it will enhance our under-
standing of the role of insects in the ecology of antibio-
tic resistant and virulent bacteria and in the public
health and pre-harvest food safety and security.

Results
Prevalence, concentration, and diversity of enterococci
Enterococci from pig fecal samples (n = 119), German
cockroaches fecal samples (n = 83), and digestive tract
of house flies (n = 162), collected from two commercial
swine farms, were isolated, quantified, identified, and
screened for antibiotic resistance and virulence by a
polyphasic approach (phenotypic and genotypic analy-
sis). Enterococci were detected in 106 (89.1%) pig fecal
samples, 78 (94.0%) cockroach fecal samples, and the
digestive tracts of 159 (98.1%) house flies collected from
swine farms. The concentration of enterococci (mean ±
SEM) was 4.2 ± 0.7 × 104 CFU/house fly, 5.5 ± 1.1 ×
106 CFU/g of cockroach feces, and 3.2 ± 0.8 × 105 CFU/
g of pig feces. A total of 639 out of 932 (68.6%) entero-
coccal isolates from all sources (house flies, cockroaches,
and pigs) were successfully identified by multiplex or
single PCR to species level. The unidentified isolates
(31.4%) were not included in the additional analysis in
this study. Although differences in species prevalence
varied by sources, E. faecalis was the common entero-
coccal species in all samples (55.5%), followed by E.
hirae (24.9%), E. faecium (12.8%), E. casseliflavus (6.7%).
The largest number of E. faecalis and E. casseliflavus
isolates was detected in flies and cockroach feces and
the highest number of E. faecium and E. hirae was
found in pig feces (Figure 1). Concentration of E. faeca-
lis from the digestive tract of house flies was signifi-
cantly higher compared to that from feces of German
cockroaches and pigs and E. hirae was significantly
more prevalent in pig feces than in roach feces and
house flies (Figure 1).

Prevalence and diversity of antibiotic resistance by
phenotype and genotype
The prevalence of antibiotic resistance (expressed as
percentages) within each Enterococcus spp. isolated from
pig and cockroach feces and the digestive tract of house
flies is shown in Figure 2. Among the isolates tested, no
vancomycin resistance was observed and only a few
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isolates of E. faecalis and E. faecium were resistant to
ampicillin. The majority of identified isolates from all
samples showed high prevalence of tetracycline resistance
(Tetr) followed by resistance to erythromycin (Eryr))
(Figure 2). High-level resistance to the aminoglycosides
streptomycin and kanamycin was also detected in E. fae-
calis, E. faecium, E. hirae and E. casseliflavus from all
samples (Figure 2). In general, the antibiotic resistance
profiles of enterococci isolated from pig feces, cockroach
feces, and the digestive tract of house flies were similar

and no significant differences were observed within the
same bacterial species (Figure 2). However, significant
differences in resistance to ciprofloxacin and streptomy-
cin were detected in E. faecalis (Figure 2A). Likewise, the
incidence of ciprofloxacin resistance in E. faecium from
the digestive tract of house flies was significantly higher
compared to E. faecium from feces of German cock-
roaches and pigs (Figure 2B).
The most common combination or resistance traits was

Tetr and Eryr (E. faecalis, 65.8%; E. faecium, 52.0%; E.
hirae, 34.5%; E. casseliflavus, 51.1%), followed by the com-
bination of Tetr, Eryr, Strr, and Kanr (E. faecalis, 6.4%; E.
faecium, 17.6%; E. hirae, 8.8%; E. casseliflavus, 17.0%).
Further, the prevalence of the most common two-antibio-
tic-resistant isolates (Tetr and Eryr) was not significantly
different in the feces of pigs and cockroaches and in the
digestive tract of house flies (P = 0.0816). Similarly, no sig-
nificant differences (P = 0.0596) in the prevalence of mul-
tiple-antibiotic-resistant isolates (Tetr, Eryr, Strr, and Kanr)
were observed among all samples (pig feces, 11.9%; cock-
roach feces, 10.7%; house flies, 7.5%).
The prevalence of resistance genes (expressed as per-

centages) within each Enterococcus spp. is presented in
Figure 3. The results revealed that the tet(M) and erm
(B) determinants were widespread, tet(S), tet(O) and tet
(K) were rare, and tet(A), tet(C), tet(Q) and tet(W) were
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Figure 2 Phenotypic antibiotic resistance profiles (%) of (A) E. faecalis, (B) E. faecium, (C) E. hirae and (D) E. casseliflavus isolated from
pig feces, German cockroach feces, and the digestive tract of house flies collected on two swine farms. AMP = ampicillin, VAN =
vancomycin, TET = tetracycline, CHL = chloramphenicol, CIP = ciprofloxacin, ERY = erythromycin, STR = streptomycin, KAN = kanamycin.

Figure 1 Diversity of enterococci isolated from pig feces,
German cockroach feces, and the digestive tract of house flies
collected on two swine farms. The percent prevalence was
calculated for each bacterial species within the three sources.
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not detected from the isolates tested based on our PCR
approach. Irrespective of their origin, the majority of
identified isolates contained the tet(M) determinant fol-
lowed by the erm(B) determinant (Figure 3). Significant
differences in prevalence of the tet(M) determinant were
detected in enterococci isolated from pig and cockroach
feces and the digestive tract of house flies (Figure 3). In
contrast, the erm(B) determinant was equally prevalent
in enterococci isolated from these three sources and no
significant differences were observed within the same
bacterial species (Figure 3).
The distribution and combination of resistance genes

in phenotypically resistant enterococci are shown in
Tables 1, 2, and Additional files 1-3). Many E. faecalis
(93.4%), E. faecium (81.2%), and E. casseliflavus (90.9%)
carried at least one resistance determinant. Among the
isolates tested, the most common determinant was the
ribosomal protection protein mechanism encoded by tet
(M), alone or in combination with other determinants
(Tables 1, 2, and Additional files 1-2). No significant dif-
ferences were found in the prevalence of the tet(M) gene
alone in E. faecium (P = 0.2837), E. hirae (P = 0.0823)
and E. casseliflavus (P = 0.1223) isolated from pig feces,
cockroach feces and the digestive tract of house flies
(Tables 1, 2, and Additional file 1). The prevalence of tet

(M) alone in E. casseliflavus from pig and cockroach
feces was significantly higher (P = 0.0012) compared to
that from digestive tracts of house flies (Additional file 2).
Multiple resistance determinants, specifically tet(M)

and erm(B), were detected in E. faecalis, E. faecium, E.
hirae, and E. casseliflavus (Tables 1, 2, Additional files
1-2). In general, the levels of prevalence of multiple
resistance determinants tet(M) and erm(B) were similar
and no significant differences were observed in E. faeca-
lis (P = 0.4151), E. faecium (P = 0.0864), E. hirae (P =
0.5873) and E. casseliflavus (P = 0.5760) isolated from
the digestive tract of house flies and feces of German
cockroaches and pigs (Tables 1, 2, Additional files 1-2).
Since most of the tetracycline resistant isolates were

also resistant to erythromycin, and the tet(M) gene is
frequently linked with the erm(B) gene on the highly
mobile conjugative transposon Tn1545, tests for the
detection of int genes were also performed for the pre-
sence of conjugative transposons of the Tn1545/Tn916
family. The results revealed that the Tn1545/Tn916 con-
jugative transposon family was found in 219/639 (34.3%)
identified isolates from all samples. The Tn1545/Tn916
family determinant was commonly detected in E. faeca-
lis followed by E. hirae, E. casseliflavus, and E. faecium
(Additional file 3). The most common E. faecalis
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Figure 3 Genotypic antibiotic resistance profiles (%) of (A) E. faecalis, (B) E. faecium, (C) E. hirae and (D) E. casseliflavus isolated from
pig feces, German cockroach feces, and the digestive tract of house flies collected on two swine farms.
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genotypes based on a combination of antibiotic resis-
tance and Tn1545/Tn916 family determinants were tet
(M) plus erm(B) plus Tn916/1545 followed by tet(M)
plus Tn916/1545 (Additional file 3). In addition, many
(23.3%) E. faecalis isolates from pig feces also carried
frequently resistance determinants including tet(M), tet
(K) and erm(B) in combination with the Tn1545/Tn916
family (Additional file 3).

Prevalence and diversity of virulence factors by
phenotype and genotype
The overall prevalence of putative virulence factors (gela-
tinase, haemolysin and aggregation substance production)
for all identified isolates is listed in Figure 4. Gelatinase
production on skimmed milk agar was the most common
virulence factor among all identified isolates, with signifi-
cantly higher incidence in E. faecalis than in E. casselifla-
vus, E. faecium, and E. hirae (Figure 4). No significant
differences were detected in prevalence of gelatinase

production among E. faecalis and E. faecium isolated
from the digestive tract of house flies and feces of
German cockroaches and pigs (Figure 4).
The prevalence of b-hemolysis on human blood agar

in E. faecalis was higher than that observed in E. fae-
cium, E. casseliflavus, and E. hirae (Figure 4). In general,
the prevalence of b-hemolysis among identified entero-
cocci isolated from pig feces, German cockroach feces
and the digestive tract of house flies were similar and
no significant differences were observed within the same
species (Figure 4).
The clumping/aggregation assay revealed that the

prevalence of the clumping phenotype among E. faeca-
lis was low as only 6 of the 631 E. faecalis (1.95%) iso-
lates aggregated in vitro. However, no significant
differences were found in the prevalence of this viru-
lence factor among E. faecalis isolated from pig feces,
German cockroach feces and the digestive tract of
house flies (Figure 4A).

Table 1 Distribution of tet(M), tet(O), tet(S), tet(K) and erm(B) determinants in E. faecalis isolates from pig feces
(n = 73), German cockroach feces (n = 76) and house fly digestive tracts (n = 170)

Combination of determinants Number (%) of isolates Correlation with phenotype (%)

Pig feces Cockroach feces House Flies Pig feces Cockroach feces House Flies

tet(M) only 21 (28.8) 35 (46.1) 39 (22.9) 90.5 97.4 94.3

tet(O) only - - 1 (0.6) - - 66.6

tet(K) only - - 8 (4.7) - - 100

tet(S) only - - 1 (0.6) - - 100

erm(B) only 3 (4.1) 2 (2.6) 11 (6.5) 100 50.0 92.3

tet(M) + erm(B) 24 (32.9) 33 (43.4) 66 (38.8) 100/87.5 100/90.0 100/98.4

tet(O) + erm(B) - - 3 (1.8) - - 100/100

tet(S) + erm(B) - - 1 (0.6) - - 100/100

tet(K) + erm(B) 1 (1.4) - - 100/100 - -

tet(M) + tet(O) - 1 (1.3) 3 (1.8) - 100 100

tet(M) + tet(O) + erm(B) - 1 (1.3) 7 (4.1) - 100/100 100/100

tet(M) + tet(K) + erm(B) 21 (28.8) - 8 (4.7) 100/95.2 - 100/87.5

tet(M) + tet(S)+ erm(B) - 1 (1.3) 2 (1.2) - 100/100 100/100

Isolates with no detected tet and erm(B) determinants 3 (4.1) 3 (3.9) 20 (11.8) 100/100 33.3/66.6 70.0/80.0

Table 2 Distribution of tet(M), tet(O), tet(S), tet(K) and erm(B) determinants in E. faecium isolates from pig feces
(n = 60), German cockroach feces (n = 29) and house fly digestive tracts (n = 36)

Combination of determinants Number (%) of isolates Correlation with phenotype (%)

Pig feces Cockroach feces House Flies Pig feces Cockroach feces House Flies

tet(M) only 29 (48.3) 16 (55.2) 13 (36.1) 100 100 87.5

tet(O) only 5 (8.3) 0 0 100 - -

tet(S) only 2 (3.3) 2 (6.9) 8 (22.2) 100 100 100

erm(B) only 2 (3.3) 0 0 100 - -

tet(M) + erm(B) 15 (25.0) 2 (6.9) 5 (13.9) 100/89.7 100/50 80.0/60.0

tet(S) + erm(B) 1 (1.7) 1 (3.4) 1 (2.8) 100/100 100/100 100/100

tet(O) + erm(B) 0 1 (3.4) 1 (2.8) 100/100 100/100

tet(M) + tet(O) + tet(S) + erm(B) 1 (1.7) 0 1 (2.8) 100/100 - 100/100

Isolates with no detected tet and erm(B) determinants 6 (10.0) 7 (24.1) 8 (22.2) 66.6/66.6 0.0/50.0 25.0/37.5
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PCR amplifications of enterococcal DNA with the speci-
fic primers for asa1, esp, cylA, and gelE revealed signifi-
cantly higher prevalence of virulence determinants in
E. faecalis than in other enterococcal species irrespective
of the origin of the isolates (Figure 5). E. faecium and
E. hirae isolates were generally without virulence determi-
nants. No significant differences were detected in the pre-
valence of virulence determinants gelE and cylA among
E. faecalis isolated from pig feces, German cockroach
feces and the digestive tract of house flies (Figure 5A).
However, the prevalence of asa1 and esp genes in E. faeca-
lis from pig feces was significantly higher compared to
E. faecalis from the digestive tract of house flies and feces
of German cockroaches (Figure 5A).
Phenotypic tests showed that the 63.0% of E. faecalis

that carried gelE were gelatinolytic. The test for detec-
tion of b-hemolysis in E. faecalis revealed there was a
100% (pig feces and cockroach feces) and 92.9% (house
flies) correlation between cylA and b-hemolysis on
human blood. In addition, 8.1% of the E. faecalis from
house flies was b-hemolytic but negative for cylA.

Genotyping by pulsed-field gel electrophoresis (PFGE)
Genotyping of randomly selected E. faecalis and E. fae-
cium isolated from swine manure, house flies, and Ger-
man cockroaches from one of the farms revealed that

insects and swine manure shared some of the same
enterococcal clones. For example, the same genotype
of E. faecalis was detected from the house fly (strain
R1F-6-1) and swine manure (strains R1M-1-3, 1-6, 1-9,
4-2, 4-3) (Figure 6A). Another identical PFGE profile
of E. faecalis was found in the German cockroach
(R1C-13-1, 18-3, 20-3) and in the house fly (R1F-30-3)
(Figure 6A). The same clone of E. faecium was
detected in the German cockroach (R2C-12-3), in the
house fly (R2F-4-6), and in swine manure (R2M-1-6,
3-4, 5-3, 6-1) (Figure 6B).

Discussion
The worldwide increase in the emergence and spread of
antibiotic resistance has become a major public health
concern, with economic, social and political ramifica-
tions. Clearly, the prevalence of antibiotic resistant bac-
teria in the gastro-intestinal microbial communities of
domestic food animals and their feces/manure has
become high in the United States likely due to extensive
use of antibiotics in food animal production
[3,6,10,34-36]. Although a connection between antibiotic
resistance in bacterial isolates from healthy food animals
and clinical isolates of human and animal origins has
been suggested, this is a controversial issue because little
is known about the amplification and spread of
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antibiotic resistant bacteria and genes in the environ-
ment [12-14,16,37-41].
The two groups of insects most frequently screened

for food borne-pathogens are house flies and cock-
roaches. These insects have been implicated as mechani-
cal or biological vectors for bacterial pathogens
including Salmonella spp., Campylobacter spp; Pseudo-
monas aeruginosa, Listeria spp., Shigella spp., Aeromo-
nas spp., Yersinia pseudotuberculosis, Escherichia coli
O157:H7, and E. coli F18 that can cause diseases in
humans and/or animals [17,18]. Multi-antibiotic resis-
tant enterococci have been reported from house flies
collected from fast-food restaurants [19]. In addition,
the horizontal transfer of tet(M) among E. faecalis in
the house fly digestive tract as well as the great capacity
of house flies to contaminate human food with entero-
cocci have been demonstrated [42,43]. Organic wastes
in and around animal production facilities including
swine farms provide excellent habitats for house flies
and German cockroaches. Several features of house flies
and cockroaches, including their dependence on live
microbial communities, active dispersal ability and
human-mediated transport, attraction to places where
food is prepared and stored, developmental sites, and
mode of feeding/digestion make these insects an impor-
tant “delivery vehicle” for transport of bacteria including
antibiotic resistant enterococci from reservoirs (animal
manure), where they pose minimal hazard to people, to
places where they pose substantial risk (food) [17,18,44].
Several reports showed a positive correlation between
the incidence of food-borne diarrhea and the density of
house fly or cockroach populations. For example, sup-
pression of flies in military camps in the Persian Gulf
resulted in an 85% decrease in Shigellosis and a 42%
reduction in the incidence of other diarrheal disease
[45]. Esrey [46] reported a 40% reduction in the inci-
dence of diarrheal infections in children after suppres-
sion of a fly population. Another study showed that fly
control could reduce trachoma and diarrhoea among
children in Gambia [47]. An outbreak of gastro-enteritis
caused by S. typhimurium in the children’s ward of a
Belgian hospital dropped as soon as the German cock-
roach infestation had been controlled [48]. Tarshis [49]
recorded that control of cockroaches was accompanied
by a decrease in the incidence of endemic infectious
hepatitis. The German cockroach was also shown as a
potential mechanical vector of the piglet pathogen
Escherichia coli F18 [50].
To our knowledge, surveillance for resistance to anti-

biotics in enterococci from insects associated with swine
production environments has not been previously con-
ducted. Recently, Graham et al. [51] reported that flies
may be involved in the transmission of drug resistant
enterococci and staphylococci from confined poultry

farms. In our study, enterococci were detected in the
digestive tracts of house flies, cockroach fecal samples
and pig fecal samples collected from two different swine
farms with enterococci recovered from 93.7% of 364
samples analyzed. High concentrations of enterococci in
the digestive tract of house flies and cockroaches sug-
gest that enterococci are common commensals of these
insects intestinal microbiota. Among the four most fre-
quently identified species, E. faecalis and E. faecium are
the most important enterococcal species from a clinical
perspective [20,22,27]. However, infections caused by E.
hirae and E. casseliflavus may also occur and warrant
attention [52]. In addition, enterococci are regarded as
important reservoirs of antibiotic resistance and viru-
lence genes that are often found on mobile genetic ele-
ments [22,27,30,52].
The most frequently encountered enterococcal species

in the intestines of farm animals are E. faecalis, E. fae-
cium, E. hirae, and E. durans; however, culture methods
may influence the recovery and selection of enterococcal
species [36,53]. The dominance of E. hirae in pig feces
in our study is consistent with studies of the enterococ-
cal community of swine [32,33]. E. faecalis was observed
more frequently from the digestive tract of insects and
these results are also in agreement with previous studies
[19,54]. The favorable conditions in the fly and cock-
roach digestive tract may serve to select and amplify
environmentally acquired E. faecalis, including those
carrying antibiotic resistance genes.
High frequency of resistance to tetracycline, erythro-

mycin, streptomycin, kanamycin, and ciprofloxacin in
our study likely reflects use of tetracyclines, macrolides,
aminoglycosides and fluoroquinolones for swine in the
USA [55]. Unfortunately, we were unable to obtain any
specific information on the use of antibiotics in the two
commercial farms in this study. Similar results were
reported on antimicrobial resistant phenotypes and
resistance genes in enterococci from animals and insects
[10,19,51]. The patterns of antibiotic resistance observed
in Enterococcus spp. recovered from the pig fecal sam-
ples were similar to those observed in isolates recovered
from digestive tracts of house flies and cockroach fecal
samples indicating that insects acquired enterococci
from the pig manure. PFGE analysis of selected E. faeca-
lis and E. faecium isolates confirmed that both insect
species carried some of the same clones that were
detected in the swine manure. This supports our data
indicating that insects acquired the drug-resistant and
potentially virulent enterococci from the swine feces
although the opposite route cannot be ruled out. How-
ever, our previous study [56] showed that the prevalence
of antibiotic resistant enterococci in house flies
decreases with increasing distance from the likely source
(cattle feedlot). This indicates that the source of
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antibiotic resistant enterococci in house flies and cock-
roaches in this study was the swine manure due to very
high prevalence of antibiotic resistant enterococci in all
three sources. The absence of VRE in this study is in
agreement with previous findings and reflects a relation-
ship between extensive use of specific antibiotics as
growth promoters and presence of VRE [32,35,57]. Since
avoparcin has not been used as a growth promoter in
the United States, and VRE are rarely isolated from US
food animal production environments. In contrast, VRE
have been frequently isolated from food animal produc-
tion environments in Europe where vancomycin was
extensively used for farm animals [58].
Our findings are in agreement with the results of

other studies which showed that tet(M) and erm(B) are
the most widespread resistance genes among entero-
cocci from food animals or foods [10,15,19,24,59,60].
Furthermore, a strong association of the tet(M) and erm
(B) genes with the conjugative transposon family
Tn1545/Tn916 was also detected in many isolates in
our study, indicating that antibiotic resistant enterococci
associated with the confined swine environment could
be a reservoir of transferable tetracycline and erythro-
mycin resistance. The similar prevalence of resistance
determinants and Tn1545/Tn916 transposons among
isolates from pig feces, house flies and cockroach feces
indicates exchange of resistant strains or their resistance
genes. This is important because the Tn1545/Tn916
family has a very broad host range and members of this
family of transposons can be transferred by conjugation
to numerous bacterial species in the human gastroin-
testinal microbial community [61-63].
The highest incidence of multiple virulence factors

was detected in E. faecalis with similar virulence profiles
from the digestive tract of house flies, cockroach feces
and pig feces. The gelE gene was detected frequently in
E. faecalis (63.0%) and was the most common of the
virulence factors. Prevalence of the gelE gene has been
frequently documented in E. faecalis, and rarely in E.
faecium and E. durans [12,27]. The presence of gelE
was, however, not strictly correlated with the phenotype
suggesting that some gelE genes are silent which is likely
due to a 23.9-kb chromosomal deletion involving the fsr
locus that regulates gelE expression [64,65]. We found
little correlation between the clumping phenotype in
vitro and the presence of the asa1 gene in E. faecalis
showing that asa1 is not commonly expressed under
these in vitro conditions. The phenotypic test for
b-hemolysis (cytolysin production) with E. faecalis,
E. faecium and E. casseliflavus showed a strong correla-
tion between cylA and b-hemolysis on human blood.
However, 8.1% of the E. faecalis from house flies were
positive for b-hemolysis but negative for cylA, suggest-
ing the presence of unknown determinant(s). Some of

the genes encoding virulence determinants, including
cytolysin and aggregation substance, are known to be
present on pheromone-responsive plasmids, such as
pAD1 and therefore transferable to other E. faecalis
strains [27].
The data presented in this study offer evidence that

should be helpful for future research initiatives aimed at
reducing the dissemination of antibiotic resistant and
virulent bacteria. It is likely that the high prevalence of
resistant and potentially virulent enterococci in house
flies and German cockroaches associated with confined
swine environments reflects an extensive use of antibio-
tics by the swine industry. However, the degree to
which these resistant and virulent enterococci hamper
the efficacy of medically important antibiotics and thus
pose risks to humans is unknown. The gastrointestinal
tracts of mini-pigs, humans, and mice provide favorable
environments for intra- and interspecies transfer of anti-
biotic resistance genes, but these processes have not
been investigated in the digestive tract of insects and
related arthropods with few exceptions [42,66-71].
Knowing the sources of enterococci harboring in house
flies and German cockroaches is also important to accu-
rately assess risk, to identify and implement manage-
ment plans for fecal waste, and to establish insect
management practices that prevent the spread of anti-
biotic resistant strains and other potential human and
animal pathogens. Further studies are warranted to pin-
point the potential sources of fecal contamination of
insects, their subsequent contamination of food and
feed, and for a detailed understanding gene transfer in
the digestive tract of insects.

Conclusion
In summary, our study showed that multi-antibiotic
resistant and potentially virulent enterococci are preva-
lent in confined swine production (in pig feces, house
flies and German cockroaches). House flies and German
cockroaches likely serve as vectors and/or reservoirs for
antibiotic resistance and virulence genes in the confined
swine production environment and consequently they
present animal and public health risks. Therefore, effec-
tive management strategies aimed at reducing insect
pest populations should be an important component of
pre-harvest food safety efforts in the future, with
increasing recognition of enterococci as human opportu-
nistic pathogens.

Methods
Sample collection and isolation of enterococci
All samples were collected from two commercial farms,
one in Duplin county, North Carolina and one in
Ottawa county, Kansas. House flies (Musca domestica)
were collected using a sweep net. Individual house flies
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were surface sterilized with sodium hypochlorite and
ethanol [44], homogenized in 1 ml of phosphate buf-
fered saline (PBS), serially diluted, and drop-plated onto
modified Enterococcus agar (mENT, Becton Dickinson,
MA, USA). German cockroaches (Blattella germanica)
were collected by brushing them into sterile plastic
bags. Cockroaches were randomly divided among sterile
plastic petri dishes (20 per petri dish) and allowed to
produce feces overnight at room temperature. Fecal
material (10 mg) from each petri dish was aseptically
collected and processed as below. Pig feces were asepti-
cally collected in sterile 50 ml Falcon tubes. One gram
of feces was suspended in 9 ml of PBS and vortexed. An
aliquot of 1 ml from each suspension was serially
diluted in PBS and drop-plated onto mENT agar. All
inoculated mENT agar plates were incubated at 37°C for
48 h. Purple/red bacterial colonies with a morphology
characteristic of enterococci were counted, and up to
four presumptive enterococcal colonies per sample were
sub-cultured on trypticase soy agar (TSA; Becton Dick-
inson, MA, USA) incubated at 37°C for 24 h. Presump-
tive enterococcal colonies were identified at the genus
level with the esculin hydrolysis test using Enterococcos-
sel broth (Becton Dickinson, MA, USA) incubated for
24 h at 44°C [72]. Isolates confirmed as enterococci
were streaked on TSA and incubated for 24 h at 37°C
and stored at 4°C for further analysis.

Enterococcal species identification
Species-level identification was performed using multi-
plex PCR for four common species: E. faecalis, E. fae-
cium, E. casseliflavus and E. gallinarum and single PCR
for E. hirae [73-75]. Control strains consisting of E. fae-
calis ATCC 19433, E. faecium ATCC 19434, E. galli-
narum ATCC 49579, E. casseliflavus ATCC 25788, and
E. hirae ATCC 8043 were included with each PCR
assay. E. mundtii ATCC 43186 was used as negative
control.

Phenotypic screening for antibiotic resistance and
virulence factors
All identified isolates were tested for sensitivity to six
antibiotics using standard disc diffusion method. Anti-
biotic discs of ampicillin (AMP, 15 μg/ml), vancomycin
(VAN 30 μg/ml), tetracycline (TET, 30 μg/ml), chloram-
phenicol (CHL, 30 μg/ml), ciprofloxacin (CIP, 5 μg/ml),
and erythromycin (ERY, 15 μg/ml) (all Oxoid) were
used. High levels resistance to streptomycin (STR) and
kanamycin (KAN) were assessed by the agar dilution
technique using 2,000 μg/ml of streptomycin or kana-
mycin in brain heart infusion agar (Becton Dickinson,
MA, USA). The protocols followed the guidelines of the
National Committee for Clinical Laboratory Standards

[76]. E. faecalis ATCC 19433, E. faecium ATCC 19434,
E. gallinarum ATCC 49579 and E. casseliflavus ATCC
25788 were used as quality control strains.
Gelatinase activity was detected by streaking all identi-

fied isolates on TSA containing 1.5% (v/v) skim milk
[27]. E. faecalis MMH594 was used as a positive control
and E. faecalis FA2-2 as a negative control.
For detection of hemolytic activity, E. faecalis and E.

faecium were streaked on Columbia agar base supple-
mented with 5% (v/v) fresh sterile human blood and
grown for 24-48 h at 37°C. Isolates showing a complete
clearance zone around the colonies indicated b-hemoly-
sin production [27]. E. faecalis MMH594 was used as a
positive control and E. faecalis FA2-2 as a negative
control.
Production of aggregation substance was determined

by the clumping assay [77]. E. faecalis OG1RF:pCF10
and JH2-2 were used as positive and negative controls,
respectively.

Genotypic screening for antibiotic resistance, virulence
and integrase genes
Multiplex or single PCR were used to screen all identi-
fied isolates for tetracycline and erythromycin resistance
genes including, tet(S), tet(M), tet(O), tet(K), tet(A), tet
(C), tet(Q), tet(W)] and erm(B) and for four putative
virulence determinants gelE , cylA, esp, and asa1
[78-81]. Integrase gene (int) was used for detection of
the conjugative transposon family Tn1545/Tn916
[19,82]. To confirm the identity of our PCR products,
one randomly selected PCR product for each resistance,
virulence, and transposon determinant was purified with
GFX PCR DNA and Gel Band Purification Kit (Amer-
sham Bioscience, UK) and sequences were determined
on an ABI 3700 DNA Analyzer at the K-State DNA
Sequencing Facility using the same PCR primers.
Sequences were analyzed for similarity to known
sequences in the GenBank database using BLAST (Basic
Local Alignment Search Tool) [83]. Manual sequence
alignment was done with CodonCode Aligner (Version
1,3,4) (CodonCode Corporation, Dedham, MA) (data
not shown).

Genotyping of selected isolates with pulsed-field gel
electrophoresis (PFGE)
PFGE protocol of Amachawadi et al. [84] was used with
minor modifications. Agarose plugs were digested with
40 U of ApaI (Promega, Madison, WI) for 4 h at 37°C.
The digested plugs were run on to a 1% SeaKem Gold
Agarose (Lonza, Rockland, MI) gel using CHEF Mapper
(Bio-Rad, Hercules, CA) with initial pulse time for 1 s
and final time for 20 s at 200 V for 21 h. Cluster analy-
sis was performed with BioNumerics software (Applied
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Maths, Korrijk, Belgium) using the band-based Dice cor-
relation coefficient and the unweighted pair group
mathematical average algorithm (UPGMA).

Data analysis
Differences in the prevalence of antibiotic resistance and
virulence factors (genotype and phenotype) among
enterococcal isolates from pig feces, house flies and
roach feces were analyzed using chi-square analysis of
contingency tables and Fisher’s exact test (a = 0.05).
Species with zero prevalence of antibiotic resistance and
virulence factors (genotype and phenotype) were not
included in the analysis.

Additional material

Additional file 1: Distribution of tet(M), tet(S), tet(K) and erm(B)
determinants in E. hirae isolates from pig feces (n = 93), German
cockroach feces (n = 30) and house fly digestive tracts (n = 26).
Table describing distribution of tet and erm genes in E. hirae from
various sources and their correlation with the phenotype.

Additional file 2: Distribution of tet(M), tet(S) and erm(B)
determinants in E. casseliflavus isolates from pig feces (n = 10),
German cockroach feces (n = 14) and house fly digestive tracts
(n =23). Table describing distribution of tet and erm genes in E. casseliflavus
from various sources and their correlation with the phenotype.

Additional file 3: Distribution [number (%) of isolates] of the
tetracycline resistance genes, erm(B) gene, and Tn916/1545 family
among isolates from pig feces, cockroach feces and the digestive
tract of house flies. Table describing combinations of antibiotic
resistance determinants and transposon Tn916/1545 family in four
Enterococcus species isolated from various sources.
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