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Abstract: The plant kingdom is a rich source of secondary metabolites with numerous properties,
including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells
that play a protective role against various chemical, physical and biological stimuli, and participate
in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell
response may be modulated by phytochemicals via changes in signal transduction pathways. Plant
extracts and single secondary compounds can possess a high antioxidant capacity and may suppress
reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant
enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit
anti-inflammatory properties and exposure may result in limited production of adhesion molecules,
pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single
compounds may promote keratinocyte motility and proliferation via the regulation of growth factor
production and enhance wound healing. While such plant compounds may modulate keratinocyte
functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more
specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on
human skin.

Keywords: keratinocytes; plants; secondary metabolites; ROS; inflammation; UV radiation; wound
healing

1. Introduction

Plants produce a range of secondary metabolites. These not only play a crucial role
in the adaptation of plants to the environment but also have a strong impact on other
living organisms, including humans. Various groups of molecules with a plant origin
such as phenolics, alkaloids, saponins, terpenes, lipids and carbohydrates, are involved
in a plethora of biological activities. Selected phytochemicals may modulate several cell-
signaling pathways in different cell types, including those of epidermal cells [1].

The skin creates a barrier protecting the host from the outside environment. The outer
layer of the human skin, the epidermis, is formed by keratinocytes. These cells are on the
first line of defense against various harmful chemical, physical and biological factors and
are particularly vulnerable to ultraviolet (UV)-radiation, a strong source of reactive oxygen
species (ROS). In response, keratinocytes produce a range of biologically active molecules
that enhance ROS scavenging, inflammatory responses and wound healing [2].
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Numerous plant extracts, as well as their component compounds, exert antioxidant
activity. Phenolic compounds are particularly effective ROS scavengers. These chemicals
are able to neutralize ROS via their ability to donate hydrogen atoms or electrons to radicals
and chelate metal cations. Selected plant extracts and their component compounds have
been found to suppress ROS release, decrease the activity of inducible nitric oxide synthase
and nitric oxide, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant
enzymes in keratinocytes following exposure to hydrogen peroxide (H2O2) [3]. A wide
range of secondary metabolites is also known to play an anti-inflammatory role. Following
stimulation with pro-inflammatory factors, keratinocytes produce numerous molecules
including adhesion molecules, interleukins and chemokines, with this production being
suppressed by exposure to plant extracts and compounds [4]. Moreover, keratinocytes
treated with UV radiation are exposed to the action of both ROS and pro-inflammatory
factors; indeed, selected plant extracts and single compounds may play a dual, antioxidant
and anti-inflammatory role in epidermal cells exposed to UV radiation [5,6]. In addition,
plant extracts and single compounds may also modulate the release of various growth
factors, chemokines or neuropeptides by keratinocytes, with exposure to molecules of plant
origin possibly enhancing keratinocyte migratory and proliferation rates. This effect also
accelerates the wound healing process [7].

The aim of the present paper is to review the role of selected plant extracts and single
compounds as modulators of keratinocyte biology, paying particular attention to stimuli,
specific receptors, protein release and signal transduction pathways. It examines the
potential of phytochemicals as ROS scavengers, important anti-inflammatory agents and
as factors for mediating wound healing. The role, contributions and usefulness of plants
were summarized.

2. Criteria for Paper Selection

To give an overview of the current state of knowledge regarding the topic, i.e., in vitro
treatment of human keratinocytes with oxidants, pro-inflammatory agents and UV radi-
ation followed by exposure to different plant extracts, papers were selected from those
included in the electronic databases PubMed/MEDLINE, Google Scholar, Scopus and Web
of Science over the past 10 years. The following search terms were used: keratinocytes, plant
extract, plant-derived compounds, reactive oxygen species, inflammation, UV-irradiation
and wound healing. Moreover, the impact of plant secondary compounds on keratinocyte
motility and proliferation rate was evaluated. Papers reporting articles published in lan-
guages other than English, those with only an abstract or lacking full-text access, those
published earlier than 10 years ago, those without identified compounds in extracts and
those examining cells other than human keratinocytes were excluded. Each selected docu-
ment was analyzed and the following data were extracted and presented in tables: species
name, plant part, type of extract, type of cell lines, identified compounds, mechanism of
action and final effect. The main text includes a characterization of the signaling cascades
involved in keratinocyte biology.

3. Plant Secondary Metabolites

The plant kingdom is a rich source of secondary metabolites. Over 50,000 molecules
have been discovered [8]. These metabolites can be divided into the following structural
classes: phenolics, alkaloids, saponins, terpenes, lipids and carbohydrates [9]. These com-
pounds play an essential role for the plant itself by allowing adaptation to the environment.
Phytochemicals contribute to perennial growth, deciduous behavior, flowering, fruit set
and abscission, and are known to demonstrate antimicrobial properties [8]. Many of these
compounds also exhibit antioxidant [10], anti-inflammatory [11], anticancer [12], including
against keratinocyte carcinomas [13], antipathogenic [14,15] or antiobesity [16] properties;
as such, they are widely used in various industrial sectors, including pharmaceutical,
cosmetic or food [17]. In addition, there is a strong trend towards using herbal formulations
in health and wellness [18].
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Secondary metabolites may be obtained from the leaves, roots, stems, bark and aerial
parts of the plants; however, the plants require careful preparation, extraction and quan-
titative and qualitative determination of active compounds. The first step involves the
selection of an appropriate solvent. The most popular are polar ones such as water and
alcohols, intermediate polar ones such as acetone and dichloromethane, and nonpolar ones
such as chloroform, n-hexane and ether. Following this, an appropriate extraction method
must be identified. Various options exist including maceration, decoction, digestion, perco-
lation, infusion, Soxhlet extraction, superficial extraction, microwave-assisted extractions
or ultrasound-assisted extraction. The isolated compounds must then be purified via
chromatographic methods and identified via spectroscopy [19]. However, the greatest
challenges are those posed by the determination of the molecular mechanism of action and
the later conduct of clinical trials where necessary [20].

4. Keratinocyte Characteristics

The skin is the largest organ in the human body. In addition to serving as a barrier for
the inner environment, it also regulates body temperature, enhances metabolic functions
and enables contact with the outer environment by its host of nerve endings.

Human skin consists of three layers: an outer stratified epithelium, a middle dermis
and an underlying subcutaneous tissue. The epidermis is formed mostly (at least 80%)
by keratinocytes. Newly-synthesized keratinocytes build up a supply of keratin in the
cytoplasm and then undergo structural and biochemical changes until terminal differ-
entiation and cell death. Keratinocytes play numerous roles including the creation of a
physical barrier. That barrier provides protection against water loss, biological agents such
as pathogens, physical agents such as UV radiation and various chemical agents. Moreover,
epithelial cells accumulate melanin derived from melanocytes, migrate and proliferate to
heal wounds when skin integrity is disrupted and participate in skin immunity. In addition,
keratinocytes are involved in molecular interactions between various surrounding skin
cells via different signal transduction pathways [21,22].

During normal epidermal differentiation, the following types of keratinocytes are
distinguished: basal, spinous, granular and cornified. These types vary in their phenotypic
and biochemical properties based on changes in gene expression. Many of these genes
are regulated by p63 transcription factors, including keratins, involucrin and loricrin [23].
Basal cells that are in contact with the basement membrane through hemidesmosomes and
focal adhesions possess mitotic activity and express keratins 5 (K5) and K14. During the
progress of differentiation, keratinocytes demonstrate basal membrane detachment and
loss of mitotic activity and migrate into suprabasal layers. These suprabasal cells attach to
their neighboring cells through desmosomes, an attachment that must be broken during
the progress of epithelization.

Spinous keratinocytes begin to express keratins K1 and K10, and this expression
continues fully in the granular forms. They also express involucrin and loricrin, the
precursors of cornified envelope proteins. These play a role in corneocyte formation, the
final stage of differentiation preceded by loss of nuclei and organelles. The corneocytes
are connected by corneodesmosomes and covered with lipid layers secured by a protein
structure. These form a barrier to prevent water evaporation [24].

The differentiation process of keratinocytes is regulated by the mitogen-activated
protein kinase (MAPK) pathway, which is induced by various stimuli including epidermal
growth factor (EGF), tumor necrosis factor (TNF) and calcium influx [25]. The signaling
transition pathway uses different isoforms of protein kinase C (PKC) [26]. In normal
human epidermal keratinocytes (NHEKs), the inhibition of the MAPK pathway resulted
in the decreased expression of proteins directly implicated in the differentiation process.
For example, the suppression of p38 signaling resulted in the inhibition of K5, K14, ST14
transmembrane serine protease matriptase (ST14), small proline-rich protein 3 (SPRR3),
serine/threonine kinase (Akt) expression and suppressed the nuclear factor of kappa in
B cells (NF-κB) light polypeptide gene enhancer; suppression of c-Jun N-terminal kinase
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(JNK) signaling resulted in the inhibition of K14, SPRR3, Akt expression and suppression of
NF-κB. In addition, the suppression of extracellular signal-regulated kinase 1/2 (ERK1/2)
signaling resulted in the inhibition of SPRR3 and Akt expression [27].

Being located directly on the edge of the internal and external environment, epidermal
keratinocytes are exposed to mechanical stress. Stretching the skin results in hyperpro-
liferation via the induction of calcium influx followed by phosphorylation of essential
growth-related factors, including the epidermal growth factor receptor (EGFR) [28]. More-
over, keratinocytes can also become activated in response to exposure to ROS, inflammatory
factors, UV-radiation and skin barrier disruption. Such cells generally express various
surface receptors which translate the stimulus into biological effects [29]. Ligand/receptor
binding induces signal transduction pathways and changes in protein phosphorylation [30].
Plant-derived compounds are believed to modulate various signaling pathways in various
cell lines, including keratinocytes, some of which include signaling cascades related to
proliferation and apoptosis [31].

5. Modulatory Effect of Plant Secondary Metabolites on Keratinocytes Exposed
to ROS

UV radiation is the main source of ROS in keratinocytes, with heat shock and drugs
being others. Oxidative stress may be involved in the inflammatory condition and apoptosis
of the skin. In addition, ROS may modulate various signaling cascades in human cells
in vitro. ROS have also been found to mediate MAPK activities, and an oxidant state has
been associated with an elevated level of activator protein 1 (AP-1) and NFκB in mouse
keratinocytes [32]. However, there is a need to better identify the role of ROS in the signal
transduction pathway using antioxidants including plant-derived compounds [33].

Many plants’ secondary metabolites, especially phenolic compounds, act as antioxi-
dants. This has been attributed to their ability to donate hydrogen atoms or electrons to
radicals to form nonreactive phenoxyl radicals or stable radical cations, respectively [34].
They are also believed to chelate metal cations. The oxidized metabolites of phenolic com-
pounds have also been found to up-regulate the expression of antioxidant enzymes, and
are believed to bestow considerable beneficial biological effects related to their antioxidant
activity, including anti-inflammatory, anti-aging and anti-cancer properties [35,36]. Table 1
presents the impact of the selected plant extracts on H2O2-stimulated human keratinocytes.
Cellular exposure to H2O2 is strictly connected with ROS induction; therefore, the pre-
sented phytochemicals exhibit important antioxidant properties such as suppressing ROS
release, limiting damage to DNA and lipid oxidation, inhibiting iNOS and NO, decreasing
the level of pro-apoptotic proteins and apoptosis and activating antioxidant enzymes.

Table 1. Selected plant extracts from different species with identified compounds and their in vitro effect on H2O2-stimulated
human keratinocytes.

Name of the
Species/Family

Part of the
Plant

Type of
Extract Cell Line Identified Compounds Mechanism of Action Effects Ref.

Andrographis
paniculata (Burm.f.)

Nees
(Acanthaceae)

leaves methanolic
HaCaT stimulated

by hydrogen
peroxide

andrographolide Inhibition: ROS
production antioxidant [37]

Acer rubrum L.
(Sapindaceae) leaves MaplifaTM

HaCaT stimulated
by hydrogen
peroxide and
methylglyoxal

ginnalin A
Induction: cell viability

Inhibition: ROS production,
caspases-3/7 and -8 release

antioxidant
cytoprotective
anti-apoptotic

[38]

Moringa oleifera Lam.
(Moringaceae) stem ethanolic

HaCaT stimulated
by hydrogen

peroxide
luteolin, rutin, quercetin

Induction: SOD and CAT,
activation of PPARα

Inhibition: ROS production
antioxidant [39]

Lagerstroemia speciosa
(L.) Pers. and
Lagerstroemia
floribunda Jack
(Lythraceae)

flowers ethanolic
HaCaT stimulated

by hydrogen
peroxide

ellagic acid, epicatechin
gallate, and quercetin

Inhibition: hydrogen
peroxide-induced cell death

antioxidant
anti-apoptotic [40]

Punica granatum L.
(Lythraceae) fruits Pomella®

HaCaT stimulated
by hydrogen

peroxide

punicalagins, ellagic
acid and urolithin A

Inhibition: ROS production,
apoptotic cells formation,

caspase 3 production

anti-oxidant
anti-apoptotic [41]
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Table 1. Cont.

Name of the
Species/Family

Part of the
Plant

Type of
Extract Cell Line Identified Compounds Mechanism of Action Effects Ref.

Castanea sativa Mill.
(Fagaceae)

chestnut shells,
and inner

chestnut shells
aqueous

HaCaT stimulated
by hydrogen

peroxide
gallic acid

Inhibition: oxidized lipids,
NO and

iNOS production, collagen
degradation

cytoprotective
antioxidant [42]

Oenothera biennis L.
(Onagraceae) aerial parts ethanolic

HaCaT stimulated
by hydrogen

peroxide

3-caeoylquinic acid,
ellagic acid, and

quercetin
3-O-glucuronide,

quercetin

Induction: cell viability,
heme oxygenase-1 (HO-1)
Inhibition: DNA damages,

caspase-3, PARP

cytoprotective
antioxidant

anti-apoptotic
[43]

Himantoglossum
robertianum (Loisel.)

P.Delforge
(Orchidaceae)

flowers ethanolic
HaCaT stimulated

by hydrogen
peroxide

flavones and
flavan-3-ols, scopoletin,

and phenolic acids

Induction: cell viability and
motility

Inhibition: elastase and
collagenase

cytoprotective
antioxidant
stimulate
migration

[44]

Myrciaria dubia
(Kunth) McVaugh

(Myrtaceae)
fruit ethanolic HaCaT stimulated

by high glucose
ellagic acid and

quercetin

Induction: Nrf2
Inhibition: MAPK/AP-1,

NF-κB

antioxidant
anti-

inflammatory
[45]

Clitoria ternatea L.
(Fabaceae) flowers aqueous

HaCaT stimulated
by hydrogen

peroxide

anthocyanins derived
from delphinidin,

including polyacylated
ternatins, and flavonol

glycosides derived from
quercetin and

kaempferol

Inhibition: cytotoxicity
effects of H2O2

antioxidant [46]

6. The Modulatory Effect of Plant Secondary Metabolites on Keratinocytes Involved
in the Inflammation Process Triggered by Physical, Chemical or Biological Agents

Unperturbed keratinocytes do not release inflammatory mediators; however, their
expression may be enhanced by various stimuli, including UV radiation, wounding,
pathogens and pathogen products. ROS play a special role in skin inflammation and
may trigger a chronic skin response. Following the activation, the upregulation of the
adhesion molecule, cytokine and chemokine expression is observed [47].

Adhesion molecules that belong to the immunoglobin superfamily, including intercel-
lular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) play an
essential role in inflammatory mechanisms. ICAM-1 is a ligand for the B-2 integrin leuko-
cyte function-associated antigen-1 (LFA-1). This molecule promotes cellular interaction in
the immune response. ICAM-1 and LFA-1 interaction is essential for T lymphocytes acti-
vation. Elevated ICAM-1 expression is observed in keratinocytes after interferon-gamma
(IFN-γ) exposure. Tumor necrosis factor-α (TNF-α) and IL-17 act synergistically with INF-
γ in the induction of ICAM-1 expression. VCAM-1 interacts with various integrins [48].

Cytokine action is initiated by the activation of NFκB pathways by Toll-Like Receptors
(TLRs), which recognize pathogen-associated molecular patterns [49]. It has been shown
that keratinocytes express various TLRs including 1–6 and 9 [50,51], indicating that the
induced TLRs stimulate cytokines [52,53]. TLR ligands and cytokines mostly have over-
lapping or synergistic influences on keratinocytes [49]. Keratinocytes produce a number
of cytokines, including interleukin (IL)-1, -6, -7, -8, -10, -12, -15, -18 and -20, and TNF-α.
Keratinocytes also express various cytokine receptors including IL-1R, IL-2R, IL-4R, IL-6R,
IL-10R, IL-13R, IL-17R, IL-18R, IL-20R, IL-24R and TNF-R [54].

IL-1, -6, -8 and TNF-α are well-known pro-inflammatory cytokines. IL-1 acts as a
chemoattractant for keratinocytes [55], activates expression of keratin 6 [56], decreases ad-
herence of selected pathogens to keratinocytes [57] and protects transformed keratinocytes
from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apopto-
sis [58]. A study conducted on mice revealed that keratinocytes secrete high amounts of
IL-1α, which is followed by a skin inflammatory response. IL-1α is essential for caspase-1
activation in an inflammasome-dependent manner. It is hypothesized that epidermal cells
may play a critical role in skin immunity [59], and that IL-6 regulates normal keratinocyte
growth [60]. However, a study of injury-induced keratinocyte stimulation indicated that
IL-6 activity may regulate keratinocyte differentiation rather than proliferation [61]. The
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data indicate that IL-6 is involved in the restoration of the epidermal barrier after wound-
ing [62]. Another cytokine, IL-8, is released by external stimuli, including UV radiation [63]
and is believed to stimulate keratinocyte migration [64].

TNFα plays a differential role in epidermal keratinocytes. On the one hand, TNFα
activates modulators of the actin cytoskeleton and integrins, regulates their degree of
motility or attachment and stimulates the expression of collagen-degrading proteases and
basement membrane components, followed by tissue repair. On the other hand, TNFα
stimulates the nuclear translocation of NFκB. It is also believed to induce the expression of
various genes, including those of cytokines, chemokines, growth factors and cell-surface
receptors that may attract neutrophils, macrophages and T lymphocytes. Additionally,
genes regulated by TNFα are involved in the modulation of the cell cycle and apoptosis [65].

IL-7 and IL-15 are involved in T cell homeostasis. IL-7 participates in the development
of mature T lymphocytes in the thymus. In addition, IL-7 also induces the expression of
the anti-apoptotic protein Bcl-2, followed by the survival of both naïve and memory T
lymphocytes. IL-15 stimulates the proliferation of CD8+ T cells in a process independent
of antigens. While both cytokines may help to defend organisms against pathogens
and tumors, elevated production may be linked to several autoimmune diseases [66].
Research based on mouse keratinocytes indicates that elevated IL-7 levels can predispose
to lymphoproliferative skin disease [67]. IL-7 and IL-15 production is reduced by UVB
radiation [68,69].

Cytokines IL-10, IL-12 and IL-18 act as immunomodulators. IL-10 stimulates the Th2
immune response [70] and its level in keratinocytes is upregulated after exposure to UVB.
Therefore, it has been hypothesized that they may play a role in immunosuppression [71].
IL-12 stimulates the Th1 immune response [72]. IL-12 is also believed to take part in
limiting skin inflammation [73] and blocking the release of TNFα induced by UVB [74].
IL-18 stimulates the Th1 immune responses in collaboration with IL-12. The Th1 response
is related to the host defense against pathogens by the stimulation of IFN-γ production.
Without IL-12 collaboration, IL-18 induces the Th2 response [75].

IL-20 induces keratinocyte hyperproliferation and therefore may act as a modulator
of skin inflammation [76]. Its release by keratinocytes may be followed by the production
of various chemokines [49]. The chemokine structure is maintained by disulfide bonds
formed between cysteine residues. The monomer is composed of an α-helix in the C
terminus, a three-stranded β-sheet in the central region and an unstructured region in the
N terminus. The chemokines can be divided into four groups based on the configuration
of two cysteines closer to the N-termini: CC, CXC, CX3C and XC. Following stimulation
with IFN-α, IFN-γ, IL-13, IL-17, TNF-α or IL-4, keratinocytes release a plethora of different
chemokines belonging to three different classes, including CC, CXC and CX3C [77].

Plant extracts and their component compounds may modulate the inflammatory
keratinocyte response in vitro via different mechanisms. Keratinocytes exposed to TNF-α
or IFN-γ exhibit an elevated production of pro-inflammatory cytokines. To counteract this,
treatment with plant extracts may downregulate the expression of ICAM-1, IL-1, IL-6, IL-8,
TNF-α and selected chemokines, and suppress the NFκB and MAPKs pathways. Table 2
presents the impact of selected plant extracts on human keratinocytes stimulated with
TNF-α or IFN-γ. As cellular exposure to pro-inflammatory agents is closely connected with
induction by various cytokines or chemokines, the presented plant-derived compounds
are believed to exhibit important anti-inflammatory properties.
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Table 2. Selected plant extracts from different species with identified compounds and their in vitro effect on TNF-α or IFN-γ-stimulated human keratinocytes.

Name of the
Species/Family

Part of the
Plant Type of Extract Cell Line Identified Compounds Mechanism of Action Effects Ref.

Rydingia persica (Burm.f.)
Scheen & V.A.Albert

(Lamiaceae)
aerial parts methanolic HaCaT stimulated by LPS labdane-type diterpenoids Inhibition: IL-6 and TNF-α

release anti-inflammatory [78]

Andrographis paniculata
(Burm.f.) Nees
(Acanthaceae)

leaves methanolic HaCaT stimulated by
LPS/TNF-α andrographolide Induction: IL-8 secretion

Inhibition: TNF-α expression anti-inflammatory [37]

Curcuma aromatica Salisb.
(Zingiberaceae) rhizome ethanolic HaCaT stimulated by

TNF-α
germacrone, curdione, dehydrocurdione, zederone,

curcumenol, curcumin Inhibition: NF-κB activation anti-inflammatory [79]

Crateva adansonii DC.
(Capparaceae) leaves aqueous HPEKs infected by

Staphylococcus aureus
quercitrin, isoquercitrin, quercetin-3-O-(b-D-

xylopyranosyl-a-L-rhamnopyranoside)
Inhibition: IL-6, IL-8 and TNFα

expression anti-inflammatory [80]

Perilla frutescens var. crispa
(Thunb.) H.Deane

(Lamiaceae)
leaves ethanolic HaCaT stimulated by

TNF-α/IFN-γ caffeic acid, rosmarinic acid, luteolin
Inhibition: p38, ERK, and JNK
expression; STAT-1 and NK-κB

activation
anti-inflammatory [81]

Rhus coriaria L.
(Anacardiaceae) fruits ethanolic HaCaT stimulated by

TNF-α rutin, quercetin derivative, gallotannins Inhibition: NF-κB activation;
ICAM-1, and MMP-9 secretion anti-inflammatory [82]

Ampelopsis glandulosa (Wall.)
Momiy.

(Vitaceae)
rhizome ethanolic HaCaT stimulated by

TNF-α/IFN-γ

betulin, betulinic acid, β-sitosterol, β-5 sitosterol
glucoside, dihydrokaempferol, dihydrokaempferol

3-O-glycoside, catechin, gallic acid, vanillic acid,
ethyl gallate, ethyl gallate

4-O-β-D7glucopyranoside, syringic acid, benzyl
6′-O-galloyl-β-D-glucopyranoside, ellagic acid,

3′-O-methylellagic acid
4-O-α-L-rhamnopyranoside,

3,3′4′-O-tri-methylellagic acid
4-O-β-D-glucopyranoside, and resveratrol

Inhibition: TNF-α, IL-6, IL-1β,
and CCL17 expression; STAT-1,
NK-κB, ERK and p38 activation

anti-inflammatory [83]

Sanguisorba officinalis L.
(Rosaceae) roots ethanolic HaCaT stimulated by

TNF-α/IFN-γ (+)-catechin, (–)-epicatechin, ziyuglycoside

Inhibition: macrophage-derived
chemokine (MDC), normal

T-cell expressed and secreted
(RANTES), IL-8 and thymus and
activation regulated chemokine

(TARC) production; STAT-1,
ERK and NF-κB activation

anti-inflammatory [84]

Gleditsia sinensis Lam.
(Fabaceae) thorns ethanolic HaCaT stimulated by

TNF-α/IFN-γ
(+)catechin, epicatechin, eriodictyol and quercetin,

caffeic acid and ethyl gallate
Inhibition: MDC and TARC

production anti-inflammatory [85]

Morus alba L. (Moraceae) barks aqueous HaCaT stimulated by
TRAIL moracin O and P

Induction: antiapoptotic
proteins Bcl-xL and Bcl-2

Inhibition: NFκB activation

anti-inflammatory
anti-apoptotic [86]
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Table 2. Cont.

Morus alba L. (Moraceae) root bark ethanolic HaCaT stimulated by TNF-
α/IFN-γ kuwanon G and morusin

Inhibition: RANTES/CCL5,
TARC/CCL17, and

MDC/CCL22 secretion; STAT 1
and NF-κB activation

anti-inflammatory [87]

Combretum collinum Fresen.
(Combretaceae) leaves aqueous HaCaT stimulated by

TNF-α
myricetin-3-O-rhamnoside and

myricetin-3-O-glucoside Inhibition: IL-8 secretion anti-inflammatory [88]

Aucklandia lappa DC.
(Asteraceae)

whole
extract methanolic HaCaT stimulated by

TNF-α/IFN-γ
alantolactone, caryophyllene, costic acid,
costunolide, and dehydrocostuslactone

Inhibition: TARC, RANTES,
MDC and IL-8 production;

STAT1 activation
anti-inflammatory [89]

Quercus mongolica Fisch. ex
Ledeb. (Fagaceae) leaves acetone HaCaT stimulated by LPS pedunculagin Inhibition: IL-6 and IL-8

production anti-inflammatory [90]

Melaleuca styphelioides Sm.
(Myrtaceae) leaves methanolic

NCTC 2544 keratinocytes
stimulated by

IFN-γ/histamine
quercetin, gallic acid, ellagic acid Inhibition: ICAM-1, iNOS,

COX-2, NF-κB
anti-inflammatory

antioxidant [91]

Carpinus tschonoskii Maxim.
(Betulaceae) leaves ethanolic HaCaT cells stimulated by

LPS tellimagrandin I Inhibition: IL-6 production anti-inflammatory [92]
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Ampelopsis glandulosa [83] extract was found to inhibit TNF-α, IFN-γ, IL-4, IL-13 and
IL-31 expression in the ear tissue of mice in vivo. This observation was in response to
exposure to the inflammation inducers 2, 4-dinitrochlorobenzene (DNCB).

Studies based on single compounds indicate that HaCaT cells stimulated with TNF-
α/IFN-γ exhibit a decreased IL-6, IL-8, ICAM-1 and selected chemokine production,
suppression of NFκB translocation to the nucleus and lowered p38 and ERK1/2 activity
following treatment with selected compounds derived from Cudrania tricuspidate: di-
hydrokaempferol, steppogenin, cudraflavanone D, cudraflavanone B, cudraflavone C,
kuwanon C, cudraxanthone L, macluraxanthone B, 1,6,7-trihydroxy-2-(1,1-dimethyl-2-
propenyl)-3- methoxyxanthone, cudratricusxanthone L, cudracuspixanthone A [93]. Else-
where HaCaT keratinocytes stimulated with LPS demonstrated reduced expression of
chemokine MCP-1 following exposure to damsin isolated from Ambrosia arborescens [94].
In addition, human keratinocytes stimulated with TNF-α/IFN-γ exhibit downregula-
tion of the signal transducer and activatorof transcription-1 (STAT-1), IL-33, ICAM-1 and
chemokine TARC/CCL17 following treatment with isosecotanapartholide obtained from
Artemisia princeps [95].

7. The Effect of Plant Secondary Metabolite Treatment on Keratinocytes Exposed
to UV-Radiation

UV radiation is an environmental-damaging agent that causes oxidative stress, re-
sulting in damage to cellular components and apoptosis. It is also known to induce
inflammatory conditions that lead to skin disorders.

Keratinocytes are the first line of defense against UV radiation [96]. Exposure to UVB
has been associated with changes in gene expression in epidermal cells [97]. A study of
NHEKs found changes in expression in 249 of 539 studied genes four hours after exposure
and in all 539 genes 24 h after exposure. The early cell response is mainly related to
transcriptional arrest; however, the late cell response is more complex [98].

Following exposure to UV radiation (UVA, UVB and UVC mixed), keratinocytes
prepared from newborn CD-1 mouse skin demonstrated EGFR receptor activation by phos-
phorylation of Tyr-992/Tyr-1045/Tyr-1068/Tyr-1173 residues via mechanisms associated
with ROS. The EGFR receptor is strongly mitogenic and directly regulates the response of
keratinocytes to UV radiation [99]. This activation may result in the induction of MAPK,
phosphoinositide 3-kinase (PI3K)/Akt and NFκB signal transduction pathways [100].
These cascades regulate cell proliferation, differentiation and death [27,101,102]. It has been
found that Egfr knockout mice are able to stay alive for only a few days after birth [99].

UVA and UVB exposure induces different groups of factors. UVB exposure induces the
activation of c-Jun amino-terminal kinases (JNK), a member of the MAPKs in NHEKs [103],
as well as JNK1 and JNK2 Th-183/Tyr-185 phosphorylation followed by the increased
c-Fos expression [104]. It has also been found to induce transcription factor AP1 via
the JNK pathway [105], and to induce Ser-473 phosphorylation of Akt [104] and Ser-727
phosphorylation of STAT3, known to play crucial roles in cell division, survival as well as
migration [106]. UVA exposure of NHEKs cells induces Th-202/Tyr-424 phosphorylation
of ERK1 and ERK2 and Th-180/Tyr-240 phosphorylation of p38, another member of the
MAPKs family, followed by c-Jun overexpression. Moreover, mTOR is phosphorylated at
Thr-2448 and p70S6k at Thr-421/Ser-424, both being downstream targets of Akt, and PI3K
expression was found to be upregulated (p85), this being an upstream target of Akt. STAT
3 is phosphorylated at Tyr-705. In addition, nuclear translocation of NFκB proteins appears
to be responsible for the induction of apoptosis [104].

NHEKs and immortalized human HaCaT keratinocytes also exhibit MAPKs signaling
activation following exposure to both UVA and UVB radiation. The HaCaT cells demon-
strate two-fold or even four-fold higher activity of p38 and JNK than NHEK, but the latter
release more TNFα. The data also indicate that immortalized cells do not demonstrate
NFκB pathway induction [107].

HaCaT keratinocytes exposed to both UVA and UVB radiation exhibit different gene
expression profiles depending on a single or repetitive dose. Exposure to a single dose was
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associated with upregulation of the G/S checkpoint of the cell cycle, as well as NFκB, IL-1,
death receptor and p38 signaling and downregulation of genes that regulate G2/M check-
point of cell cycle and ATM serine/threonine kinase signaling. Additionally, numerous
regulators including forkhead box M1 (FOXM1), forkhead box O1 (FOXO1), activating tran-
scription factor 4 (ATF4), ATF6, melanocyte inducing transcription factor (MITF) and ETS
homologous factor (EHF) were inhibited, while lysine demethylase 5B (KDM5B), SMAD
family member 4 (SMAD4), tumor protein p63 (TP63), nuclear protein 1, transcriptional reg-
ulator (NUPR1), cyclin-dependent kinase inhibitor 2A (CDKN2A), NOTCH11 and STAT3
were activated. After repeated doses, interferon signaling was downregulated. Specific
regulators such as FOXM1, TP73, NFE2 like bZIP transcription factor 2 (NFE2L2), MITF
and EHF were inhibited, whereas STAT3, NUPR1, chromobox 5 (CBX5), ATF3, SMAD4 and
MYC proto-oncogene, bHLH transcription factor (MYC), were activated [108]. In addition,
HaCaT cells demonstrate strong activation of JNK but weak activation of ERKs following
exposure to UVB [109].

Exposure to UV radiation also causes collagen destruction. The enzymes responsible
for such effects are named matrix metalloproteinases (MMPs). In vivo data indicate that
UV irradiation induces the expression of MMP-1, MMP-3 and MMP-9 mainly in the human
epidermis [110]. Keratinocytes exposed to UVB exhibit accelerated MMP-1 expression,
which may be mediated by the PKC-dependent induction of transient receptor potential
vanilloid type 1 (TRPV1) followed by Ca2+-influx. This receptor is believed to be acti-
vated by various stimuli including capsaicin, heat or acids [111]. Moreover, keratinocytes
treated with UVB exhibit elevated levels of MMP-1. These levels are driven by cascades
dependent on ROS and ERK activation of the BLT2 receptor for leukotriene B4 (LTB4)
and 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) [112]. Additionally, UVB-irradiated
keratinocytes may mediate a signal to the fibroblasts and enhance MMP-1 production [113].
The induction of MMP-9 and involucrin production were also observed on cultured ker-
atinocytes after UVB treatment [114].

Human keratinocytes exposed to UV radiation result in ROS accumulation, as well as
apoptosis by the intrinsic and extrinsic pathways [115]. Induction of programmed cell death
is an important mechanism that may provide protection against skin cancer [116]. ROS
generation and DNA damage induce p53 protein activation and cell cycle arrest followed
by DNA repair or apoptosis [117]. TP53 knockout mice exhibit lower amounts of sunburn
cells in the epidermis after exposure to UV radiation in comparison to wild-type mice [118].
In NHEKs, elevated TP53 expression after irradiation is related to phosphorylation of
Ser-9/Ser15 followed by Apaf-1 and caspase-3 activation [119]. It also has been shown
that p53 can interact with Bcl-2 and Bcl-xL proteins and regulate the intrinsic apoptosis
pathway [120]. However, it has been found that combined UVB and heat treatment of
NHEKs causes DNA damage but reduces the events of apoptosis in comparison to UVB
alone, probably by the downregulation of the p-53-mediated response [121]. However,
the process of apoptosis in basal keratinocytes exposed to UV radiation may also be
independent of p-53 protein activity [115]. Studies suggest that the basal keratinocyte layer
repairs DNA damage or undergoes apoptosis more rapidly than the suprabasal layer [119].

UV-induced HaCaT cells express the TNF-family receptor CD95 and may undergo
apoptosis via the extrinsic pathway [122]. The data also show that UVB radiation induces
caspase 8 in NHEKs and promotes the extrinsic pathway, as well as suppresses Bcl-2
and promotes the intrinsic pathway [123]. Similar results were obtained for HaCaT cells
exposed to UVB radiation, in which both intrinsic and extrinsic apoptosis was induced [124].
In NHEKs irradiated with UVB, caspase activation occurs in the following order: caspase
3, caspase 9 then caspase 8 [125]. UVB irradiated HaCaT cells overexpressing Bcl-2 prevent
ROS release and procaspase 3 and procaspase 8 activation [126]. The activation of caspases
in UV-exposed NHEKs depends on protein kinase C (PKC). Caspase-3 and caspase-8
activation is prevented in blocked PKC [127].

Plant-derived compounds may counteract the detrimental effects of UV exposure on
human skin. Data indicate that oil in water (O/W) emulsion containing 5% (w/w) Euterpe
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oleracea extract demonstrated a PF-UVA value (i.e., protection against UVA) of about 15
and a ratio of SPF (i.e., protection against UVB) to PF-UVA of about 1.5 [128]. Other ex-
tracts demonstrating great potential against UV radiation were obtained from Helichrysum
arenarium, Sambucus nigra and Crataegus monogyna. All of them exhibit SPF values above 6
when used alone in O/W emulsion at 10% (wt.%), and above 16.5 and PF-UVA above 7.5
when used in combination [129]. Hylocereus polyrhizus at 1 mg/mL demonstrated an SPF of
about 35 [130]. Pterodon emarginatus extract at 10% (w/w) in three different formulations
(Lanette®, Polawax® and Focus Gel®) exhibited an SPF value of about 8 [131]. Furthermore,
1% (w/w) extract of Olea europaea standardized to 20% oleuropein exhibited an SPF value
of about 21 used in the special formulation [132]. A methanolic extract of Washingtonia
filifera exhibits an SPF value of about 3.4 [133]. A phenolic compound-enriched fraction of
Salicornia ramosissima extract at 10% (w/w) was found to have both SPF and PF-UVA values
of about 13.5 when applied as O/W emulsion [134], whereas a flavonoid-enriched fraction
of the Vitis vinifera extract at a concentration of 250 µg/mL had an SPF of about 18.6 and a
PF-UVA of about 3.2 [135].

The most important group of compounds that may be used as sunscreen agents are
phenolic compounds. These molecules equipped with aromatic rings are able to absorb
UVA and UVB radiation at wavelengths of 200–400 nm and scavenge ROS and modulate
signaling processes. Two flavonoids, rutin and quercitin, provide SPF values of about
12 when used in 10% (w/w) O/W emulsion, whereas PF-UVA provides a value of about
14.5 [136]. Combining 0.1% (w/w) rutin with 6% benzophenone, a synthetic organic filter,
increased the SPF value from about 24 to 33 [137]. Similarly, synergistic effects were
observed between 0.1% rutin (w/w), 1% benzophenone (w/w) and 3.5% (w/w) ethylhexyl
methoxycinnamate [138]. Another promising sunscreen agent is named silymarin: a
50 µmol/L ethanol solution of silymarin yielded an SPF value of about 5.5, and its main
constituent silybin provided a value of 6.0. PF-UVA was about 1.5 for both [139].

Choquenet tested twelve phenolic compounds at various concentrations, including
myricetin, luteolin, apigenin, puerarin, baicalin, baicalein, hesperidin, hesperetin, narin-
genin, diosmin, caffeic acid and chlorogenic acid. Of these, chlorogenic acid and apigenin
were found to be the best UVB and UVA filters, with SPF values at about 10 and 7 and
PF-UVA values at about 9 and 6, respectively [140]. Similarly, among fifteen tested phenolic
compounds at 7% (w/v) concentrations (resveratrol, piceid, catechin, quercetin, kaempferol,
galangin, apigenin, naringenin, chrysin, pinocembrin, coumaric acid, ferulic acid, caffeic
acid, caffeic acid phenylethyl ester and dimethyl caffeic acid), the highest SPF value was
observed for apigenin, i.e., about 29 [141].

The plant extracts and single compounds may also modulate the UV-radiated ker-
atinocytes response via different mechanisms. Both may downregulate the ROS level and
upregulate the antioxidative enzyme level in keratinocytes exposed to UV. Typically, the
nuclear factor erythroid 2–related factor 2 (Nrf-2) pathway is induced, with NF-κB, p53,
MAPK and Akt signaling being reduced. In addition, MMPs and prooxidative cytokine
expression are suppressed. Table 3 presents the impact of selected plant extracts on UV-
irradiated human keratinocytes. The presented phytochemicals clearly exhibit significant
antioxidant and anti-inflammatory properties.
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Table 3. Selected plant extracts from different species with identified compounds and their in vitro effect on UV-radiation-stimulated human keratinocytes.

Name of the
Species/Family

Part of the
Plant Type of Extract Cell Line Identified Compounds Mechanism of Action Effects Ref.

Petasites japonicus (Siebold &
Zucc.) Maxim. (Asteraceae) leaves methanolic NHEKs exposed to UVB

irradiation

kaempferol-3-O-(6”-acetyl)-β-D-glucoside,
quercetin-3-O-(6”-acetyl)-β-D-glucoside,

kaempferol-3-O-β-D-glucoside, and
quercetin-3-O-β-D-glucoside

Induction:
Nrf2 and heat-shock response
transcription elements (HSE)
that resulted in the induction
of heme oxygenase-1 (HO-1)

and HSP70, respectively

Protection against
UV-induced cell

damages,
anti-apoptotic

[142]

Rubus idaeus L. (Rosaceae) fruits ethanolic HaCaT exposed to UVB
radiation

cyanidin, ellagic acid, pelagonidin-3-sophoroside,
methylquercetin-pentose conjugate, and

cyanidin-3-rutinoside

Induction: SOD, Nrf2, and HO-1.
Inhibition: caspase-3,

c-jun modulation; NF-κB and
COX-2 activation

antioxidant,
anti-apoptototic

anti-inflammatory
[143]

Castanea sativa Mill.
(Fagaceae) leaves methanolic HaCaT exposed to UVB

radiation

crenatin, chestanin,
gallic acid, cretanin, 5-O-p-coumaroylquinic acid,
p-methylgallic acid and quercetin-3-O-glucoside

Inhibition: p53 expression

protection against
UVB-induced cell

damages,
antioxidant

[144]

Potentilla kleiniana Wight et
Arn (Rosaceae)

whole
plant ethanolic HaCaT exposed to UVB

radiation

diosmetin-7-O-neohesperidoside, dimethylellagic
acid hexose, zizybeoside I,

4-O-[b-D-xylopyranosyl]-3,30-di-O-methylellagic
acid, and buddlenol A

Inhibition: caspase-3 cytoprotective effect [145]

Crepidiastrum denticulatum
(Houtt.) Pak & Kawano

(Asteraceae)

whole
plant ethanolic HaCaT exposed to UVB

radiation

chicoric acid, 3,5dicaffeoylquinic acid, chlorogenic
acid, luteolin 7-O-glucuronide, youngiaside A,

youngiaside B, youngiaside C

Induction: antioxidant enzymes
expression

Inhibition: ROS release, MAPKs,
AP-1 and NF-κB activation

antioxidant,
anti-inflammatory [146]

Vitis vinifera L. (Vitaceae) leaves aqueous HaCaT exposed to UVB
radiation

caftaric acid, rutin, hyperoside, quercetin
3-O-glucoside, quercetin 3-O-glucuronide,

kaempferol 3-O-glucoside, delphinidin
3-O-glucoside, cyanidin 3-O-glucoside, petunidin
3-O-glucoside, peonidin 3-O-glucoside, malvidin

3-O-glucoside

Inhibition: IL-8 secretion anti-inflammatory [147]

Dalbergia odorifera T.C.Chen
(Fabaceae) heartwood ethanolic HPEKs exposed to UVB

radiation sativanone Inhibition: ROS release, p53 and
p21 protein production

antioxidant,
anti-senescence [148]

Opuntia ficus-indica (L.) Mill.
(Cactaceae) stems aqueous HaCaT exposed to UVA

radiation eucomic and piscidic acids
Inhibition: ROS production,

lipid
peroxidation and GSH depletion

antioxidant [149]

Melissa officinalis L.
(Lamiaceae) leaves ethanolic HaCaT exposed to UVB

radiation
rosmarinic acid, salvianolic acid derivatives, caffeic

acid and luteolin glucuronide

Inhibition: ROS production,
DNA damage and DNA

damage response

cytoprotective
antioxidant [150]
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Table 3. Cont.

Name of the
Species/Family

Part of the
Plant Type of Extract Cell Line Identified Compounds Mechanism of Action Effects Ref.

Rhus javanica L.
(Anacardiaceae)

whole
plant ethanolic HaCaT exposed to UVB

radiation
gallic acid, 5-O-galloyl-β-D-glucose, Methyl gallate,

Syringic acid, Protocatechuic acid

Inhibition: COX-1, MMP-1
exprwssion; MAPK, AKT, EGFR

activity

antioxidant,
anti-inflammatory [151]

Juglans regia L.
(Juglandaceae) flowers methanolic HaCaT exposed to UVB

radiation

3,7-dimethyl-1,6-octadiene, pentadecanoic acid,
14-methyl, methyl ester,

2-(2,6-dimethoxy-benzoylamino)-propionic acid,
ethyl ester, hexadecanoic acid, ethyl ester (palmitic

acid), 10-octadecenoic acid, methyl ester, erucic
acid; 1,2,3-benzothiadiazole;

estra-1,3,5(10),6-tetraene-3,17-diol, (17β)-;
17-acetate, 2,2,4-trimethyl-3- (3,8,12,16-tetramethyl-

heptadeca-3,7,11,15-tetraenyl)-cyclohexanol and
oleic acid, trimethylsilyl ester

Inhibition: ROS production,
lipid peroxidation,

TNF-α, IL-1, IL-6, NF-κB, COX-2
activation

antioxidant,
anti-inflammatory [152]

Portulaca oleracea L.
(Portulacaceae)

whole
plant methanolic HaCaT exposed to UVB

radiation portulacanone A and portulacanon D
Induction: SOD expression, and

HO-1 via Nrf2 pathway
Inhibition: ROS production

antioxidant [153]

Rosa multiflora Thunb.
(Rosaceae) flowers ethanolic HaCaT exposed to UVB

radiation quercitrin, hyperin, and isoquercetin Inhibition: ROS production, IL-6,
IL-8 MMP1; NF-κB activation

anti-oxidant
anti-inflammatory [154]

Rhodomyrtus tomentosa
(Aiton) Hassk.
(Myrtaceae)

fruits ethanolic NHEKs exposed to UVB
radiation piceatannol

Inhibition: cyclobutane
pyrimidine dimers formation,

prostaglandin E2 secretion
Induction: enzyme activity of

the DNA polymerases

cytoprotective
anti-inflammatory [155]

Cecropia obtusa Trécul
(Urticaceae) leaves methanol HaCaT exposed to UVB

radiation

chlorogenic acid, luteolin-C-hexoside,
luteolin-Chexose-O-deoxy-hexose, and

apigenin-C-hexose-O-deoxy-hexose

Inhibition: MMP-1, IL-1β and
IL-6 anti-inflammatory [156]

Scutellaria baicalensis
Georgi (Lamiaceae) roots ethanolic HaCaT exposed to UVB

radiation baicalin, wogonoside, baicalein and wogonin

Induction: HO-1; Nrf2
activation

Inhibition: MMP-1, IL-6; MAPK,
AP-1 and NF-κB activation

cytoprotective
anti-inflammatory

antioxidant
[157]

Spatholobus suberectus Dunn
(Fabaceae) stem aqueous and

ethanolic
HaCaT exposed to UVB

radiation
gallic acid, catechin, vanillic acid, syringic acid and

epicatechin
Inhibition: ROS production;

MAPKs, NF-κB, c-Jun activation
anti-inflammatory

antioxidant [158]

Adenocaulon himalaicum
Edgew. (Asteraceae) leaves ethanol HaCaT exposed to UVB

radiation neochlorogenic acid

Induction: filaggrin, involucrin,
loricrin expression

Inhibition: MMP-1; MAPK,
AP-1 activation

hydration
anti-inflammatory

antioxidant
[159]
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Table 3. Cont.

Name of the
Species/Family

Part of the
Plant Type of Extract Cell Line Identified Compounds Mechanism of Action Effects Ref.

Paeonia × suffruticosa
Andrews (Paeoniaceae) roots ethanol HaCaT exposed to UVB

radiation paeonol Induction HO-1; Nrf2 activation
Inhibition: MAPK

cytoprotective,
antioxidant [160]

Aquilaria crassna Pierre ex
Lecomte

(Thymelaeaceae)
leaves aqueous/ethanolic NHEKs exposed to UVB

radiation

iriflophenone 3,5-C-β-D-diglucoside, iriflophenone
3-C-β-D-glucoside, mangiferin and genkwanin

5-O-β-primevoside

Inhibition: IL-1α, IL-8 and
prostaglandin E2 (PGE2) anti-inflammatory [161]

Aloe vera (L.) Burm.f.
(Asphlodelaceae) flowers aqueous HaCaT exposed to UVB

radiation isoorientin Induction: involucrin expression hydration [162]

Nymphoides indica (L.)
Kuntze (Menyanthaceae)

whole
plant methanolic HaCaT exposed to UVB

radiation quercetin 3,7-dimethyl ether 4′-glucoside

Induction: filaggrin, involucrin,
loricrin expression

Inhibition: MAPK, NF-κB
activation

hydration
cytoprotective

antioxidant
[163]

Biancaea sappan (L.) Tod.
(Fabaceae)

whole
plant methanolic NHDKs exposed to UVBA

radiation brazilin Induction: glutathione
peroxidase 7 antioxidant [164]

Clitoria ternatea L.
(Fabaceae) flowers aqueous HaCaT exposed to UVB

radiation

delphinidin, including polyacylated ternatins, and
flavonol glycosides derived from quercetin and

kaempferol
Inhibition: mtDNA damage cytoprotective [46]

Syzygium formosum (Wall.)
Masam

(Myrtaceae)
leaves ethanolic HaCaT exposed to UVB

radiation triterpenic acids Inhibition: IL-1β, IL-6, IL-8 and
COX-2 expression anti-inflammatory [165]

Aster yomena (Kitam.)
Honda.

(Astereae)
callus aqueous HaCaT exposed to UVB

radiation

robustic acid,
3,5-Di-O-methyl-8-prenylafzelechin-4beta-ol,
acetylpterosin C and pterosin N, L-thyronine,

3,4-dicaffeoyl-1,5-quinolactone,
dehydrophytosphingosine and phytosphingosine,
α-linolenic acid, palmitic amide, olemaide, and
13Z-docosenamide, and glycerophospholipids

Inducttion: type I procollagen
synthesis, TGF-β expression
Inhibition: ROS production,
elastase production, MMP-1,

MMP-3, MMP-9, TNF-α, IL-1β,
IL-8 expression

cytoprotective
antioxidant

anti-inflammatory
[166]
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Mice treated orally with a red raspberry extract prior to exposure to UVB irradiation
demonstrate less skin wrinkling, water loss and epidermal thickening in comparison to
those that were not treated [143]. Rhus javanica extract suppresses COX-2 expression in
mice exposed to UVB and has anti-wrinkle effects [151]. In addition, Rosa multiflora extract
reduces TNF-α and MMP-13 production [154], and Paeonia × suffruticosa extract reduces
MMP-1 production in mice exposed to UVB [160]. Moringa oleifera extract is found to
protect against UVB-induced oxidative stress injuries in the epidermis of the mouse in vivo.
PPARα induction is involved in the protective effect of the extract [39].

Studies have examined the protective roles of single compounds on epidermal cells,
including 3,5-dicaffeoyl-epiquinic acid obtained from Atriplex gmelinii [167], quercetin
3,7-dimethyl ether 40-glucoside from Nymphoides indica [163], youngiasides A and C from
Youngia denticulatum [146], ixerisoside A from Ixeris dentata [168], α-, β-, γ-mangostins and
gartanin from Garcinia mangostana [169]. Of these, 3,5-dicaffeoyl-epiquinic acid downreg-
ulates the expression of MMP-1, -2 and -9, whereas α-, β-, γ-mangostins and gartanin
downregulate the expression of MMP-1 and -9. In addition to these, youngiasides A and C
also increased SOD1, Nrf2 and heme oxygenase-1 (HO-1) expression and downregulated
MAPK and NF-κB pathways. Quercetin 3,7-dimethyl ether 40-glucoside also suppressed
NF-κB as well as TNF-α, IL-1β, IL-6, IL-8, myelodysplastic syndromes (MDS) and thymus
and activation-regulated chemokine (TARC). Ixerisoside A also blocked pro-inflammatory
cytokines including IL-6 and IL-8, inhibited COX-2 expression and downregulated MAPKs.
Keratinocytes exposed to UVA irradiation and then treated with prenylated phenols from
Artocarpus communis exhibited reduced cell damage in contrast to untreated ones [170].

8. Modulatory Effect of Plant Secondary Metabolites on Keratinocytes Involved in the
Wound Healing Process Triggered by Disruption of the Epidermal Barrier

Wound healing occurs as a consequence of skin barrier disruption. It is a complex
process consisting of a series of phases, including hemostasis, inflammation, proliferation
and remodeling [171]. The first phase is related to the formation of blood clots that
prevent blood loss. The next phases are connected with the recruitment of numerous
cells, including keratinocytes, to the wound site [172]. During inflammation, the debris
is removed by neutrophils and macrophages. The proliferation phase is characterized by
re-epithelialization and granulation performed by a mixture of stem cells, endothelial cells
and keratinocytes. Both the inflammation and proliferation phases are related to new blood
vessel formation. Finally, the wound healing is completed by the remodeling stage, in
which the collagen matrix is restructured by fibroblasts [173].

Keratinocytes migrate, proliferate, and cross-talk with fibroblasts following wound
contraction [174]. Activated keratinocytes are characterized by cytoskeleton changes,
downregulation of K1 and K10 expression and upregulation of K6, K16 and K17 keratin
expression, enabling them to migrate and restore the epidermal barrier [175,176]. The mi-
gratory rate is closely related with the disruption of adhesion between cells (desmosomes)
as well as between cells and substratum (hemidesmosomes).

Desmosomes are structures that are essential for cell–cell adhesion and skin integrity.
The core desmosome protein is named desmoplakin. Desmosomal adhesion in response
to wounding is regulated by PKCα [177]. It has been suggested that the transcription
factor Slug is related to effective re-epithelialization and desmosomal disruption [178]. In
addition, retinitis pigmentosa GTPase regulator interacting protein 1-like (RPGRIP1L) is
believed to be an epithelialization factor, and Rpgrip1l knockout mice exhibit impaired
desmosomal structure [179]. Problems with desmosome function may also be associated
with loss of desmoplakin [180] and flotillin expression [181], as well as cadherin disrup-
tion [182]. Desmoplakin is essential for cadherin cluster formation [183], which is crucial
for desmosome formation, as well as intercellular adhesion. In turn, cluster formation is
regulated by flotillins [184].

Hemidesmosomes are structures that link cells into the basal layer and are mediated
by integrins [185]. Integrins are considered as regulators of growth factor receptor path-
ways, and their activity is believed to elevate growth factor activity [186]. One integrin
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expressed by keratinocytes, α6β4, binds to laminin-5. α6β4 knockout mice demonstrate
an absence of hemidesmosomes [187]. The modulation of α6β4 binding affinities is in-
volved in keratinocyte motility [188]. In cultured keratinocytes, PKC or PKA stimulate
hemidesmosome turnover by integrin β4 subunit phosphorylation [189]. In turn, this phos-
phorylation is modulated by the presence of EGF and macrophage-stimulating proteins in
the wound [190].

Numerous other regulators take part in the process of keratinocyte migration and
proliferation, including various growth factors from the tyrosine kinase, insulin, FGF,
vascular endothelial growth factor and scatter factor families [191]. In addition, cytokines,
chemokines, MMPs and extracellular macromolecules also play various roles [192].

The epidermal growth factor family of receptor tyrosine kinases (HER) are also known
to play a role in keratinocyte activity. Keratinocytes express 1, 2 and 3 HER receptors. Their
ligand, including epidermal growth factor (EGF), heparin-binding EGF like growth factor
(HB-EGF) and TGF-α stimulate keratinocyte migration [191] and proliferation [193]. EGF
agonists have been found to completely prevent keratinocyte migration [194].

Moreover, insulin secreted by β-cells in the pancreas is able to circulate into the skin,
where it can then bind to insulin receptors (IR) expressed in skin keratinocytes. Insulin
mediates keratinocyte migration and proliferation. A combination of insulin and TGF-α
was found to act synergistically in this regard. An in vivo study in a mouse model found
that topical application of insulin results in accelerated wound healing [195]. A similar
effect was observed in a diabetic mouse model [196].

Additionally, keratinocyte insulin-like growth factor 1 (IGF-1) receptor and its ligand,
IGF-1, synthesized by fibroblasts or hepatocytes, has been found to stimulate the motogenic
effect in keratinocytes. That signaling is downregulated in diabetic wounds. IGF-1 and
EGF act synergistically; the first by induction of the PI3K pathway, the second by the
MAPK/ERK pathway [197]. IGF-1 also acts synergistically with HB-EGF in stimulating
keratinocyte proliferation [198].

Fibroblast growth factor receptor 1 (FGFR1) and FGFR2 have been shown to stimulate
keratinocyte migration and proliferation following binding by several ligands, including
fibroblast growth factor 1 (FGF-1), -2, -7, -10 and FGF-1 -10, respectively. FGFR1 and
FGFR2 knockout keratinocytes have reduced the motility that may result from a lack of
expression of focal adhesion components due to the absence of an FGFR signal transduction
pathway [199]. FGF-7 is highly expressed at the beginning of the wound healing process.
This factor probably acts by compensatory or overlapping mechanisms because inhibiting
their expression does not directly influence the overall rate of the process. FGF-7 knock-
out diabetic mice exhibit delayed wound healing [200]. FGF-10 with dermatan sulfate
synergistically increased keratinocyte migration in a wound [201].

Keratinocytes also express VEGFR-1, -2, and -3. Their ligand, VEGF-A, is produced by
keratinocytes and macrophages. In addition to granulation tissue formation and angiogen-
esis, that factor also promotes keratinocyte migration [202].

Keratinocytes also express the MET receptor tyrosine kinase (RTK). Their ligand,
hepatocyte growth factor (HGF), is produced by fibroblasts and by keratinocytes after skin
injury. Throughout the stimulation of STAT3 signaling, HGF induces keratinocyte motility.
In addition, HGF activates VEGF-A expression and influences cell proliferation. The RON
RTK receptor expressed by keratinocytes is activated by a macrophage-stimulating protein
(MSP) produced by hepatocytes. RON activates the PI3K/Akt pathway; it also induces
phosphorylation of both RON and integrin α6β4 at 14-3-3 binding sites, allowing the
formation of RON and α6β4 complex by 14-3-3. Following this, α6β4 is relocated to the
lamellipodia from hemidesmosomes. The induction of α3β1 is associated with keratinocyte
spread on laminin-5, as well as activation of p38 and NF-κB signaling, which is required
for cell migration [192].

Keratinocyte proliferation is also stimulated by granulocyte macrophage-colony stim-
ulating factor (GM-CSF) produced by keratinocytes, among others. Following binding to
the CD116 receptor, GM-CSF activates the JAK/STAT signaling pathway. During wound
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healing, GM-CSF plays an indirect role by the induction of secondary cytokines. Studies
of transgenic mice overexpressing the GM-SCF factor indicate that keratinocyte-derived
GM-CSF overexpression takes place in the basal layer and is related to accelerated wound
contracting. In the first phase of that process, significant mitogenic keratinocyte growth
and granulation tissue formation were observed, as well as different regulation of TGF-β,
IFN-γ, and iIL-6 release [203].

Another factor, angiopoietin-related growth factor (AGF), is able to bind to ker-
atinocytes αv integrin via RGD-motif. Transgenic mice overexpressing AGF revealed
increased proliferation of keratinocytes and more rapid wound closure compared to wild-
type controls. AGF is also produced by platelets and mast cells; however, AGF release
takes place only on wounded skin. AGF is profusely expressed by hepatocytes [204].

High mobility group protein β1 (HMGB1) enhances keratinocyte migration by an
unknown receptor. That factor is released by macrophages and monocytes. HaCaT ker-
atinocytes exposed to HMGB1 exhibit accelerated migration and proliferation, as well
as ERK1/2 pathway induction [205]. An in vivo study found that diabetic mice demon-
strate lower levels of HMGB1 than non-diabetic mice. In addition, topical application of
HMGB1 resulted in accelerated wound healing in diabetic mice, but not in normoglycemic
mice. Moreover, it was observed that HMGB1 plays a chemotactic role on keratinocytes
in vitro [206].

Hypoxia-inducible factor-1 (HIF-1), a regulator of oxygen homeostasis, is released
during the hypoxia accompanying wound healing. The presence of HIF-1 results in
elevated expression of heat shock protein 90 (HSP90) by keratinocytes and binding to
LDL receptor-related protein 1 (LRP-1) followed by an increase in cell migration. HSP90
regulates the initial phase of wound healing [207,208] and acts synergistically with TGF-
α [209]. An in vitro heat shock assay performed with HaCatT cells increases keratinocyte
motility, whereas an in vivo assay performed on mice with thermal burns shows that
topical application of HSP90 increases tissue granulation and reduces inflammation [210].

Cytokines including IL-1, IL-6 and TNF-α also regulate keratinocyte migration. IL-
1 promotes the secretion of FGF-7 [211], while IL-6 stimulates motility via the STAT-3
dependent pathway [212].

Chemokines produced by various types of cells may also propagate keratinocyte motil-
ity. The N terminus takes part in receptor activation. Keratinocytes express CXCL1, 8, 10,
11 and CCR14, 17, 27, which stimulate their migration, whereas CXCL1, 8 and 12 accelerate
their proliferation. Reduced keratinocyte motility and proliferation has been observed in
CXCR2 knockout mice. CXCR2 is a receptor for CXCL1 (growth-related oncogene-α) and
CXCL8 (IL-8) chemokines, which are essential for keratinocyte activity [208]. CXCL10 and
CXCL11 are expressed by basal keratinocytes during the re-epithelialization phase [213].
CXCR3 is a receptor for CXCL10 and CXCL11. CXCR3 knockout mice demonstrate delayed
re-epithelization [214]. Interestingly, keratinocyte migration and wound closure were accel-
erated in mice with thick wounds in the presence of CXCL11 [215]. Conversely, reduced
proliferation was observed in keratinocytes exposed to an elevated level of CXCL8 [216].

Neuropeptides, molecules released, among others, by sensory neurons during cu-
taneous injury, can also accelerate keratinocyte motility and proliferation [217]. The G
protein-coupled receptor (GCRP) increases the mitogenic potential of keratinocytes [218].
Vasoactive intestinal peptide (VIP) was found to directly induce keratinocyte migration
in vitro [219], or by the upregulation of the production of TGF-α [220] and VEGF [221].
Substance P (SP), which binds to the neurokinin 1 receptor (NK1R), and calcitonin gene-
related peptide (CGRP) stimulate the production of inflammatory agents including IL-1,
IL-6, TNF-α and nerve growth factor (NGF) in keratinocytes, as well as their motility.
Similarly, SP and NK1R have been found to promote human and murine keratinocyte
proliferation [222–226]. SP and NK1R SP activate all three members of the MAPK family,
whereas CGRP only induces p38 and ERK1/2 [227]. Keratinocytes under hypoxia and
poor nutrient environments similar to chronic wounds exhibit accelerated cell prolifera-
tion when exposed to SP, and mice with full-thickness wounds demonstrated elevated
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wound closure after topical application of SP [228]. Diabetic wounded mice also exhibited
accelerated re-epithelialization after SP exposure [229]; however, an SP damage agent
named neutral endopeptidase (NEP) was also found to be upregulated in diabetic mice
wounds. This may be due to the impaired activities of keratinocytes under the influence of
NEP inhibitors [230]. It was observed that, under hyperglycemic conditions, keratinocytes
demonstrate lower expression of the neuropeptide neurotensin (NT) and neurotensin
receptor (NTR); however, the addition of exogenous NT do not impact keratinocyte pro-
liferation but even reduced migration [231]. An in vitro study on keratinocytes indicated
increased expression of IL-1α, IL-8, TNF-α and NGF mRNA following treatment with SP,
CGRP, VIP and galanin (GAL) [232]. It was also found that keratinocyte expresses the GAL
receptor GALR2, which is known to influence keratinocyte proliferation [233]. In addition,
β-endorphin also appears to enhance keratinocyte motility by binding with mu-opiate
receptor [234].

Keratinocytes also express cholinergic receptors, including nicotinic (nAChR), includ-
ing α3, α5, α7, α9, α10, β1, β2, and β4 and muscarinic acetylcholine (ACh) (mAChR)
forms, including M1, 2, 3, 4, and 5. Increased keratinocyte migration is observed after
the activation of the following receptors: α3 by PKCδ and RhoA signaling; α7 by PI3K
and Rac/Cdc42 signaling; α9 by modulating adhesion between cells and between the cell
and extracellular matrix (ECM) and M4 by integrins α5β1, αvβ5 and αvβ6. Conversely,
M3 activation upregulates integrins α2β1 and α3β1, related to adhesion, and suppresses
keratinocyte migration [235–237].

In wounds, keratinocyte migration onto the dermal matrix and MMP-1 expression is
mediated by native type I collagen [238]. In vitro data indicate that MMP-1 fragmented the
collagen, which was followed by impaired keratinocyte function and slow spread [239].
Interestingly, it has been suggested that chronic wounds, characterized by accelerated
IL-1β and TNF-α expression, result in elevated levels of MMPs and the secretion of growth
factors such as FGFs. This results in reduced keratinocyte migration due to degradation of
ECM components and the greater availability of selected growth factors [172]. Throughout
proteolytic activity, MMPs convert the latent form of growth factors into active ones,
including IGF-1 [240].

The plant extracts and their component compounds may modulate keratinocyte
migration and proliferation rates via various mechanisms, including stimulation of the
MAPK and PI3K/AKT signal transduction pathways. In some studies, a higher expression
of β1-, α6-, β4-integrin and E-cadherin were observed after extract treatment. Table 4
presents the impact of selected plant extracts on the migration and proliferation rates of
human keratinocytes. As cellular motility is closely connected with the induction of various
growth factors, the presented plant-derived compounds exhibit important properties that
modulate the production of growth factors and enhance migration followed by accelerated
wound closure.
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Table 4. Selected plant extracts from different species with identified compounds and their in vitro effect on human keratinocyte migration and proliferation rates.

Name of the
Species/Family

Part of the
Plant

Type of
Extract Cell Line Identified Compounds Mechanism of Action Effects Ref.

Boesenbergia rotunda (L.)
Mansf. (Zingiberaceae) rhizomes ethanolic HaCaT kaempferol

Induction: ERK 1/2, Akt
Activation: MAPK and

PI3K/Akt pathways

stimulate
proliferation [241]

Rubus fruticosus L.
(Rosaceae) leaves aqueous HaCaT phenolic compounds - stimulate migration [242]

Alternanthera sessilis (L.)
R.Br. ex DC.

(Amaranthaceae)
stems ethanolic HaCaT 2,4-dihydroxy-2,5-dimethyl-3(2H)-furan-3-one, hexadecanoic acid <n->,

2-1,2,4-trioxolane,3-phenyl-, palmitate <ethyl- and L-glutamic acid - stimulate migration
and proliferation [243]

Hibiscus syriacus L.
(Malvaceae) leaves ethanolic HaCaT flavonoids, coumarins - stimulate migration [244]

Digitaria sanguinalis (L.)
Scop. (Poaceae) flowers ethanolic HaCaT

xycaine, hexadecanoic acid, linolenic acid, octadecanoic acid, phenol,
2,2′-methylenebis [6-(1,1-dimethylethyl)-4-methyl-, pentacosane,
heptacosane, squalene, 1-docosene, cyclooctacosane, campesterol,
stigmasterol, lanosterol, multiflora-7,9(11)-dien-3β-ol, sitostenone

- stimulate
proliferation [245]

Fuchsia magellanica Lam.
(Onagraceae) leaves aqueous,

ethanolic HaCaT gallic acid derivatives, hydroxycinnamic acid derivatives and flavonoid
glycosides, anthocyanins - stimulate migration [246]

Elaeagnus umbellata Thunb.
(Elaeagnaceae)

leaves and
twigs acetone HaCaT

N-[2-(5-hydroxyl-1H- indol-3-yl)ethyl]-butanamide,
kaempferol-3-O-β-D-xylopyranosyl(1→2)-β-D-galactopyranoside-7-O-

α-L-rhamnopyranoside,
kaempferol-3-O-β-D-galactopyranoside-7-O-α-Lrhamnopyranoside,

kaempferol-3-O-α-L-rhamnopyranosyl(1→6)-β-D-galactopyranoside-7-
O-α-L-rhamnopyranoside,

kaempferol-3-O-β-D-xylopyranosyl(1→2)-β-D-galactopyranoside

- stimulate
proliferation [247]

Annona crassiflora Mart.
(Annonaceae) seeds aqueous HaCaT

catechin, epicatechin, rutin, quercetin, naringenin, protocatechuic acid,
4-hydroxybenzoic acid, vanillic acid, chlorogenic acid, caffeic acid,

p-coumaric acid, ferulic acid
- stimulate migration [248]

Combretum mucronatum
Schumach. & Thonn.

(Combretaceae)
leaf aqueous NHEKs epicatechin, procyanidinB2, vitexin and isovitexin - stimulate migration

and differentiation [249]

Achillea asiatica Serg.
(Asteraceae) aerial part ethanolic HaCaT chlorogenic acid, schaftoside, quercetin-3-O arabinosyl(1→6)glucoside,

apigenin-7-O-glucoside, luteolin, and apigenin Induction: β-catenin, Akt stimulate migration [250]

Moringa oleifera Lam.
(Moringaceae) leaves aqueous NHEKs vicenin-2, chlorogenic acid, gallic acid, quercetin, kaempferol,

rosmarinic acid and rutin - stimulate migration
and proliferation [251]

Plantago australis Lam.
(Plantaginaceae) leaves ethanolic HaCaT verbascoside - stimulate migration [252]



Int. J. Mol. Sci. 2021, 22, 12488 20 of 32

Table 4. Cont.

Name of the
Species/Family

Part of the
Plant

Type of
Extract Cell Line Identified Compounds Mechanism of Action Effects Ref.

Aegle marmelos (L.) Corrêa
(Rutaceae) flower ethanolic HaCaT cineol, aegelin, cuminaldehyde, luvangetin,

1-hydroxy-5,7-dimethoxy-2-naphthalene-carboxaldehyde, eugenol - stimulate migration [253]

Boerhavia diffusa L.
(Nyctaginaceae) leaves methanolic HaCaT caffeic acid, ferulic acid and D-pinitol - stimulate migration [254]

Annona reticulata L.
(Annonaceae) leaves ethanolic HaCaT quercetin and β-sitosterol Increased: VEGF and Akt stimulate migration

and proliferation [255]

Centella asiatica (L.) Urb.
(Apiaceae)

whole
plant methanolic HaCaT asiaticoside - stimulate migration [256]

Afgekia mahidoliae B. L. Burtt
& Chermsir.
(Fabaceae)

leaves chloroform/methanolHaCaT kaempferol-3-O-arabinoside, kaempferol-3-O-glucoside, and
kaempferol-3-O-rutinoside,

Induction: filopodia and
lamellipodia formation, Akt stimulate migration [257]

Aloe vera (L.) Burm.f.
(Asphodelaceae) leaves aqueous HPEKs anthraquinones

Induction: β1-, α6-,
β4-integrin, and E-cadherin

expression
stimulate migration [258]

Aristolochia bracteolata Lam.
(Aristolochiaceae) leaves methanolic HaCaT quercetin - stimulate migration [259]

Stellera chamaejasme L.
(Thymelaeaceae) aerial parts ethanolic HaCaT daphnin, daphnetin-8-O-glucoside, daphnetin, rutarensin, isoquercitrin,

chamechromone and daphnoretin
Induction: β-catenin, ERK and

Akt stimulate migration [260]

Polygonum aviculare L
(Polygonaceae)

whole
plant ethanolic HaCaT quercitrin hydrate, caffeic acid, and rutin Induction: Wnt/β-catenin

signaling stimulate migration [261]

Hypericum carinatum Griseb.
(Hypericaceae) aerial parts n-hexane HaCat cells

uliginosin A, japonicin A, uliginosin B, hyperbrasilol B, and the three
benzopyrans, that is,

6-isobutyryl-5,7-dimethoxy-2,2-dimethyl-benzopyran,
7-hydroxy-6-isobutyryl-5-methoxy-2,2-dimethyl-benzopyran, and

5-hydroxy-6-isobutyryl-7-methoxy-2,2-dimethyl-benzopyran

- stimulate migration [262]
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A study of the abovementioned Aegle marmelos [253], Boerhavia diffusa [254] and Stellera
chamaejasme [260] extracts found them to reduce wound area in rats. Annona reticulata [255]
and Centella asiatica [259] also demonstrated acceleration of wound healing after topical
application in mice and rabbits, respectively.

Finally, cyanidin-3-glucoside derived from blackberry [263] and chlorogenic acid
derived from Parrotia persica [264] significantly accelerate the wound closure process in
keratinocytes in vitro.

9. Conclusions

Plants are key sources of secondary metabolites that exert various antioxidant and
anti-inflammatory effects, among others. These compounds are able to modulate signaling
pathways in numerous cells, including epidermal cells. Keratinocytes placed in the outer
layer of the skin create a physical barrier against harmful stimuli. They are particularly
vulnerable to UV-radiation, related oxidative stress and inflammation. Any disruption of
the epidermis stimulates cell migration, proliferation and participation in wound healing.
It is suggested that such compounds of plant origin may be used to modulate keratinocyte
function by improving ROS scavenging, inhibiting inflammation and accelerating wound
healing via influencing signal transduction pathways. Hence, plant extracts and their
component compounds may have an impact on keratinocyte biology and its ability to
maintain homeostasis. However, further in vitro and in vivo studies of the mechanisms of
the action of phytochemicals, and more specific toxicity and clinical studies are needed to
ensure the effectiveness and safety of plant compounds for use on human skin.
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12. Sitarek, P.; Merecz-Sadowska, A.; Śliwiński, T.; Zajdel, R.; Kowalczyk, T. An in vitro evaluation of the molecular mechanisms of
action of medical plants from the lamiaceae family as effective sources of active compounds against human cancer cell lines.
Cancers 2020, 12, 2957. [CrossRef] [PubMed]

13. Josiah, A.J.; Twilley, D.; Pillai, S.K.; Ray, S.S.; Lall, N. Pathogenesis of Keratinocyte Carcinomas and the Therapeutic Potential of
Medicinal Plants and Phytochemicals. Molecules 2021, 26, 1979. [CrossRef]

14. Sitarek, P.; Merecz-Sadowska, A.; Kowalczyk, T.; Wieczfinska, J.; Zajdel, R.; Śliwiński, T. Potential synergistic action of bioactive
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